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Gordon Linoff and I have written three and a half books together. (Four, if we get
to count the second edition of Data Mining Techniques as a whole new book; it
didn’t feel like any less work.) Neither of us has written a book without the other
before, so I must admit to a tiny twinge of regret upon first seeing the cover of
this one without my name on it next to Gordon’s. The feeling passed very
quickly as recollections of the authorial life came flooding back — vacations
spent at the keyboard instead of in or on the lake, opportunities missed, rela-
tionships strained. More importantly, this is a book that only Gordon Linoff
could have written. His unique combination of talents and experiences informs
every chapter.

I first met Gordon at Thinking Machines Corporation, a now long-defunct
manufacturer of parallel supercomputers where we both worked in the late
eighties and early nineties. Among other roles, Gordon managed the imple-
mentation of a parallel relational database designed to support complex ana-
lytical queries on very large databases. The design point for this database was
radically different from other relational database systems available at the time
in that no trade-offs were made to support transaction processing. The require-
ments for a system designed to quickly retrieve or update a single record are
quite different from the requirements for a system to scan and join huge tables.
Jettisoning the requirement to support transaction processing made for a
cleaner, more efficient database for analytical processing. This part of Gor-
don’s background means he understands SQL for data analysis literally from
the inside out.

Just as a database designed to answer big important questions has a different
structure from one designed to process many individual transactions, a book
about using databases to answer big important questions requires a different

Foreword

xxvii

99513flast.qxd:WileyRed  8/27/07  7:49 PM  Page xxvii



approach to SQL. Many books on SQL are written for database administrators.
Others are written for users wishing to prepare simple reports. Still others
attempt to introduce some particular dialect of SQL in every detail. This one is
written for data analysts, data miners, and anyone who wants to extract maxi-
mum information value from large corporate databases. Jettisoning the require-
ment to address all the disparate types of database user makes this a better,
more focused book for the intended audience. In short, this is a book about how
to use databases the way we ourselves use them. 

Even more important than Gordon’s database technology background, is
his many years as a data mining consultant. This has given him a deep under-
standing of the kinds of questions businesses need to ask and of the data they
are likely to have available to answer them. Years spent exploring corporate
databases has given Gordon an intuitive feel for how to approach the kinds of
problems that crop up time and again across many different business domains: 

■■ How to take advantage of geographic data. A zip code field looks much
richer when you realize that from zip code you can get to latitude and
longitude and from latitude and longitude you can get to distance. It
looks richer still when your realize that you can use it to join in census
bureau data to get at important attributes such as population density,
median income, percentage of people on public assistance, and the like.

■■ How to take advantage of dates. Order dates, ship dates, enrollment
dates, birth dates. Corporate data is full of dates. These fields look
richer when you understand how to turn dates into tenures, analyze
purchases by day of week, and track trends in fulfillment time. They
look richer still when you know how to use this data to analyze time-to-
event problems such as time to next purchase or expected remaining
lifetime of a customer relationship.

■■ How to build data mining models directly in SQL. This book shows
you how to do things in SQL that you probably never imagined possible,
including generating association rules for market basket analysis, build-
ing regression models, and implementing naïve Bayesian models and
scorecards. 

■■ How to prepare data for use with data mining tools. Although more
than most people realize can be done using just SQL and Excel, eventu-
ally you will want to use more specialized data mining tools. These tools
need data in a specific format known as a customer signature. This book
shows you how to create these data mining extracts.

The book is rich in examples and they all use real data. This point is worth
saying more about. Unrealistic datasets lead to unrealistic results. This is frus-
trating to the student. In real life, the more you know about the business con-
text, the better your data mining results will be. Subject matter expertise gives
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you a head start. You know what variables ought to be predictive and have
good ideas about new ones to derive. Fake data does not reward these good
ideas because patterns that should be in the data are missing and patterns that
shouldn’t be there have been introduced inadvertently. Real data is hard to
come by, not least because real data may reveal more than its owners are will-
ing to share about their business operations. As a result, many books and
courses make do with artificially constructed datasets. Best of all, the datasets
used in the book are all available for download at the companion web site and
from www.data-miners.com.

I reviewed the chapters of this book as they were written. This process was
very beneficial to my own use of SQL and Excel. The exercise of thinking about
the fairly complex queries used in the examples greatly increased my under-
standing of how SQL actually works. As a result, I have lost my fear of nested
queries, multi-way joins, giant case statements, and other formerly daunting
aspects of the language. In well over a decade of collaboration, I have always
turned to Gordon for help using SQL and Excel to best advantage. Now, I can
turn to this book. And you can too.

— Michael J. A. Berry
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Although this book has only one name on the cover, there are many people
over a long period of time who have helped me both specifically on this book
and more generally in understanding data, analysis, and presentation.

Michael Berry, my business partner and colleague since 1998 at Data Miners,
has been tremendously helpful on all fronts. He reviewed the chapters, tested
the SQL code in the examples, and helped anonymize the data. His insights
have been helpful and his debugging skills have made the examples much
more accurate. His wife, Stephanie Jack, also deserves special praise for her
patience and willingness to share Michael’s time.

Bob Elliott, my editor at Wiley, and the Wiley team not only accepted my
original idea for this book, but have exhibited patience and understanding as
I refined the ideas and layout.

Matt Keiser, President of Datran Marketing, and Howard Lehrman (for-
merly of Datran) were kind enough to provide computing power for testing
many of the examples. Nick Drake, also of Datran, inspired the book, by ask-
ing for a SQL reference focused on data analysis.

Throughout the chapters, the understanding of data processing is based on
dataflows, which Craig Stanfill of Ab Initio Corporation first introduced me to,
once upon a time when we worked together at Thinking Machines Corporation.

Stuart Ward and Zaiying Huang (from the New York Times) have spent
countless hours over the past several years explaining statistical concepts to
me. Harrison Sohmer, also of the New York Times, taught me many Excel
tricks, some of which I’ve been able to include in the book.

Anne Milley of SAS Institute originally suggested that I learn survival analy-
sis. Will Potts, now at CapitalOne, taught me much of what I know about the
subject, including helping to develop two of the earliest survival analysis–based
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forecasts (and finally convincing me that hazard probabilities really can’t be neg-
ative). Brij Masand, a colleague at Data Miners, helped extend this knowledge to
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ter 5 (and thanks to Alex Wimbush who pointed me in their direction). Edwin
Straver of Frontline Systems answered several questions about Solver, intro-
duced in Chapter 11.

Over the years, many colleagues, friends, and students have provided inspi-
ration, questions, and answers. There are too many to list all of them, but I
want to particularly thank Eran Abikhzer, Michael Benigno, Emily Cohen,
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Data. Analysis. Presentation. These three key capabilities are needed for effec-
tively transforming data into information. And yet, these three topics are
rarely treated together. Other books focus on one or the other — on the details
of relational databases, or on applying statistics to business problems, or on
using Excel. This book approaches the challenges of data analysis from a more
holistic perspective, and with the aim of explaining the relevant ideas both to
people responsible for analyzing data and to people who want to use such
information, responsibly.

The motivation for this approach came from a colleague, Nick Drake, who is
a statistician by training. Once upon a time, he was looking for a book that
would explain how to use SQL for the complex queries needed for data analy-
sis. There are many books on SQL, few focused on using the language for
queries, and none that come strictly from a perspective of analyzing data. Sim-
ilarly, there are many books on statistics, none of which address the simple fact
that most of the data being used resides in relational databases. This book is
intended to fill that gap.

There are many approaches to data analysis. My earlier books, written with
Michael Berry, focus on the more advanced algorithms and case studies usu-
ally falling under the heading “data mining.” By contrast, this book focuses on
the “how-to.” It starts by describing data stored in databases and continues
through preparing and producing results. Interspersed are stories based on
my experience in the field, explaining how results might be applied and why
some things work and other things do not. The examples are so practical that
the data used for them is available on the companion web site and at
www.data-miners.com.

Introduction
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One of the truisms about data warehouses and analysis databases in general
is that they don’t actually do anything. Yes, they store data. Yes, they bring
together data from different sources, cleansing and clarifying along the way.
Yes, they define business dimensions, store transactions about customers, and,
perhaps, summarize important data. (And, yes, all these are very important!)
However, data in a database resides on so many spinning disks and in complex
data structures in a computer’s memory. So much data. So little information.

Oil deposits and diamonds hidden in rich seams beneath the surface of the
earth are worth much less than gasoline at the pump or Tiffany diamond rings.
Prospectors can make a quick buck on such deposits. On the other hand, the
companies willing to invest the dollars to transform and process the raw mate-
rials into marketable goods are the ones that uncover the long-term riches.

This book is about the basic tools needed for exploiting data, particularly
data that describes customers. There are many fancy algorithms for statistical
modeling and data mining. However, “garbage-in, garbage-out.” The results
of even the most sophisticated techniques are only as good as the data being
used. Data is central to the task of understanding customers, understanding
products, and understanding markets.

The chapters in this book discuss different aspects of data and several dif-
ferent analytic techniques. The analytic techniques range from exploratory
data analysis to survival analysis, from market basket analysis to naïve
Bayesian models, from simple animations to regression. Of course, the poten-
tial range of possible techniques is much larger than can be presented in one
book. The methods have proven useful over time and are applicable in many
different areas.

And finally, data and analysis are not enough. Data must be analyzed, and
the results must be presented to the right audience. To fully exploit its value, we
must transform data into stories and scenarios, charts and metrics, and insights.

Overview of the Book and Technology

This book focuses on three key technological areas used for transforming data
into actionable information:

■■ Relational databases store the data. The basic language for retrieving
data is SQL.

■■ Excel spreadsheets are the most popular tool for presenting data. Perhaps
the most powerful feature of Excel is the charting capability, which turns
columns of numbers into pictures.

■■ Statistics is the foundation of data analysis.
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These three technologies are presented together, because they are all inter-
related. SQL answers the question “how do we pull data from a database?”
Statistics answers the question “how is it relevant”? And Excel makes it pos-
sible to convince other people of the veracity of what we find.

The description of data processing is organized around the SQL language.
Although there are extensions of SQL and other very powerful data manipu-
lation languages, SQL is common to most databases. And, databases such as
Oracle, IBM’s DB2, and Microsoft SQL Server are common in the business
world, storing the vast majority of business data transactions. Other databases
such as mysql are available at no cost and easily downloaded. The good news
is that all relational databases support SQL as a query language. However, just
as England and the United States have been described as “two countries sepa-
rated by a common language,” each database supports a slightly different
dialect of SQL. The Appendix contains a list of commonly used functions and
how they are represented in various different dialects.

Similarly, there are beautiful presentation tools and professional graphics
packages. However, very rare and exceptional is the workplace computer that
does not have Excel (or an equivalent spreadsheet).

Statistics and data mining techniques do not always require advanced tools.
Some very important techniques are readily available using the combination
of SQL and Excel, including survival analysis, naïve Bayesian models, and
association rules. In fact, the methods in this book are often more powerful
than the methods available in many statistics and data mining tools, precisely
because they are close to the data and customizable for specific applications.
The explanation of the techniques covers both the basic ideas and the exten-
sions that may not be available in other tools.

The chapters describing the various techniques provide a solid introduction
to modeling and data exploration, in the context of familiar tools and data.
They also highlight when the more advanced tools are useful, because there is
not a simpler solution using more readily available tools.

In the interests of full disclosure, I should admit that in the early 1990s I
worked on a package called Darwin at a company called Thinking Machines. In
the intervening years, this package has become much more powerful and user-
friendly, and has now grown into Oracle Data Mining. In addition to Oracle,
SQL Server offers data mining extensions within the tool — an exciting devel-
opment that brings advanced data analysis even closer to the data.

This book does not discuss such functionality at all. The methods in the
chapters have been chosen for their general applicability to data stored in
relational databases. The explicit purpose is not to focus on a particular rela-
tional database engine. In many ways, the methods discussed here comple-
ment such extensions.
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How This Book Is Organized

The twelve chapters in this book fall roughly into three parts. The first three
introduce key concepts of SQL, Excel, and statistics. The six middle chapters
discuss various methods of exploring data, and techniques specifically suited
to SQL and Excel. The last three focus on the idea of modeling, in the sense of
statistics and data mining.

Each chapter explains some aspect of data analysis using SQL and Excel
from several different perspectives, including:

■■ Business examples for using the analysis;

■■ Questions the analysis answers;

■■ How the analytic techniques work;

■■ The SQL syntax for implementing the techniques; and,

■■ The results (as tables or charts), and how they are created in Excel.

Examples in the chapters are generally available in Excel at www.data-
miners.com.

SQL is a concise language that is sometimes difficult to follow. Dataflows,
graphical representations of data processing that explain data manipulations,
are used to illustrate how the SQL works.

Results are presented in charts and tables, sprinkled throughout the book. In
addition, important features of Excel are highlighted, and interesting uses of
Excel graphics are explained. Each chapter has a couple of technical asides,
typically explaining some aspect of a technique or an interesting bit of history
associated with the methods described in the chapter.

Introductory Chapters
The first chapter, “A Data Miner Looks at SQL,” introduces SQL from the per-
spective of data analysis. This is the querying part of the SQL language, where
data stored in databases is extracted using SQL queries.

Ultimately, data about customers and about the business is stored in SQL
databases. This chapter introduces entity-relationship diagrams to describe
the structure of the data — the tables and columns and how they relate to each
other. It also introduces dataflows to describe the processing of queries;
dataflows provide a graphical explanation of how data is processed.

The first chapter also describes the datasets used for examples throughout
the book (and which are also available on the companion web site). This data
includes tables describing retail purchases, tables describing mobile telephone
customers, and reference tables that describe zip codes and the calendar.
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The second chapter, “What’s In a Table? Getting Started with Data Explo-
ration,” introduces Excel for exploratory data analysis and presentation. Of
many useful capabilities in Excel, perhaps the most useful are charts. As the
ancient Chinese saying goes, “a picture paints a thousand words,” and Excel
makes it possible to paint pictures using data. Such charts are not only useful
aesthetically, but more practically for Word documents, PowerPoint, email, the
Web, and so on.

Charts are not a means unto themselves. This chapter starts down the road
of exploratory data analysis, using charts to convey interesting summaries of
data. In addition, this chapter discusses summarizing columns in a table, as
well as the interesting idea of using SQL to generate SQL queries.

Chapter 3, “How Different Is Different?”, explains some key concepts of
descriptive statistics, such as averages, p-values, and the chi-square test. The
purpose of this chapter is to show how to use such statistics on data residing
in tables. The particular statistics and statistical tests are chosen for their prac-
ticality, and the chapter focuses on applying the methods, not explaining the
underlying theory. Conveniently, most of the statistical tests that we want to
do are feasible in Excel and even in SQL. 

SQL Techniques
Several techniques are suited very well for the combination of SQL and Excel.

Chapter 4, “Where Is It All Happening? Location, Location, Location,”
explains geography and how to incorporate geographic information into data
analysis. Geography starts with locations, described by latitude and longitude.
There are then various levels of geography, such as census blocks, zip code tab-
ulation areas, and the more familiar counties and states, all of which have
information available from the Census Bureau. This chapter also discusses
various methods for comparing results at different levels of geography. And,
finally, no discussion of geography would be complete without maps. Using
Excel, it is possible to build very rudimentary maps.

Chapter 5, “It’s a Matter of Time,” discusses another key attribute of cus-
tomer behavior, when things occur. This chapter describes how to access fea-
tures of dates and times in databases, and then how to use this information to
understand customers. 

The chapter includes examples for accurately making year-over-year com-
parisons, for summarizing by day of the week, for measuring durations in
days, weeks, and months, and for calculating the number of active customers
by day, historically. The chapter ends with a simple animation in Excel.

Chapters 6 and 7, “How Long Will Customers Last? Survival Analysis to
Understand Customers and Their Value”  and “Factors Affecting Survival: The
What and Why of Customer Tenure,” explain one of the most important analytic
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techniques for understanding customers over time. Survival analysis has its
roots in traditional statistics. However, it is very well suited to problems related
to customers.

Chapter 6 introduces the basic ideas of hazard probabilities and survival,
explaining how to calculate them easily using the combination of SQL and Excel.
Perhaps surprisingly, sophisticated statistical tools are not needed to get started
using survival analysis. Chapter 6 then explains how important ideas in survival
analysis, such as average customer lifetime, can be used in a business context. It
continues by explaining how to put these pieces together into a forecast.

Chapter 7 extends the discussion in three different areas. First, it addresses
a key problem in many customer-oriented databases, called left truncation.
Second, it explains a very interesting idea in survival analysis called compet-
ing risks. This idea incorporates the fact that customers leave for different rea-
sons. The third idea is to use survival analysis for before-and-after analysis.
That is, how can we quantify what happens to customers when something
happens during their lifetime — such as quantifying the effect of enrollment in
a loyalty program or of a major billing fiasco.

Chapters 8 and 9, “Customer Purchases and Other Repeated Events” and
“What’s in a Shopping Cart? Market Basket Analysis and Association Rules,”
explain how to understand what customers are purchasing using SQL and
Excel. Chapter 8 covers everything about the purchase — when it occurs,
where it occurs, how often — except for the particular items being purchased.
Purchases contain a lot of information, even before we dive into the details of
the items.

Chapter 9 explains association rules, which are combinations of products
purchased at the same time or in sequence. Building association rules in SQL
is rather sophisticated, usually requiring intermediate tables. The methods in
this chapter extend traditional association rule analysis, introducing alterna-
tive measures that make them more useful, and show how to produce combi-
nations of different things, such as clicks that result in a purchase (to use an
example from the web).

Chapters 8 and 9 also introduce SQL window functions (called “analytic
functions” in Oracle). These are very powerful functions that should be part of
the repertoire of all analysts using SQL.

Modeling Techniques
The last three chapters discuss statistical and data mining modeling tech-
niques and methods.

Chapter 10, “Data Mining Models in SQL,” introduces the idea of data min-
ing modeling and the terminology associated with building such models. It
also discusses some important types of models that are well-suited to business
problems and the SQL environment. Look-alike models find things similar to
a given example. Lookup models use a lookup table to find model scores.
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This chapter also discusses a more sophisticated modeling technique called
naïve Bayesian models. This technique combines information along various
business dimensions to estimate an unknown quantity.

Chapter 11, “The Best Fit Line: Linear Regression Models,” covers a more
traditional statistical technique, linear regression. Several variants of linear
regression are introduced, including polynomial regression, weighted regres-
sion, multiple regression, and exponential regression. These are explained
graphically, using Excel charts, along with the R2 value that measures how
well the model fits the data.

Regression is explained using both Excel and SQL. Although Excel has several
built-in functions for regression, there is an additional method using Solver,
which is more powerful than the built-in functions. This chapter introduces
Solver (which is free and bundled with Excel) in the context of linear regression.

The final chapter, “Building Customer Signatures for Further Analysis,”
introduces the customer signature. This is a data structure that summarizes
what a customer looks like at a particular point in time. Customer signatures
are very powerful for modeling.

This chapter recognizes that although SQL and Excel are quite powerful,
more sophisticated tools are sometimes necessary. The customer signature is
the right way to summarize customer information, under many circumstances.
And, SQL is a very powerful tool for this summarization.

Who Should Read this Book

This book is designed for several audiences, with varying degrees of techni-
cal skills.

On the less technical side are managers, particularly those with a quantita-
tive bent who are responsible for understanding customers or a business unit.
Such people are often quite proficient in Excel, but, alas, much of the data they
need resides in relational databases. To help them, this book provides examples
of business scenarios where analysis provides useful results. These scenarios
are detailed, showing not only the business problem, but the technical
approach and the results.

Another part of the audience consists of people whose job is to understand
data and customers, often having a job title including the word “analyst.”
These individuals typically use Excel and other tools, sometimes having direct
access to the data warehouse or to some customer-centric database. This book
can help by improving SQL querying skills, showing good examples of charts,
and introducing survival analysis and association rules for understanding cus-
tomers and the business.
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At the most technical end are statisticians, who typically use special-purpose
tools such as SAS, SPSS, and S-plus. However, the data resides in databases.
This book can help the very technical with their SQL skills, and also provide
examples of using analysis to solve particular business problems.

In addition, database administrators, database designers, and information
architects may find this book interesting. The queries shown in the various
chapters illustrate what people really want to do with the data, and should
encourage database administrators and designers to create efficient databases
that support these needs.

I encourage all readers, even the technically proficient, to read (or at least
skim) the first three chapters. These chapters introduce SQL, Excel, and statis-
tics all from the perspective of analyzing large quantities of data. This per-
spective is different from how these subjects are usually introduced. Certain
ideas in these chapters, such as the example data, dataflows, SQL syntax, and
good chart design, are used throughout the book.

Tools You Will Need

This book is designed to be stand-alone. That is, readers should be able to learn
the ideas and gain understanding directly from the text.

All the SQL in the book has been tested (in Microsoft SQL Server). The
datasets and results are available on the companion web sites and at
www.data-miners.com. Readers who want hands-on experience are encour-
aged to download the data and run the examples in the book.

Most examples in the book are vendor-neutral, so they should run with only
minor modification on almost any fully functional relational database (I do not
recommend Microsoft Access for this purpose). If you do not have a database,
there are various software packages available for downloading — database
vendors often have stand-alone versions of their software available at no cost.
A trial version of SQL Server is available at http://www.microsoft.com/sql/
default.mspx. A trial version of Oracle 10g is available at http://www.oracle
.com/technology/software/products/database/oracle10g/index.html. In
addition, free database software is available, in the form of mysql and other
databases.

Some examples in the book use SQL window functions, which are currently
available only in Microsoft SQL and Oracle SQL. I do hope that these func-
tions — which are part of the SQL standard — are adopted by more database
vendors in the future because they are tremendously useful for data analysis
and data mining.

xl Introduction

99513flast.qxd:WileyRed  8/27/07  7:49 PM  Page xl



What’s on the Web Site

The companion web site at Wiley and at www.data-miners.com contains the
datasets used in the book. These datasets contain the following information:

■■ Reference tables. There are three reference tables, two containing census
information (from the 2000 Census) and one containing calendar infor-
mation about dates.

■■ Subscribers dataset. This is data describing a subset of customers in a
mobile telephone company.

■■ Purchases dataset. This is data describing customer purchase patterns.

This data is available for download, along with instructions for loading it into
SQL Server.

In addition, the companion web site has pages with additional information,
such as spreadsheets containing the SQL queries and answers for all examples
in the book and a discussion forum.

Summary

The idea for this book originated with a colleague’s question about a reference
book for SQL for data analysis queries. However, another reference book on
SQL is not needed, even one focused on the practical aspects of using the lan-
guage for querying purposes.

For analyzing data, SQL cannot be learned in a vacuum. A SQL query, no
matter how deftly crafted, is usually not the entire solution to a business prob-
lem. The business problem needs to be transformed into a question, which can
be answered via a query. The results then need to be presented, often as tables
or Excel charts.

I would extend this further. In the real world, statistics also cannot be
learned in a vacuum. Once upon a time, collecting data was a time-consuming
and difficult process. Now, there are web sites devoted to storing data sets and
making them available to anyone who wants them. The companion web site
for this book, for example, puts dozens of megabytes of data just a few clicks
away. The problem of analyzing data now extends beyond the realm of a few
statistical methods to the processes for managing and extracting data as well.

This book combines three key ideas into a single thread of solving problems.
I hope this book helps readers with technical skills. Throughout my work as a
data miner, I have found SQL, Excel, and statistics to be critical tools for ana-
lyzing data. More important than the specific technical skills, though, I hope
this book helps readers improve their technical skills and gives them ideas so
they can better understand their customers and their businesses.
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1

Everywhere data is being collected, every transaction, every web page visit,
every payment — all these and much, much more are filling relational data-
bases with raw data. Computing power and storage have been growing more
cost effective over the past decades, a trend destined to continue in the future.
Databases are no longer merely a platform for storing data. They are increas-
ingly becoming powerful engines for transforming data into information, use-
ful information about customers and products and business practices.

The focus on data mining has historically been on complex algorithms
developed by statisticians and machine learning specialists. Not too long ago,
data mining required downloading source code from a research lab or univer-
sity, compiling the code to get it to run, sometimes even debugging it. By the
time the data and software were ready, the business problem had lost urgency.

This book takes a different approach because it starts with the data. The bil-
lions of transactions that occur every day — credit cards swipes, web page
visits, telephone calls, and so on — are now almost always stored in relational
databases. This technology, which was only invented in the 1970s, is now the
storehouse of the mountains of data available to businesses. Relational data-
base engines count among the most powerful and sophisticated software
products in the business world, so they are well suited for the task of extract-
ing useful information.

The focus of this book is more on data and what to do with data and less on
theory and proofs. Instead of trying to squeeze every last iota of information
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from a small sample — the goal of much statistical analysis — the goal is to
find something useful in the gigabytes and terabytes of data stored by many
businesses.

This book strives to assist anyone facing the problem of analyzing large
databases, by describing the power of data analysis using SQL and Excel. SQL,
which stands for Structured Query Language, is a language used to extract
information from relational databases. Excel is a popular and useful tool for
analyzing smaller amounts of data and presenting results. Its historical limit of
65,536 rows is even an advantage. If the source data fits easily in Excel, then
Excel is probably powerful enough for analyzing it. Large databases start
where Excel leaves off, and 65,536 rows is as good a definition of a large data-
base as any.

The various chapters of this book are intended to build skill in and enthusi-
asm for SQL queries and the graphical presentation of results. Throughout the
book, the SQL queries are used for more and more sophisticated types of
analyses, starting with basic summaries of tables, and moving to data explo-
ration. The chapters continue with methods for understanding time-to-event
problems, such as when customers stop, and market basket analysis for under-
standing what customers are purchasing. The chapters continue with various
techniques for building models. The final chapter, which introduces customer
signatures, is about putting data into the format that works best for many 
traditional statistical and data mining tools.

This chapter introduces SQL for data analysis and data mining. Admittedly,
this introduction is heavily biased, because the purpose is to explain SQL for
the purpose of querying databases rather than building and managing them.
SQL is presented from three different perspectives, some of which may res-
onate more strongly with different groups of readers. The first perspective is
the structure of the data, with a particular emphasis on entity-relationship dia-
grams. The second is the processing of data using dataflows, which happen to
be what is “under the hood” of most relational database engines. The third,
and strongest thread through subsequent chapters, is the syntax of SQL itself.
Although data is well described by entities and relationships, and processing
by dataflows, ultimately the goal is to express the transformations in SQL and
present the results through Excel.

Picturing the Structure of the Data

In the beginning, there is data. Although data may seem to be without form
and chaotic, there is an organization to it, an organization based on tables and
columns and relationships between and among them.

This section describes databases by the data they contain. It introduces
entity-relationship diagrams, in the context of the datasets (and associated data
models) used with this book. These datasets are not intended to represent all
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the myriad different ways that data might be stored in databases; instead, they
are intended as practice data for the ideas in the book. They are available on
the companion web site, along with all the examples in the book.

What Is a Data Model?
The definition of the tables, the columns, and the relationships among them
constitute the data model for the database. A well-designed database actually
has two data models. The logical data model explains the database in terms that
business users understand. The logical data model is very important for com-
municating the contents of the database because it defines many business
terms and how they are stored in the database.

The physical data model explains how the database is actually implemented.
In many cases, the physical data model is identical to or very similar to the log-
ical data model. That is, every entity in the logical data model corresponds to
a table in the database; every attribute corresponds to a column. This is true for
the datasets used in this book.

On the other hand, the logical and physical data models can differ. This is
particularly true for larger and more complicated databases, because certain
performance issues drive physical database design. A single entity might have
rows split into several tables to improve performance, enhance security, enable
backup-restore functionality, or facilitate dabase replication. Multiple similar
entities might be combined into a single table, especially when they have
many attributes in common. Or, a single entity could have different columns in
different tables, with the most commonly used columns in one table and less
commonly used ones in another table (this is called vertical partitioning, and is
one method for improving query performance). Often these differences are
masked through the use of views and other database constructs.

The logical model is quite important for analytic purposes, because it pro-
vides an understanding of the data from the business perspective. However,
queries actually run on the database represented by the physical model, so it is
convenient that the logical and physical structures are often quite similar.

What Is a Table?
A table is a set of rows and columns that describe multiple instances of some-
thing — such as purchases customers have made, or visits to a web page, or
zip codes with demographic details. Each row is an instance and each column
contains one attribute, one item of information about the instance.

Any given column contains the same genre of information for all rows. So a
zip code column should not be the “sent-to” zip code in one row and the
“billed-to” zip code in another. Although these are both zip codes, they repre-
sent two different uses of the zip code, so they belong in two separate columns.
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Some columns are permitted to take on the value NULL meaning that the
value in a given row is not available or appropriate for a given instance. For
instance, a row describing customers might contain a column for birthdate.
This column would take on the value of NULL for all rows where the birthdate
is not known.

A table can have as many columns as needed to describe an instance,
although for practical purposes tables with more than a few hundred columns
are rare. A table can have as many rows as needed; here the numbers easily rise
to the millions and even billions, because these often represent customers or
customer transactions.

As an example, Table 1-1 shows a few rows and columns from the Zipcensus
table (which is available on the companion web site). This table shows that each
zip code is in a particular state, which is the abbreviation in the STATE column.
There is also a STATE2 column because some zip codes have parts in several
states. For instance, 10004 is a zip code in New York City that covers Ellis
Island. In 1998, the Supreme Court split jurisdiction of the island between New
York and New Jersey, but the Post Office did not change the zip code. So, 10004
has a portion in New York and a smaller, unpopulated portion in New Jersey.

Table 1-1: Some Rows and Columns from Zipcensus

ZIPCODE STATE STATE2 POPULATION LAND AREA MILES

10004 NY NJ 1,225 0.6156

33156 FL <NULL> 31,450 14.0901

48706 MI <NULL> 40,647 69.7815

55403 MN <NULL> 14,873 1.3903

73501 OK <NULL> 22,230 345.7548

92264 CA <NULL> 18,869 45.9745

Each zip code also has an area, which is measured in square miles and
recorded in the LANDAREAMILES column. This column simply contains a
number, and the database does not know what this number means. It could be
area in acres, or square kilometers, or square inches, or pyongs (a Korean unit
for area). What the number really means depends on information not stored in
the tables. Metadata describes what the values in columns mean.

Databases typically do store some information about each column. Conve-
niently, there is often a label or description (and it is a good idea to fill this in
when creating a table). More importantly, there is the data type of the column
and whether NULL values are allowed. The next two sections discuss these two
topics, because they are quite important for analyzing data.
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Allowing NULL Values

Nullability is whether or not a column may contain the NULL value. By default
in SQL, a column in any row can contain a special value that says that the
value is empty. Although this seems quite useful, NULLs have some unusual
side effects. Almost every comparison and function returns NULL if any argu-
ment is NULL. So, the following simple query looks like it counts all the rows in
the Zipcensus table where the STATE2 column is NULL. However, this query
always returns zero:

SELECT COUNT(*)

FROM zipcensus zc

WHERE zc.state <> NULL

All comparisons return FALSE when either argument is NULL, so no rows 
are ever selected. The count is zero even though STATE has many non-NULL
values. Of course, determining which rows have NULL values is quite useful,
so SQL provides the special operators IS NULL and IS NOT NULL to make the
comparison. These behave as expected, with the preceding query returning
32,038 instead of 0.

The problem is more insidious when comparing column values, either within
a single table or between tables. For instance, the column STATE contains the
primary state of a zip code and STATE2 contains the second state, if any. The fol-
lowing query counts the number of zip codes in total and the number where
these two state columns have different values:

SELECT COUNT(*),

SUM(CASE WHEN state <> state2 THEN 1 ELSE 0 END) as numsame

FROM zipcensus zc

Or does it? The columns STATE and STATE2 should always have different
values, so the two counts should be the same. In reality, the query returns 
the values 32,038 and 42. Once again, the problem is NULL values. When
STATE2 is NULL, the test always fails.

When a table is created, there is the option to allow NULL values on each row
in the table. This is a relatively minor decision when creating the table. How-
ever, making mistakes on columns where NULL values are present is easy.

WARN I NG Designing databases is different from analyzing the data inside
them. For example, NULL columns can cause unexpected — and inaccurate —
results when analyzing data and make reading queries difficult. Be very careful
when using columns that allow them.
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Column Types

The second important attribute of a column is its type, which tells the database
exactly how to store values. A well-designed database usually has parsimo-
nious columns, so if two characters suffice for a code, there is no reason to store
eight. From the perspective of data analysis, the myriad of available column
types is more detail than needed. However, there are a few important aspects
of column types and the roles that columns play.

Primary key columns uniquely identify each row in the table. That is, no 
two rows have the same value for the primary key. Databases guarantee that
primary keys are unique by refusing to insert rows with duplicate primary
keys. Chapter 2 shows techniques to determine whether this condition holds
for any given column.

Numeric values are values that support arithmetic and other mathematical
operations. In SQL, these can be stored in different ways, such as floating-
point numbers, integers, decimals, and long integers. The details of how these
formats differ is much less important than what can be done with numeric
data types.

Within the category of numeric types, one big difference is between integers,
which have no fractional part, and real numbers, which do. When doing arith-
metic on integers, the result might be an integer or it might be a real number,
depending on the database. So 5/2 might evaluate to 2 rather than 2.5, and the
average of 1 and 2 might turn out to be 1 instead of 1.5. To avoid this problem,
examples in this book multiply integer values by 1.0 to convert them to deci-
mal values as necessary.

Of course, just because it walks like a duck and talks like a duck does not
mean that it is a duck. False numeric values are values that look like numbers,
but really are not. Zip codes (in the United States) are a good example, as are
primary key columns stored as numbers. What is the sum of two zip codes?
What does it mean to multiply a primary key value by 2? These questions yield
nonsense results (although the values can be calculated). Zip codes and pri-
mary keys just happen to look like numbers, but really are not.

In the datasets used in this book, zip codes are stored as character strings,
but various primary keys are numbers. Often when writing false numerics,
this book left pads the numbers with 0s so they have a constant length. After
all, the zip code for Harvard Square in Cambridge, MA, is 02138, not 2,138.

Dates and date-times are exactly what their names imply. There are many
things we want to do with them, such as determining the number of days
between two dates, extracting the year and month, and comparing two times.
There are functions that do all of these things. Unfortunately, most are not part
of the SQL standard, so they often differ between databases. The Appendix
provides a list of equivalent functions in different databases for functions used
in this book, including date and time functions.
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Another type of data is character string data. These are commonly codes,
such as the state abbreviation in the zip code table, or a description of some-
thing, such as a product name or the full state name. SQL has some very rudi-
mentary functions for handling character strings, which in turn support
rudimentary text processing. Spaces at the end of a character string are
ignored, so the condition “NY” = “NY “ evaluates to TRUE. However, spaces
at the beginning of a character string are counted, so “NY” = “ NY” evaluates
to FALSE. When working with data in character columns, it might be worth
checking out whether there are spaces at the beginning (which is an example
in Chapter 2).

What Is an Entity-Relationship Diagram?
The “relational” in the name “relational databases” refers to the fact that dif-
ferent tables relate to each other via keys, and to the fact that columns in a
given row relate to the values for that column. For instance, a zip code column
in any table can link (that is “relate”) to the zip code table. The key makes it
possible to look up information available in the zip code table. For instance,
Figure 1-1 shows the relationships between tables in the purchases dataset.

Figure 1-1: This entity-relationship diagram shows the relationship among entities in the
purchase dataset. Each entity corresponds to one table.

These relationships have a characteristic called cardinality, which is the
number of items related on each side. For instance, the relationship between
Orders and Zipcensus is a zero/one-to-many relationship. This specifies that

Zipcounty 
PK ZipCode 

Product 
PK ProductID 

ProductName 
ProductGroupCode 
ProductGroupName 
InStockFlag 
FullPrice 

Orders
PK OrderID

CustomerID
OrderDate
CampaignID
PaymentType
City
State
ZipCode

ZipCensus 
PK ZipCode 

PK 
OrderLine 
OrderLineID 

ProductID 
OrderID 
ShipDate 
BillDate 
UnitPrice 
NumUnits 
TotalPrice 

Calendar 
PK Date 

Month 
Year 
Day of Week 
… 

Campaign 
PK CampaignID 

CampaignName 
Channel 
Discount 
FreeShipFlag 

Customer 
PK CustomerID 

HouseholdID 
Gender 
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for every row in Orders there is at most one zip code. And, every zip code has
zero, one, or more orders. Typically, this relationship is implemented by hav-
ing a column in the first table contain the zip code, which is called a foreign key.
A foreign key is just a column whose contents are the primary key of another
table (ZIPCODE in Orders is a foreign key; ZIPCODE in Zipcensus is a pri-
mary key). To indicate that there is no match, the foreign key column could be
nullable or contain a default missing value (such as “00000” which would indi-
cate an invalid zip code).

There are some other interesting relationships between entities. The
zero/one-to-one relationship says that there is at most one match between two
tables. This is often a subsetting relationship. For instance, a database might
contain sessions of web visits, some of which result in a purchase. Any given
session would have zero or one purchases. Any given purchase would have
exactly one session.

Another relationship is a many-to-many relationship. A customer might
purchase many different products and any given product might be purchased
by many different customers. In fact, the purchase dataset does have a many-
to-many relationship between Orders and Products; this relationship is repre-
sented by the Orderline entity, which has a zero/one-to-many relationship
with each of those.

Another type of relationship is the one-at-a-time relationship. At any given
time, a customer resides in a particular zip code. However, the customer might
move over time. Or, at any given time, a customer might have a particular
handset or billing plan, but these can change over time.

With this brief introduction to entity-relationship diagrams, the following
sections describe the datasets used in this book.

The Zip Code Tables
The Zipcensus table consists of more than one hundred columns describing
each zip code, or, strictly speaking, each zip code tabulation area (ZCTA)
defined by the Census Bureau for the 2000 Census. This information was gath-
ered from the census web site. Zipcensus derives information from 16 census
tables, each of which has information about a particular aspect of the zip code.
These 16 tables are a small subset of the hundreds of tables available from the
Census Bureau.

The first few columns consist of overview information about each zip
code, such as the state, the second state, population, latitude, and longitude.
In addition to population, there are four more counts: the number of house-
holds, the number of families, the number of housing units, and the number
of occupied housing units. Each of these has information associated 
with them.
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The following information is available for the general population:

■■ Proportion of population in various racial categories.

■■ Proportion of population with various levels of education (among
adults 25 years and older).

The following information is available for households:

■■ Proportion of population in various household configurations, such 
as the household size, gender of head of household, and presence 
of children.

■■ Proportion of households with social security income.

■■ Proportion of households on public assistance.

■■ Median household income.

The following information is available for families:

■■ Proportion of families with 1999 income in various groups.

The following information is available for housing units:

■■ Proportion with complete and lacking plumbing facilities.

The following information is available for occupied housing units:

■■ Proportion that are owned and rented.

■■ Proportion that are occupied by 1, 2, 3, 4, 5, 6, and 7 or more people.

■■ Proportion that use various types of heating fuel.

■■ Proportion with various combinations of unmarried couples.

Information on the columns and exact definitions of terms such as ZCTA are
available at www.census.gov.

The second zip code table is Zipcounty, a companion table that maps zip
codes to counties. It contains information such as the following:

■■ County name;

■■ Post office name;

■■ Population of county;

■■ Number of households in county; and,

■■ County land area.

This table has one row for each zip code, so it can be joined to Zipcensus and
to other tables using the ZIPCODE column.
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Subscription Dataset
The subscription data is a simple example of an entity-relationship diagram,
because it consists of only two entities, shown in Figure 1-2. This dataset paints
a picture of a subscriber at a given point in time (the date when the snapshot
was created).

Figure 1-2: An entity-relationship diagram with only two entities describes the data in
the customer snapshot dataset.

The Subs table describes customers in a subscription business. It is an example
of a snapshot table that shows what customers (and former customers) look like
as of a particular date. The columns in this table describe customers as they start
and as they stop. This particular snapshot table does not have any intermediate
behavior information.

The Calendar table is a general-purpose table that has information about
dates, including:

■■ Year;

■■ Month number;

■■ Month name;

■■ Day of month;

■■ Day of week;

■■ Day of year; and,

■■ Holiday information.

This table has the date as a primary key, and covers dates from 1950 
through 2050.

Calendar
PK Date

Month
Year
Day of Week
…

PK
SUBS

Customer_ID

start_date
stop_date
stop_type
channel
product
monthly_fee
tenure
…
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Purchases Dataset
The purchases dataset contains entities typical of retail purchases; the entities
in this dataset and their relationships are shown in Figure 1-1:

■■ Customer;

■■ Orders;

■■ Orderline;

■■ Product;

■■ Campaign;

■■ Zipcensus;

■■ Zipcounty; and,

■■ Calendar.

The data in the purchases dataset captures the important entities associated
with retail purchases. The most detailed information is in the Orderline table,
which describes each of the items in an order. To understand the terminology,
think of a receipt. Each line on the receipt represents a different item in the pur-
chase. In addition, the line has other information such as the product number,
the price, and the number of items, which are all in this table. To tie all the
items in a single purchase together, each row of Orderline has an ORDERID.

Each ORDERID, in turn, represents one row in the Orders table. This has
information such as the date and time of the purchase, where the order was
shipped to, and the type of payment. It also contains the total dollar amount of
the purchase, summed up from the individual items. Because all order lines
are in exactly one order and each order can have multiple order lines, there is
a one-to-many relationship between these tables.

By the way, it is generally good practice to name entities in the singular, so
Order would be preferred to Orders. However, ORDER is a keyword in SQL, so
it is simpler to use the plural in this particular case.

Just as the ORDERID ties multiple order lines into an order, the CUS-
TOMERID assigns orders made at different points in time to the same cus-
tomer. The existence of the CUSTOMERID prompts the question of how it is
created. In one sense, it makes no difference how it is created; the CUS-
TOMERID is simply a given, defining the customer in the database. On the
other hand, on occasion, it might be worth asking whether it is doing a good
job — are a single customer’s purchases being tied together most of the time?
The aside “The Customer ID: Identifying Customers Over Time” discusses the
creation of customer IDs.
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THE CUSTOMER ID: IDENTIFYING CUSTOMERS OVER TIME

The CUSTOMERID column combines transactions over time into a single grouping,
the customer (or household or similar entity). How is this accomplished? It all
depends on the business and the business processes. Here are some ways:

■ The purchases might contain name and address information. So, purchases
with matching names and addresses would have the same customer ID.

■ The purchases might all have telephone numbers, so the telephone 
number could provide the customer ID.

■ Customers may have loyalty cards, and the loyalty number might provide
the customer ID.

■ The purchases might be on the web, so browser cookies could identify
customers over time.

■ The purchases might all be by credit card, so purchases with the same
credit card number would have the same customer ID.

■ And, of course, any combination of these or other methods might 
be used.

There are many ways to identify the same customer over time.
And all of these have their challenges. What happens when a customer

purchases a new computer (and the web cookie changes) or deletes her web
cookies? Or when customers forget their loyalty cards (so the loyalty numbers
are not attached to the purchases)? Or move? Or change phone numbers? Or
change their names? Keeping track of customers over time can be challenging.

The Product table provides information about products, such as the product
group name and the full price. The table does not contain detailed product
names. These were removed as part of the effort to anonymize the data.

The data model contains the Calendar table, which provides lookup infor-
mation for dates. The final two tables in Figure 1-1 are Zipcensus and Zip-
county. These are the tables that provide information about zip codes and the
lookup for county names.

Picturing Data Analysis Using Dataflows

Tables store data, but tables do not actually do anything. Tables are nouns;
queries are verbs. This book mates SQL and Excel for data manipulation, trans-
formation, and presentation. However, these two tools are very different from
each other. The differences are exacerbated because they often support the same
operations, although in very different ways. For instance, SQL uses the GROUP
BY clause to summarize data in groups. An Excel user, on the other hand, might
use pivot tables, use the subtotal wizard, or manually do calculations using
functions such as SUMIF(); however, nothing in Excel is called “group by.”
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Because this book intends to combine the two technologies, it is useful to
have a common way of expressing data manipulations and data transforma-
tions, a common language independent of the tools being used. Dataflows
provide this common language by showing the transformation operations fit-
ting together like an architecture blueprint for data processing, a blueprint that
describes what needs to be done, without saying which tool is going to do the
work. This makes dataflows a powerful mechanism for thinking about data
transformations. 

What Is a Dataflow?
A dataflow is a graphical way of visualizing data transformations. Dataflows
have two important elements. The nodes in a dataflow diagram perform trans-
formations on data, taking zero or more inputs and producing output. The
edges in a dataflow diagram are pipes connecting the nodes. Think of the data
flowing through the pipes and getting banged and pushed and pulled and
flattened into shape by the nodes. In the end, the data has been transformed
into information.

Figure 1-3 shows a simple dataflow that adds a new column, called SCF for
Sectional Center Facility (something the U.S. Post Office uses to route mail).
This column is the first three digits of a zip code. The output is each zip code
with its SCF. The dataflow has four nodes, connected by three edges. The first,
shaped like a cylinder, represents a database table or file and is the source of
the data. The edge leaving this node shows some of the records being passed
from it, records from the Zipcensus table.

The second node appends the new column to the table, which is also visible
along the edge leading out from the node. The third selects two columns for
output — in this case, ZIPCODE and SCF. And the final node simply repre-
sents the output. On the dataflow diagram, imagine a magnifying glass that
makes it possible to see the data moving through the flow. Seeing the data
move from node to node makes it easier to understand what is happening in
the flow.

The actual processing could be implemented in either SQL or Excel. The
SQL code corresponding to this dataflow is:

SELECT zc.zipcode, SUBSSTRING(zc.zipcode, 1, 3) as scf

FROM zipcensus zc

Alternatively, if the data in Zipcensus were in an Excel worksheet with the zip
codes in column A, the following formula would extract the SCF:

=MID(A1, 1, 3)

Of course, the formula would have to be copied down the column.
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Figure 1-3: A simple dataflow reads the ZIPCODE, calculates and appends a new field
called SCF, and outputs the SCF and ZIPCODE.

Excel, SQL, and dataflows are three different ways of expressing similar
transformations. The advantage of dataflows is that they provide an intuitive
way of expressing data manipulations, independent of the tool used for the
processing. Dataflows facilitate understanding, but in the end, the work
described in this book will be in SQL or Excel.

TI P When column A has a column of data and we want to copy a formula
down column B, the following is a handy method based on keyboard shortcuts:

1. Type the formula in the first cell in column B where there is data in column A.

2. Move the cursor to column A.

3. Hit <control>-<down arrow> to go to the end of the data in column A.

4. Hit <right arrow> to move to column B.

5. Hit <control>-<shift>-<up arrow> to highlight all of column B.

6. Hit <control>-D to copy the formula down the column.

Voila! The formula gets copied without a lot of fiddling with the mouse and 
with menus.

APPEND 
SCF = substring(zipcode, 1, 3) 

READ
zipcensus

 

SELECT 
zipcode, SCF 

OUTPUT 

ZipCode 

33125 
33126 

33127 

… 

… 

State 

‘FL’ 
 ‘FL’ 
 ‘FL’ 

Population 

48,598 
43,814 

27,796 

… 

… 
… 

… 

hhother 

94.1% 
94.5% 

91.3% 

SCF 

331 
 331 
 331 
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… 
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… 
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Dataflow Nodes (Operators)
Dataflows are a good way to think about the data transformations that SQL
can accomplish. These, in turn, depend on a few basic types of nodes, which
are explained in this section. Later in this chapter are several examples of
dataflows along with the SQL used to produce them.

READ: Reading a Database Table

The READ operator reads all the columns of data from a database table or file.
In SQL, this operation is implicit when tables are included in the FROM clause of
a query. The READ operator does not accept any input dataflows, but has an
output. Generally, if a table is needed more than once in a dataflow, there is a
separate READ for each occurrence.

OUTPUT: Outputting a Table (or Chart)

The OUTPUT operator creates desired output, such as a table in a row-column
format or some sort of chart based on the data. The OUTPUT operator does not
have any outputs, but accepts inputs. It also accepts parameters describing the
type of output.

SELECT: Selecting Various Columns in the Table

The SELECT operator chooses one or more columns from the input and passes
them to the output. It might reorder columns and/or choose a subset of them.
The SELECT operator has one input and one output. It accepts parameters
describing the columns to keep and their order.

FILTER: Filtering Rows Based on a Condition

The FILTER operator chooses rows based on a TRUE or FALSE condition. Only
rows that satisfy the condition are passed through, so it is possible that no rows
ever make it through the node. The FILTER operator has one input and one out-
put. It accepts parameters describing the condition used for filtering.

APPEND: Appending New Calculated Columns

The APPEND operator appends new columns, which are calculated from
existing columns and functions. The APPEND operator has one input and one
output. It accepts parameters describing the new columns.
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UNION: Combining Multiple Datasets into One

The UNION operator takes two or more datasets as inputs and creates a single
output that combines all rows from both of them. The input datasets need to
have exactly the same columns. The UNION operator has two or more inputs
and one output.

AGGREGATE: Aggregating Values

The AGGREGATE operator groups its input based on zero or more aggregate
key columns. All the rows with the same key values are summarized, and the
output contains the aggregate key columns and the summaries. The AGGRE-
GATE operator takes one input and produces one output. It also takes para-
meters describing the aggregate keys and the summaries to produce.

LOOKUP: Looking Up Values in One Table in Another

The LOOKUP operator takes two inputs, a base table and a reference table,
which have a key in common. The reference table should have at most one row
for each key value. The LOOKUP operator appends one or more columns in
the reference table to the base table, based on matching key values. The
LOOKUP operator assumes that all keys in the base table are in the reference
table. It takes two parameters. The first describes the key and the second
describes which columns to append. Although this can also be accomplished
with a JOIN, the LOOKUP is intended to be simpler and more readable.

CROSSJOIN: General Join of Two Tables 

The CROSSJOIN operator takes two inputs and combines them in a very spe-
cific way. It produces a wider table that contains all the columns in the two
inputs. Every row in the output corresponds to a pair of rows, one from each
input. For instance, if the first table has four rows, A, B, C, and D, and the sec-
ond has three rows, X, Y, and Z, then the output consists of all twelve combi-
nations of these: AX, AY, AZ, BX, BY, BZ, CX, CY, CZ, DX, DY, and DZ. This is
the general join operation.

JOIN: Join Two Tables Together Using a Key Column

The JOIN operator takes two inputs and a join condition, and produces an out-
put that has all the columns in the two tables. The join condition specifies that
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at least one column in one table is equal to one column in the other. This com-
mon type of join, called an equijoin, is important for performance reasons
when optimizing queries.

With an equijoin, it is possible to “lose” rows in one or both of the inputs. This
occurs when there is no matching row in the other table. Because it is sometimes
desirable to ensure that all rows in one or the other table are represented in the
output, there is a slight variation called an outer join. Specifically, the LEFT
OUTER JOIN keeps all rows in the first input table and the RIGHT OUTER JOIN
keeps all rows in the second. Although it might seem desirable, a FULL OUTER
JOIN is not available in standard SQL, so is not included here as an option.

SORT: Ordering the Results of a Dataset

The SORT operator orders its input dataset based on one or more sort keys. 
It takes a parameter describing the sort keys and the sort order (ascending 
or descending).

Dataflows, SQL, and Relational Algebra
Beneath the skin of many relational databases is an engine that is essentially a
dataflow engine. Because dataflows focus on data and because SQL focuses 
on data, they are natural allies.

Historically, though, SQL has a slightly different theoretical foundation
based on mathematical set theory. This foundation is called relational algebra,
an area in mathematics that defines operations on unordered sets of tuples. A
tuple is a lot like a row, consisting of attribute-value pairs. Although there are
some small theoretical differences, an attribute-value pair is essentially the
same as a column in a given row with its value. Relational algebra then
includes a bunch of operations on sets of tuples, operations such as union and
intersection, joins and projections, which are similar to the dataflow constructs
just described.

The notion of using relational algebra to access data is credited to E. F. Codd
who, while a researcher at IBM in 1970, wrote a paper called “A Relational
Model of Data for Large Shared Data Banks.” This paper became the basis of
using relational algebra for accessing data, eventually leading to the develop-
ment of SQL and modern relational databases.

A set of tuples is a lot like a table, but not quite. There are some theoretical
differences between the two, such as the fact that a table can contain duplicate
rows but a set of tuples cannot have duplicates. One difference, however,
stands out: sets of tuples have no ordering, so there is no concept of the first,
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second, and third tuple in a set of them. To most people (or at least most 
people who are not immersed in set theory), tables have a natural order,
defined perhaps by a primary key or perhaps by the sequence that rows were
originally loaded into the table.

As a legacy of the history of relational algebra, standard SQL provides no
construct for extracting the first row, or the first ten rows, from a table. Because
databases live in the real world, most databases provide some mechanism for
this functionality, as shown in Appendix A. Relational algebra is an elegant
theory that inspired the creation of modern databases; dataflows, on the other
hand, are probably more intuitive to most people and come closer to explain-
ing how databases and data processing actually work.

SQL Queries

This section provides the third perspective on SQL, an introduction to the SQL
querying language. In one way, this introduction is only the tip of the iceberg
of the SQL language, because it focuses on one aspect: extracting information
from the database using queries. The querying part of SQL is the visible por-
tion of an iceberg whose bulky mass is hidden from view. The hidden portion
is the data management side of the language — the definitions of tables and
views, inserting rows, updating rows, defining triggers, stored procedures,
and so on. As data miners and analysts, our goal is to exploit the visible part of
the iceberg, by extracting useful information from the database.

SQL queries answer specific questions. Whether the question being asked is
actually the question being answered is a big issue for database users. The
examples throughout this book include both the question and the SQL that
answers it. Sometimes, small changes in the question or the SQL produce very
different results.

What to Do, Not How to Do It
An important characteristic of SQL, as a language, is its non-procedural
nature. That is, SQL explains what needs to be done to data, but not how this
is accomplished. This approach has several advantages. A query is isolated
from the hardware and operating system where it is running. The same query
should return equivalent results in two very different environments.

Being non-procedural means that SQL needs to be compiled into computer
code on any given computer. This provides an opportunity to optimize it to
run as fast as possible for the given data on a given computer. There are gen-
erally many different algorithms lurking inside a database engine, ready to be
used under just the right circumstances. The specific optimizations, though,
might be quite different in different environments.
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Another advantage of being non-procedural is that SQL can take advantage
of parallel processing. The language itself was devised in a world where com-
puters were very expensive, had a single processor, limited memory, and one
disk. The fact that SQL has adapted to modern system architectures where
CPUs, memory, and disks are plentiful is a testament to the power and scala-
bility of the ideas underlying relational database paradigm. When Codd wrote
his paper suggesting relational algebra for “large data banks,” he was probably
thinking of a few megabytes of data, an amount of data that now easily fits in
an Excel spreadsheet and pales in comparison to the terabytes of data found 
in corporate repositories.

A Basic SQL Query
A good place to start with SQL is with the simplest type of query, one that
selects a column from a table. Consider, once again, the query that returned zip
codes along with the SCF:

SELECT zc.zipcode, SUBSTRING(zc.zipcode, 1, 3) as scf

FROM zipcensus zc

This query returns a table with two columns, one for the zip code and one for
the scf. The rows might be returned in any order. In most databases, the rows
are returned in the order that they are placed in the table, but you should never
depend on this fact.

If you want the rows in a particular order, add an explicit ORDER BY clause to
the query:

SELECT zc.zipcode, SUBSTRING(zc.zipcode, 1, 3) as scf

FROM zipcensus zc

ORDER BY zc.zipcode

TI P If you want the result from a query to be in a particular order, add an
ORDER BY clause. Without one, never assume that the result of a query will be
in a particular order.

Although this is a simple query, it already shows some of the structure of the
SQL language. All queries begin with the SELECT clause that lists the columns
being returned. The tables being acted upon come from the FROM clause, which
follows the SELECT statement. And, the ORDER BY is the last clause in the query.

This example uses only one table, Zipcensus. In the query, this table has a
table alias, or abbreviation, called zc. Throughout the query, “zc” refers to this
table. So, the first part of the SELECT statement is taking the ZIPCODE column
from zc. Although table aliases are optional in SQL, as a rule this book usually
uses them, because aliases clarify where columns are coming from.
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The second column returned by the query is calculated from the zip code
itself, using the SUBSTRING() function, which in this case extracts the first three
characters from the zip code. SUBSTRING() is just one of dozens of functions
provided by SQL, and specific databases generally provide the ability for users
to define functions. The second column has a column alias. That is, the column
is named “SCF,” which is the header of the column in the output.

The following query is a simple modification that returns the zip codes and
SCFs only in Minnesota:

SELECT zc.zipcode, SUBSTRING(zc.zipcode, 1, 3) as scf

FROM zipcensus zc

WHERE state = ‘MN’

ORDER BY 1

The query has an additional clause, the WHERE clause, which, if present, always
follows the FROM clause. The WHERE clause specifies a condition; in this case,
that only rows where the STATE column is equal to “MN” are included by the
query. The ORDER BY clause then sorts the rows by the first column; the “1” is 
a reference to the first column, in this case, ZC.ZIPCODE. Alternatively, the
column name could be used in the ORDER BY clause.

The dataflow corresponding to this modified query is in Figure 1-4. In this
dataflow, the WHERE clause has turned into a filter after the data source, and the
ORDER BY clause has turned into a SORT operator just before the output. Also
notice that the dataflow contains several operators, even for a simple SQL
query. SQL is a parsimonious language; some complex operations can be spec-
ified quite simply.

TI P When a column value is NULL, any comparison in a WHERE clause — with
the important exception of “IS NULL” — always returns FALSE. So, the clause
“WHERE state <> ‘MN‘” really means “WHERE state IS NOT NULL AND
state <> ‘MN‘”.

A Basic Summary SQL Query
A very powerful component of SQL is the ability to summarize data in a table.
For instance, the following SQL counts the number of zip codes in the Zip-
census table:

SELECT COUNT(*) as numzip

FROM zipcensus zc

This query returns the number of rows in the table, and its form is very similar
to the basic select query. The function COUNT(*), not surprisingly, counts the
number of rows. The “*” means that all rows are being counted. It is also pos-
sible to count a column, such as COUNT(ZIPCODE), which counts the number of
rows that do not have a NULL zip code.
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Figure 1-4: A WHERE clause in a query adds a filter node to the dataflow.

The preceding query is an aggregation query that treats the entire table as a
single group. Within this group, the query counts the number of rows —
which is the number of rows in the table. A very similar query returns the
number of zip codes in each state:

SELECT state, COUNT(*) as numzip

FROM zipcensus zc

GROUP BY state

ORDER BY 2 DESC

Conceptually, this query is quite similar to the previous one. The GROUP BY
clause says to treat the table as consisting of several groups defined by the dif-
ferent values in the column STATE. The result is then sorted in reverse order of
the count (DESC stands for “descending”), so the state with the most zip codes
(Texas) is first. Figure 1-5 shows the dataflow diagram for this query.

In addition to COUNT(), standard SQL offers three other useful aggregation
functions. The SUM() and AVG() functions compute, respectively, the sum and
average of numeric values. COUNT(DISTINCT) returns the number of distinct
values. An example of using it is to answer the following question: How many
SCFs are in each state?

APPEND
READ

zipcensus

SELECT
zipcode, SCF

FILTER
state = ‘MN’

SORT
zipcode

OUTPUT

ZipCode

55401
55402

55403

…

…

State

‘MN’
‘MN’

‘MN’

Population

3,649
176

14,873

…

…
…

…

hhother

91.2%
83.0%

94.1%

SCF

554
554

554

ZipCode

55401
55402

55403

…

…

State

‘MN’
‘MN’

‘MN’

Population

3,649
176

14,873

…

…
…

…

hhother

91.2%
83.0%

94.1%

ZipCode

55401
55402

55403

…

…

SCF

554
554

554

ZipCode

55401
55402

55403

…

…

SCF

554
554

554

ZipCode

55401
55402

55403

…

…

State

‘MN’
‘MN’

‘MN’

Population

3,649
176

14,873

…

…
…

…

hhother

91.2%
83.0%

94.1%

SCF = substring (zipcode, 1, 3)
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Figure 1-5: This dataflow diagram describes a basic aggregation query.

The following query answers this question:

SELECT zc.state, COUNT(DISTINCT SUBSTRING(zc.zipcode, 1, 3)) as numscf

FROM zipcensus zc

GROUP BY zc.state

ORDER BY zc.state

This query also shows that functions, such as SUBSTRING(), can be nested in
the aggregation functions. SQL allows arbitrarily complicated expressions.
Chapter 2 has other ways to answer this question using subqueries.

What it Means to Join Tables
Because they bring together information from two tables, joins are perhaps the
most powerful feature of SQL. SQL is non-procedural, so the database engine
can figure out the most effective way to execute the join — and there are often
dozens of algorithms and variants for the database engine to choose from. A lot
of programming and algorithms are hidden beneath this simple construct.

As with anything powerful, joins need to be used carefully — not sparingly,
but carefully. It is very easy to make mistakes using joins, especially the fol-
lowing two:

■■ “Mistakenly” losing rows in the result set, and

■■ “Mistakenly” adding unexpected additional rows.

Whenever joining tables, it is worth asking whether either of these could be
happening. These are subtle questions, because the answer depends on the

AGGREGATE
group by state

numzips = count(*)

READ
zipcensus

OUTPUT

ZipCode

33125
33126

33127

…

…

State

‘FL’
‘FL’

‘FL’

Population

48,598
43,814

27,796

…

…
…

…

State

NJ
FL

ND

NumZips

927
380

611

…

TN

581

State

TX
PA

CA

NumZips

1,722
1,677

1,619

…

NY

1,865

SORT
numzips desc
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data being processed, not by the syntax of the expression itself. There are
examples of both problems throughout the book.

The discussion of joins is about what joins do to data and how to use them
rather than on the multitude of algorithms for implementing them (although
the algorithms are quite interesting — to some people — they don’t help us
understand customers and data). The most general type of join is the cross-
join. The discussion then explains the more common variants: look up joins,
equijoins, nonequijoins, and outer joins.

TI P Whenever joining two tables, ask yourself the following two questions:

1. Could one of the tables accidentally be losing rows, because there are no
matches in the other table?

2. Could the result set unexpectedly have duplicate rows due to multiple
matches between the tables?

The answers require understanding the underlying data.

Cross-Joins: The Most General Joins

The most general form of joining two tables is called the cross-join or, for the more
mathematically inclined, the Cartesian product of the two tables. As discussed ear-
lier in the section on dataflows, a cross-join on two tables results in an output con-
sisting of all columns from both tables and every combination of rows from one
table with rows from the other. The number of rows in the output grows quickly
as the two tables become bigger. If the first table has four rows and two columns,
and the second has three rows and two columns, then the resulting output has
twelve rows and four columns. This is easy enough to visualize in Figure 1-6.

Because the number of rows in the output is the number of rows in each
table multiplied together, the output size grows quickly. If one table has 3,000
rows and the other 4,000 rows, the result has 12,000,000 rows — which is a bit
too big to illustrate here. The number of columns is the sum of the number of
columns in each input table.

Tables in the business world often have thousands, or millions, or even more
rows, so a cross-join quickly gets out of hand, with even the fastest computers.
If this is the case, why are joins so useful, important, and practical?

The reason is that the general form of the join is not the form that gets used
very often, unless one of the tables is known to have only one row. By impos-
ing some restrictions — say by imposing a relationship between columns in
the two tables — the result becomes more tractable. However, even though
more specialized joins are more commonly used, the cross-join is still the foun-
dation that explains what they are doing.
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Figure 1-6: A cross-join on two tables, one with four rows and one with three rows,
results in a new table that has twelve rows and all columns from both tables.

Lookup: A Useful Join

Zipcensus is an example of a reference table that contains data derived from
the 2000 census summarized at the zip code level. Each row describes a zip
code and any given zip code appears exactly once in the table. As a conse-
quence, the zip code column is called the primary key, making it possible to
look up census information at the zip code level using a zip code column in
another table. Intuitively, this is one of the most natural join operations, using
a foreign key in one table to look up values in a reference table.

A lookup join makes the following two assumptions about the base and ref-
erence tables:

■■ All values of the key in the base table are in the reference table (missing
join keys lose rows unexpectedly).

■■ The lookup key is the primary key in the reference table (duplicate join
keys cause unexpected rows).

Unfortunately, SQL does not provide direct support for lookups because there
is no simple check that these two conditions are true. However, the join mech-
anism does make it possible to do lookups, and this works smoothly when the
two preceding conditions are true.

Consider the SQL query that appends the zip code population to each row
of the Orders table, as an example of a lookup:

SELECT o.orderid, o.zipcode, zc.population

FROM orders o JOIN

ID

1001
1002
1003

State

AL

MA

NY1004

NY

FIELD

A
B

C

ZipCode

55401

94117

10001

CROSSJOIN

ID 

1001 
1001 

1002 

1001 

1002 

STATE 

NY 
 NY 
 AL 

AL 

FIELD 

B 
NY A 

 

C 

A 
B 

ZipCode 

55401 
94117 

10001 
55401 

1002 AL C 94117 

1003 MA A 10001 

1003 MA B 55401 

1003 MA C 94117 
1004 NY A 10001 
1004 NY B 55401 

1004 NY C 94117 

10001 
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zipcensus zc

ON o.zipcode = zc.zipcode

This example uses the ON clause to establish the condition between the tables.
There is no requirement that the condition be equality in general, but for a
lookup it is.

From the dataflow perspective, the lookup could be implemented with
CROSSJOIN. The output from the CROSSJOIN is first filtered to the correct
rows (those where the two zip codes are equal) and the desired columns (all
columns from Orders plus POPULATION) are selected. Figure 1-7 shows a
dataflow that appends a population column to the Orders table using this
approach. Of course, using the LOOKUP operator is simpler, but it is not
directly implemented in SQL.

Figure 1-7: In SQL, looking up a value in one table is theoretically equivalent to creating
the cross-join of the two tables and then restricting the values.

FILTER 
purchase.zipcode = 
zipcensus.zipcode 

 

READ
purchase

READ
zipcensus

OUTPUT 

ZipCode 

33125 
33126 

33127 

… 

… 

State 

‘FL’ 
 ‘FL’ 
 ‘FL’ 

Population 

48,598 
43,814 

27,796 

… 

… 
… 

… 

hhother 

94.1% 
 94.5% 

91.3% 

CROSSJOIN

P-ID 

… 
000001 

000001 

P-ZIP 

10011 
 10011 

… ZipCode 

10010 

10011 

Population 

26,408 
 46,669 

… 

000001 10011 
 

00601 19,143 

000001 10011 10012 26,000 

… 
000001 10011 99950 36 
000002 33158 00601 19,143 

… 

000002 33158 33158 6,547 

… 

P-ID

000001
000002

000003

P-ZIP

33158
55403

02138

…

000004

10011

…

P-ID 

000001 
000002 

000003 
 

P-ZIP 

33158 
55403 

02138 

… 

000004 
 

10011 10011 

33158 
55403 

02138 

… ZipCode 

46,669 

6,457 
14,873 

35,407 

Population … 

P-ID 

000001 
000002 

000003 
 

P-ZIP 

33158 
55403 

02138 

… 

000004 
 

10011 

… 

46,669 

6,457 
14,873 

35,407 

Population 

SELECT 
purchase.*, 

zipcensus.population 
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Unlike the dataflow diagram, the SQL query describes that a join needs to
take place, but does not explain how this is done. The cross-join is one method,
although it would be quite inefficient in practice. Databases are practical, so
database writers have invented many different ways to speed up this type of
operation. And, there are better ways to do a lookup. The details of such per-
formance enhancements are beyond the scope of this book, and often propri-
etary to each database. It is worth remembering that databases are practical,
not theoretical, and the database engine is usually trying to optimize the run-
time performance of queries.

Although the preceding query does implement the look up, it does not guar-
antee the two conditions mentioned earlier. If there were multiple rows in Zip-
census for a given zip code, there would be extra rows in the output (because
any matching row would appear more than once). If there were key values in
Orders but not in Zipcensus, rows would unexpectedly disappear. This, in
fact, is the case and the output has fewer rows than the original Orders table.

Having multiple rows in Zipcensus for a given zip code is not an out-
landish idea. For instance, Zipcensus could also include rows for the 1990 and
2010 censuses, which would make it possible to see changes in zip codes over
time. One way to do this would be to have another column, say, CEN-
SUSYEAR to specify the year of the census. Now the primary key would be a
compound key composed of ZIPCODE and CENSUSYEAR together. A join
on the table using just zip code would result in multiple columns, one for
each census year.

Equijoins

An equijoin is a join that has at least one restriction between the two tables
being joined, and this restriction asserts that two columns in the tables have
equal values. In SQL, the restrictions are the conditions on the ON clause fol-
lowing the join statement. Note that these restrictions should always be con-
nected by ANDs, not by ORs (unless you have a very good reason).

Lookups are a good example of an equijoin, because the join asserts that a
foreign key in one table equals a primary key in a reference table. Lookups are
a special case though, where the number of rows output is exactly the number
of rows in the table with the foreign key.

An equijoin can return extra rows the same way that a cross-join can. If a col-
umn value in the first table is repeated three times, and the same value occurs in
the second table four times, the equijoin between the two tables produces twelve
rows of output for that column. In this example, the two columns are clearly not
primary keys on their respective tables, because the same value appears on mul-
tiple rows. This is similar to the situation as depicted in Figure 1-6 that illustrates
the cross-join. Using an equijoin, it is possible to add many rows to output that
are not intended, especially when the equijoin is on non-key columns.
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Although joins on primary keys are more common, there are some cases
where such a many-to-many equijoin is desired. The following question about
the Zipcensus table does require a many-to-many equijoin to be answered in
SQL: For each zip code, how many zip codes in the same state have a larger population?

The following query answers this using a self-join, which simply means that
two copies of the Zipcensus table are joined together. In this case, the equijoin
uses the state column as a key, rather than the zip code column.

SELECT zc1.zipcode,

SUM(CASE WHEN zc1.population < zc2.population THEN 1

ELSE 0 END)as numzip

FROM zipcensus zc1 JOIN

zipcensus zc2

ON zc1.state = zc2.state

GROUP BY zc1.zipcode

Notice that the Zipcensus table is mentioned twice in the FROM clause, in order
to express the self-join.

The dataflow for this query is shown in Figure 1-8. This dataflow reads the
Zipcensus table twice, with the two going into the JOIN operator. The JOIN in
the dataflow is an equijoin, because the self-join is on the STATE column. The
results from the join are then aggregated. Chapter 8 introduces a special class
of functions called window functions that simplify this type of query.

Nonequijoins

A nonequijoin is a join where none of the restrictions include an equality
restriction between two columns. Nonequijoins are quite rare. This is fortunate
because there are many fewer performance tricks available to make them run
quickly. Often, a nonequijoin is actually a mistake and indicates an error.

Note that when any of the restrictions are equality, the join is an equijoin.
Consider the following question about the Orders table: How many orders are
greater than the median rent where the customer resides?

The following query answers this question:

SELECT zc.state, COUNT(*) as numrows

FROM orders o JOIN

zipcensus zc

ON o.zipcode = zc.zipcode AND

o.totalprice > zc.hhumediancashrent

GROUP BY zc

The JOIN in this query has two conditions, one specifies that the zip codes are
equal and the other specifies that the total amount of the order is greater than
the median rent in the zip code. This is still an example of an equijoin, because
of the condition on zip code.
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Figure 1-8: This dataflow illustrates a self-join and an equijoin on a non-key column.

Outer Joins

The final type of join is the outer join, which guarantees that all rows from one of
the tables remain in the result set, even if there are no matching rows in the other
table. All the previous joins have been inner joins, meaning that only rows that
match are included. For a cross-join, this does not make a difference, because
there are many copies of rows from both tables in the result. However, for other
types of joins, losing rows in one or the other table may not be desirable; hence
the need for the outer join.
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Outer joins comes in two flavors: the LEFT OUTER JOIN ensures that all rows
from the first table remain in the result set and the RIGHT OUTER JOIN ensures
that all rows from the second table remain. The FULL OUTER JOIN ensures that
all rows from both tables are kept, although this functionality is not available
in all databases.

What does this mean? Consider the Orders table, which has some zip codes
that are not in the Zipcensus table. This could occur for several reasons. The
Zipcensus table contains a snapshot of zip codes as of the year 2000, and new
zip codes have appeared since then. Also, the Census Bureau is not interested
in all zip codes, so they exclude some zip codes where no one lives. Or, per-
haps the problem might lie in the Orders table. There could be mistakes in the
ZIPCODE column. Or, as is the case, the Orders table might include orders
from outside the United States.

Whatever the reason, any query using the inner join eliminates all rows
where the zip code in the Orders table does not appear in Zipcensus. Losing
such rows could be a problem, which the outer join fixes. The only change to
the query is replacing the word JOIN with the phrase LEFT OUTER JOIN:

SELECT zc.state, COUNT(*) as numrows

FROM orders o LEFT OUTER JOIN

zipcensus zc

ON o.zipcode = zc.zipcode AND

o.totalprice > zc.hhumediancashrent

GROUP BY zc.state

The results from this query are not particularly interesting. The results are
the same as the previous query with one additional large group for NULL.
This is because when there is no matching row in Zipcensus, ZC.ZIPCODE is
NULL. On the other hand, if the SELECT and GROUP BY used O.ZIPCODE
instead, the orders with non-matching zip codes would be spread through
all the states.

Left outer joins are very practical. They are particularly important when
there is one table that contains information about customers and we want to
append more and more columns to create a customer signature. Chapter 12 is
about creating customer signatures and uses them extensively.

Other Important Capabilities in SQL
SQL has some other features that are used throughout the book. The goal here
is not to explain every nuance of the language, because reference manuals and
database documentation do a good job there. The goal here is to give a feel for
the important capabilities of SQL needed for data analysis.
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UNION ALL

UNION ALL is a set operation that combines all rows in two tables, by just creating
a new table with all the rows from each input table. There is no cross-product as
there is with the join operator, so the number of columns must be the same in 
each of the input tables. Unlike the join operations, all input tables must have the
same columns in them. In practice, this means that UNION ALL is almost always
operating on subqueries, because it is unusual for two tables to have exactly the
same columns.

SQL has other set operations, such as UNION and INTERSECTION. The UNION
operation combines the rows in two tables together, and then removes dupli-
cates. This means that UNION is much less efficient than UNION ALL, so it is
worth avoiding. INTERSECTION takes the overlap of two tables — rows that are
in both. However, it is often more interesting to understand the relationship
between two tables — how many items are in both and how many are in each
one but not the other. Solving this problem is discussed in Chapter 2. 

CASE

The CASE statement makes it possible to transform data conditionally. It has the
general form:

CASE WHEN <condition-1> THEN <value-1>

. . . 

WHEN <condition-n THEN <value-n>

ELSE <default-value> END

The <condition> clauses look like conditions in a WHERE clause; they can be
arbitrarily complicated. The <value> clauses are values returned by the state-
ment, and these should all be the same type. The <condition> clauses are eval-
uated in the order they are written. When no <else> condition is present, the
CASE statement returns NULL when previous clauses do not match.

One common use of the CASE statement is to create indicator variables. Con-
sider the following question: How many zip codes in each state have a population of
more than 10,000 and what is the total population of these? The following SQL
statement is, perhaps, the most natural way of answering this question:

SELECT zc.state, COUNT(*) as numbigzip, SUM(population) as popbigzip

FROM zipcensus zc

WHERE population > 10000

GROUP BY zc.state

This query uses a WHERE clause to choose the appropriate set of zip codes.
Now consider the related question: How many zip codes in each state have a

population of more than 10,000, how many have a population of more than 1,000, and
what is the total population of each of these sets?
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Unfortunately, the WHERE clause solution no longer works, because two over-
lapping sets of zip codes are needed. One solution would be to run two
queries. This gets messy, though, especially because combining the results into
a single query is easy:

SELECT zc.state,

SUM(CASE WHEN population > 10000 THEN 1 ELSE 0 END) as num_10000,

SUM(CASE WHEN population > 1000  THEN 1 ELSE 0 END) as num_1000,

SUM(CASE WHEN population > 10000 THEN population ELSE 0 END

) as num_10000,

SUM(CASE WHEN population > 1000  THEN population ELSE 0 END

) as num_1000

FROM zipcensus zc

GROUP BY zc.state

Notice that in this version, the SUM() function is being used to count the zip
codes that meet the appropriate condition. COUNT() is not the right function,
because it would count the number of non-NULL values.

TI P When a CASE statement is nested in an aggregation function, the
appropriate function is usually SUM(), sometimes AVG(), and very rarely
COUNT(). Check to be sure that you are using SUM() even when “counting”
things up.

It is worth making a few comments about these queries. The following two
statements are very close to being the same, but the second lacks the ELSE clause:

SUM(CASE WHEN population > 10000 THEN 1 ELSE 0 END) as num_10000,

SUM(CASE WHEN population > 10000 THEN 1 END) as num_10000,

Both of these count the number of zip codes where population is greater than
10,000. The difference is what happens when there are no zip codes with such
a large population. The first returns the number 0. The second returns NULL.
Usually when counting things, it is preferable to have the value be a number
rather than NULL, so the first form is generally preferred.

The CASE statement can be much more readable than the WHERE clause
because the CASE statement has the condition in the SELECT, rather than much
further down in the query. On the other hand, the WHERE clause provides more
opportunities for optimization, so in some cases it could run faster.

IN

The IN statement is used in a WHERE clause to choose items from a set. The fol-
lowing WHERE clause chooses zip codes in New England states:

WHERE state IN (‘VT’, ‘NH’, ‘ME’, ‘MA’, ‘CT’, ‘RI’)
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This use is equivalent to the following:

WHERE (state = ‘VT‘ OR

state = ‘NH‘ OR

state = ‘ME‘ OR

state = ‘MA‘ OR

state = ‘CT‘ OR

state = ‘RI‘)

The IN statement is easier to read and easier to modify.
Similarly, the following NOT IN statement would choose zip codes that are

not in New England:

WHERE state NOT IN (‘VT‘, ‘NH‘, ‘ME‘, ‘MA‘, ‘CT‘, ‘RI‘)

This use of the IN statement is simply a convenient shorthand for what would
otherwise be complicated WHERE clauses. The next section on subqueries
explores another use of IN.

Subqueries Are Our Friend

Subqueries are exactly what their name implies, queries within queries. They
make it possible to do complex data manipulation within a single SQL statement,
exactly the types of manipulation needed for data analysis and data mining.

In one sense, subqueries are not needed. All the manipulations could be
accomplished by creating intermediate tables, and combining them. The
resulting SQL would be a series of CREATE TABLE statements and INSERT state-
ments (or possibly CREATE VIEW), with simpler queries. Although such an
approach is sometimes useful, especially when the intermediate tables are
used multiple times, it suffers from several problems.

First, instead of thinking about solving a particular problem, the analyst
ends up thinking about the data processing, the naming of intermediate tables,
determining the types of columns, remembering to remove tables when they
are no longer needed, deciding whether to build indexes, and so on. All the
additional bookkeeping activity distracts from solving business problems.

Second, SQL optimizers can often find better approaches to running a com-
plicated query than people can. So, writing multiple SQL statements impedes
the optimizer from doing its job.

Third, maintaining a complicated chain of queries connected by tables can
be quite cumbersome. For instance, adding a new column might require
adding new columns in all sorts of places.

Fourth, the read-only SQL queries that predominate in this book can be
run with a minimum of permissions for the user — simply the permissions
to run queries. Running complicated scripts requires create and modify per-
missions on at least part of the database. These permissions are dangerous,
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because an analyst might inadvertently damage the database. Without these
permissions, it is impossible to cause such damage.

Subqueries can appear in many different parts of the query, in the SELECT
clause, in the FROM clause, and in the WHERE clause. However, this section
approaches subqueries by why we want to use them rather than where they
appear syntactically.

Subqueries for Naming Variables
When it comes to naming variables, SQL has a shortcoming. The following is
not syntactically correct in most SQL dialects:

SELECT population as pop, pop + 1

That is, the SELECT statement names columns for the output of the query, but
these column names cannot be used in the same clause. Because queries should
be at least somewhat understandable to humans, as well as database engines,
this is a real shortcoming. Complicated expressions should have names.

Fortunately, subqueries provide a solution. The earlier query that summa-
rized zip codes by population greater than 10,000 and greater than 1,000 could
instead use a subquery that is clearer about what is happening:

SELECT zc.state,

SUM(is_pop_10000) as num_10000,

SUM(is_pop_1000) as num_1000,

SUM(is_pop_10000*population) as pop_10000,

SUM(is_pop_1000*population) as pop_1000

FROM (SELECT zc.*,

(CASE WHEN population > 10000 THEN 1 ELSE 0 END

) as is_pop_10000,

(CASE WHEN population > 1000 THEN 1 ELSE 0 END

) as is_pop_1000

FROM zipcensus zc

) zc

GROUP BY zc.state

This version of the query uses two indicator variables, IS_POP_10000 and
IS_POP_1000. These take on the value of 0 or 1, depending on whether or not the
population is greater than 10,000 or 1,000. The query then sums the indicators to
get the counts, and sums the product of the indicator and the population to get
the population count. Figure 1-9 illustrates this process as a dataflow. 

TI P Subqueries with indicator variables, such as IS_POP_1000, are a powerful
and flexible way to build queries.

The dataflow does not include a “subquery.” SQL needs the subquery
because the aggregation functions are using the indicator variables.
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Figure 1-9: This dataflow illustrates the process of using indicator variables to obtain
information about zip codes.

One advantage of using indicator variables is that they are easy to change.
For instance, changing the limit of 1000 to 500 only requires changing the indi-
cator variable, rather than making multiple changes in several places that
might (or might not) be consistent.

Indicator variables are only one example of using subqueries to name
variables. Throughout the book, there are many other examples. The pur-
pose is to make the queries understandable to humans, relatively easy to
modify, and might, with luck, help us remember what a query written six
months ago is really doing.

Subqueries for Handling Summaries
By far the most typical place for a subquery is as a replacement for a table in the
FROM clause. After all, the source is a table and a query returns a table, so it makes
a lot of sense to combine queries in this way. From the dataflow perspective, this
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use of subqueries is simply to replace one of the sources with a series of dataflow
nodes.

Consider the question: How many zip codes in each state have a population den-
sity greater than the average zip code population density in the state? The population
density is the population divided by the land area, which is in the column
LANDAREAMILES.

Addressing this requires thinking about the different data elements needed
to answer the question. The comparison is to the average zip code population
density within a state. Obtaining the average zip code population density
uses a subquery, which calculates the value for all zip codes in the state. The
answer combines this information with the original zip code information, as
in the following query:

SELECT zc.state, COUNT(*) as numzips,

SUM(CASE WHEN zc.popdensity > zcsum.avgpopdensity

THEN 1 ELSE 0 END) as numdenser

FROM (SELECT zc.*,

population / landareamiles as popdensity

FROM zipcensus zc

) zc JOIN

(SELECT zc.state, AVG(population / landareamiles) as avgpopdensity

FROM zipcensus zc

GROUP BY zc.state) zcsum

ON zc.state = zcsum.state

GROUP BY zc.state

The dataflow diagram for this query follows the same logic and is shown in
Figure 1-10.

Figure 1-10: This dataflow diagram compares the zip code population density to the
average zip code population density in a state.

There are a few things to note about this query. First, the population density
of each state is not the same as the average of the population density within
each zip code. That is, the preceding question is different from: How many zip
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codes in each state have a population density greater than its state’s population den-
sity? The state’s population density would be calculated in zcsum as:

SUM(population) / SUM(landareamiles) as statepopdensity

There is a relationship between these two densities. The zip code average gives
each zip code a weight of 1, no matter how big in area or population. The state
average is the weighted average of the zip codes by the land area of the zip codes.

The proportion of zip codes that are denser than the average zip code
varies from about 4% of the zip codes in North Dakota to about 35% in
Florida. Never are half the zip codes denser than the average. The density
where half the zip codes are denser and half less dense is the median density
rather than the average or average of averages. Averages, average of aver-
ages, and medians are all different.

Subqueries and IN
The IN and NOT IN operators were introduced earlier as convenient shorthand
for complicated WHERE clauses. There is another version where the “in” set is
specified by a subquery, rather than by a fixed list. For example, the following
query gets the list of all zip codes in states with fewer than 100 zip codes:

SELECT zc.*

FROM zipcensus zc

WHERE zc.state IN (SELECT state

FROM zipcensus

GROUP BY state

HAVING COUNT(*) < 100)

The subquery creates a set of all states in the Zipcensus table where the num-
ber of zip codes in the state is less than 100 (that is, DC, DE, HI, and RI). The
HAVING clause sets this limit. HAVING is very similar to WHERE, except it is used
for filtering rows after aggregating, rather than before. Then, the outer SELECT
chooses zip codes when the state matches one of the states in the IN set. This
process actually takes place as a join operation, as shown in Figure 1-11.

Rewriting the “IN” as a JOIN

Strictly speaking, the IN operator is not necessary, because queries with INs
and subqueries can be rewritten as joins. For example, the previous query
could instead be written as:

SELECT zc.*

FROM zipcensus zc JOIN

(SELECT state, COUNT(*) as numstates

FROM zipcensus

GROUP BY state
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) zipstates

ON zc.state = zipstates.state AND

zipstates.numstates < 100

Note that in the rewritten query, the Zipstates subquery has two columns
instead of one. The second column contains the count of zip codes in each
state, and could be added to the first SELECT clause. Using the IN statement
with a subquery, it is not possible to get this information.

On the other hand, the IN does have a small advantage, because it guaran-
tees that there are no duplicate rows in the output, even when the “in” set has
duplicates. To guarantee this using the JOIN, aggregate the subquery by the
key used to join the tables. In this case, the subquery is doing aggregation any-
way to find the states that have fewer than one hundred zip codes. This aggre-
gation has the additional effect of guaranteeing that there are no duplicate
states in the subquery.

Correlated Subqueries

A correlated subquery occurs when the subquery in the IN clause includes a
reference to the outer query. An example shows this best. Consider the follow-
ing question: Which zip code in each state has the maximum population and what is
the population?

Figure 1-11: The processing for an IN with a subquery really uses a join operation.

There are two different ways to approach this problem. The first is to use 
a correlated subquery. The second is using a standard join, because all 
correlated subqueries can be rewritten as joins. The correlated subquery
looks like:

SELECT zc.state, zc.zipcode, zc.population

FROM zipcensus zc
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WHERE zc.population IN (SELECT MAX(zcinner.population)

FROM zipcensus zcinner

WHERE zcinner.state = zc.state

GROUP BY zcinner.state)

ORDER BY zc.state

The “correlated” part of the subquery is the WHERE clause, which specifies that
the states in the inner table match the states in the outer table. Conceptually,
this query reads one row from Zc (the table referenced in the outer query).
Then, the subquery finds all rows in Zcinner that match this state and finds the
maximum population. If the original row matches this maximum, it is
selected. The outer query then moves on to the next row.

Correlated subqueries are generally cumbersome to understand. To make
matters perhaps more confusing, the GROUP BY statement is strictly optional.
Without the GROUP BY, the aggregation functions are present with no explicit
aggregation. Although complicated, correlated subqueries are not a new way
of processing the data; they are just another example of joins. The following
query does exactly the same thing:

SELECT zc.state, zc.zipcode, zc.population

FROM zipcensus zc JOIN

(SELECT zc.state, MAX(population) as maxpop

FROM zipcensus zc

GROUP BY zc.state) zcsum

ON zc.state = zcsum.state AND

zc.population = zcsum.maxpop

ORDER BY zc.state

This query makes it clear that there is a summary of Zipcensus by STATE and
that this summary chooses the maximum population. The JOIN then finds the
zip code (or possibly zip codes) that match the maximum population, return-
ing information about them. In addition, this method makes it possible to
include another piece of information, the number of zip codes where the max-
imum population is achieved. This is simply another variable in Zcsum, calcu-
lated using COUNT(*).

The examples throughout the book do not use correlated subqueries for
SELECT queries, because they are more directly represented using joins, and
these joins provide more flexibility for processing and analyzing data. They
are, however, occasionally necessary when updating data.

The NOT IN Operator

The NOT IN operator can also use subqueries and correlated subqueries. Con-
sider answering the following question: What zip codes in the Orders table are not
in the Zipcensus table? Once again, there are two ways to answer this question.
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The second method is preferable (using joins). The first uses the NOT 
IN operator:

SELECT zipcode, COUNT(*)

FROM orders o

WHERE zipcode NOT IN (SELECT zipcode

FROM zipcensus zc)

GROUP BY zipcode

This query is straightforward as written, choosing the zip codes in Orders with
no matching zip code in Zipcensus, then grouping them and returning the
number of purchases in each. One possible concern is performance. Many
databases do a poor job of optimizing the NOT IN operator, perhaps because it
is seldom used.

Fortunately, there is a readily available alternative, which uses the LEFT
OUTER JOIN operator. Because the LEFT OUTER JOIN keeps all zip codes in the
Orders table — even those that don’t match — a filter afterwards can choose
the non-matching set. This is how the following query is expressed:

SELECT o.zipcode, COUNT(*) as numorders

FROM orders o LEFT OUTER JOIN

zipcensus zc

ON o.zipcode = zc.zipcode

WHERE zc.zipcode IS NULL

GROUP BY o.zipcode

ORDER BY 2 DESC

This query joins the two tables using a LEFT OUTER JOIN and only keeps the
results where there are no matching rows (because of the WHERE clause). This is
equivalent to using NOT IN; however, many database engines optimize this
version better than the NOT IN version.

Figure 1-12 shows the dataflow associated with this query. As with the cor-
related subqueries, the examples in this book use the LEFT OUTER JOIN instead
of the NOT IN with a subquery.

Subqueries for UNION ALL
The UNION ALL operator almost demands subqueries, because it requires that the
columns be the same for all tables involved in the union. As a trivial example,
consider the following query that returns all the values for latitude and longi-
tude in a single column:

SELECT u.longlatval

FROM ((SELECT latitude as longlatval

FROM zipcensus zc

)

UNION ALL
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(SELECT longitude as longlatval

FROM zipcensus zc

)

) u

This example uses subqueries to be sure that each part of the UNION ALL has the
same columns.

Lessons Learned

This chapter introduces SQL and relational databases from several different per-
spectives that are important for data mining and data analysis. The focus is
exclusively on using databases to extract information from data, rather than on
the mechanics of building databases, the myriad of options available in design-
ing them, or the sophisticated algorithms implemented by database engines.

One very important perspective is the data perspective — the tables them-
selves and the relationships between them. Entity-relationship diagrams are a
good way of visualizing the structure of data in the database and the relation-
ships among tables. Along with introducing entity-relationship diagrams, the
chapter also explained the various datasets used throughout this book.

Of course, tables and databases store data, but they don’t actually do any-
thing. Queries extract information, transforming data into information. The
basic processing steps are better explained using dataflow diagrams rather
than complex SQL statements. These diagrams show how various operators
transform data. About one dozen operators suffice for the rich set of process-
ing available in SQL. Dataflows are not only useful for explaining how SQL
processes data; database engines generally use a form of dataflows for running
SQL queries.

Figure 1-12: This dataflow shows the LEFT OUTER JOIN version of a query using 
NOT IN.
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In the end, though, transforming data into information requires SQL queries,
whether simple or complex. The focus in this chapter, and throughout the book,
is on SQL for querying. This chapter introduced the important functionality of
SQL and how it is expressed, with particular emphasis on JOINs, GROUP BYs, and
subqueries, because these play an important role in data analysis.

The next chapter starts the path toward using SQL for data analysis by
exploring data in a single table.
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The previous chapter introduced the SQL language from the perspective of
data analysis. This chapter demonstrates the use of SQL for exploring data, the
first step in any analysis project. The emphasis shifts from databases in general
to data; understanding data — and the underlying customers — is a theme
common to this chapter and the rest of the book.

The most common data analysis tool, by far, is the spreadsheet, particularly
Microsoft Excel. Spreadsheets show users data in a tabular format. More
importantly, spreadsheets give users power over their data, with the ability to
add columns and rows, to apply functions, create charts, make pivot tables,
and color and highlight and change fonts to get just the right look. This func-
tionality and the what-you-see-is-what-you-get interface make spreadsheets a
natural choice for analysis and presentation. Spreadsheets, however, are inher-
ently less powerful than databases because they run on a single user’s
machine. Even without the historical limits in Excel on the number of rows (a
maximum of 65,535 rows) and the number of columns (a maximum of 255
columns), the power of users’ local machines limits the performance of spread-
sheet applications.

This book assumes a basic understanding of Excel, particularly familiarity
with the row-column-worksheet format used for laying out data. There are
many examples of using Excel for basic calculations and charting. Because
charts are so important for communicating results, the chapter starts by explain-
ing some of the charting tools in Excel, providing tips for creating good charts.

What’s In a Table? Getting
Started with Data Exploration

C H A P T E R

2
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The chapter continues with exploring data in a single table, column by col-
umn. Such exploration depends on the types of data in the column, so there are
separate sections for numeric columns and categorical columns. Although
dates and times are touched upon here, they are so important that Chapter 4 is
devoted to them. The chapter ends with a method for automating some
descriptive statistics for columns in general. Throughout the chapter, most of
the examples use the purchases dataset, which describes retail purchases.

What Is Data Exploration?

Data is stored in databases as bits and bytes, spread through tables and
columns. The data lands there through various business processes. Opera-
tional databases capture the data as it is collected from customers — as they
make airplane reservations, or complete telephone calls, or click on the web, or
as their bills are generated. The databases used for data analysis are usually
decision support databases and data warehouses where the data has been
restructured and cleansed to conform to some view of the business.

Data exploration is the process of characterizing the data that is actually pre-
sent in a database and understanding the relationships between various
columns and entities. Data exploration is a hands-on effort. Often, data is
described through the use of metadata or by documentation that explains
what should be there. Data exploration is about understanding what is actually
there, and, if possible, understanding how and why it got there. Data explo-
ration is about answering questions about the data, such as:

■■ What are the values in each column?

■■ What unexpected values are in each column?

■■ Are there any data format irregularities, such as time stamps missing
hours and minutes or names being both upper- and lowercase?

■■ What relationships are there between columns?

■■ What are frequencies of values in columns and do these frequencies
make sense?

TI P Documentation tells us what should be in the data; data exploration finds
what is actually there.

Almost anyone who has worked with data has stories about data quality or
about discovering something very unexpected inside a database. At one
telecommunications company, the billing system maintained customers’ tele-
phone numbers as an important field inside the data. Not only was this col-
umn stored as character strings rather than numbers, but several thousand
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telephone numbers actually contained letters intermixed with numbers.
Clearly, the column called telephone number was not always a telephone
number. And, in fact, after much investigation, it turned out that under some
circumstances involving calls billed to third parties, the column could contain
values other than telephone numbers.

Even when you are familiar with the data, it is still worthwhile to look at the
data to see what is inside it. There are many different approaches for this. The
simplest is to just look at rows and sample values in tables. This chapter talks
about other methods as well. Seeing values is an important part of the
endeavor. Much of this is possible by looking at summary tables. However,
using charts is also important, because a good chart can convey much more
information than a table of numbers. Before continuing with data exploration,
the next section focuses on some important facets of charting in Excel.

Excel for Charting

Excel’s charting capability gives users much control over the visual presenta-
tion of data. A good presentation of results, however, is more than just clicking
an icon and inserting a chart. Charts need to be accurate and informative, as
well as visually elegant and convincing. Edward Tufte’s books, starting with
The Visual Display of Quantitative Information, are classics in how to display and
convey information.

This section discusses charting in Excel, including various common chart types
and good practices when using them. The discussion is necessarily specific, so
some parts explain explicitly, click-by-click, what to do. The section starts with a
basic example and then progresses to recommended formatting options. The
intention is to motivate good practices by explaining the reasons, not to be a com-
prehensive resource explaining, click-by-click, what to do in Excel.

A Basic Chart: Column Charts
The first example, in Figure 2-1, uses a simple aggregation query, the number
of orders for each payment type. The chart format used is a column chart,
which shows a value for each column. In common language, these are also
called bar charts, but in Excel, bar charts have horizontal bars whereas column
charts have vertical columns.

The query that pulls the data is:

SELECT paymenttype, COUNT(*) as cnt

FROM orders o

GROUP BY paymenttype

ORDER BY 1

Chapter 2 ■ What’s In a Table? Getting Started with Data Exploration 45

99513c02.qxd:WileyRed  8/27/07  11:41 AM  Page 45



Figure 2-1: A basic column chart shows the number of orders for each payment type code.

This chart shows some good practices:

■■ The chart has a title;

■■ Appropriate axes have labels (none is needed for the horizontal axis
because its meaning is clear from the title);

■■ Numbers larger than one thousand have commas, because people are
going to read the values;

■■ Gridlines are very light so they do not overpower the data; and,

■■ Extraneous elements are kept to a minimum. For instance, there is no
need for a legend (because there is only one series) and no need for ver-
tical grid lines (because the columns serve the same purpose).

For the most part, charts throughout the book adhere to these conventions,
with the exception of the title. Figures in a book have captions making titles
unnecessary. This rest of this section explains how to create the chart with
these elements.

Inserting the Data

Creating the chart starts with running the query and copying the data into an
Excel spreadsheet. The data is assumed to be generated by a database access tool,
which can export data into Excel such as by using cut-and-paste (<control>-C
and <control>-V, if the tool conforms to Windows standards). The basic query
produces two columns of data, in the spreadsheet. It is also possible to run SQL
directly from Excel; this requires setting various configuration options that are
outside the scope of this book.
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A good practice is to include the query in the spreadsheet along with the
data itself. This makes it possible to remember exactly which query produced
the results, something that becomes particularly important as analysis queries
become more complex. Including the query ensures that you know what data
is actually in the spreadsheet, even when you return to it hours, days, or
months after running the query.

TI P Keeping the query with the results is always a good idea. So, copy the
query into the Excel spreadsheets along with the data.

The technical aside “Common Issues When Copying Data into Excel” dis-
cusses some issues that occur when copying data. In the end, the spreadsheet
looks something like Figure 2-2. Notice that this data includes the query used
to generate the data.

Figure 2-2: This spreadsheet contains the column data for payment types and orders.

Creating the Column Chart

Creating a column chart — or any other type of chart — has just two steps.
The first is inserting the chart; the second is customizing it to be clean 
and informative.
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COMMON ISSUES WHEN COPYING DATA INTO EXCEL

Each database access tool may have its own peculiarities when copying data
into Excel. One method is to export the data as a file and import the file into
Excel. When copying the data directly through the clipboard, there are some
common issues. The first is the data landing in a single column. The second is 
a lack of headers in the data. A third issue is the formatting of the columns
themselves.

Under some circumstances, Excel places copied data in a single column
rather than in multiple columns. This problem, which occurs because Excel
recognizes the values as text rather than as columns, is easily solved by
converting the text to columns using the following steps:

1. Highlight the inserted data that you want converted to columns. Use
either the mouse or keystrokes. For keystrokes, go to the first cell and
type <shift><control><down arrow>.

2. Bring up the “Text to Columns” wizard. Using the mouse, choose the menu
item Data ➪ Text to Columns. The keystrokes <alt>-D <alt>-E do the
same thing.

3. Choose the appropriate options. The data may be delimited by tabs or
commas, or the data may be fixed format. Buttons at the top of the wizard
let you choose the appropriate format.

4. Finish the wizard. Usually the remaining choices are not important.

5. When finished, the data is transformed into columns, filling the columns
to the right of the original data.

The second problem is a lack of headers. This occurs, for instance, when
using SQL Server and copying the data from the grid. To get the column headers
in SQL Server, output the data as text rather than in a grid. The alternative is to
manually type in the names of the columns in the spreadsheet.

The third issue is the formatting of columns. Column formats are important;
people read cell contents and formats help us understand the values.

By default, large numbers do not have commas. One way to insert commas 
is to highlight the column and change the format by using the format wizard
launched from Format ➪ Cells. Go to the “Number” tab, choose “Number,” set
“0” decimal places, and click the “Use 1000 Separator” box. Date fields usually
need to have their format changed. For them, go to the “Custom” option and
type in the string “yyyy-mm-dd”. This sets the date format to a standard format.
To set dollar amounts, choose the “Currency” option, with “2” as the decimal
places and “$” as the symbol.

The simplest way to create the chart is with the following steps:

1. Highlight the data that goes into the chart. In this case, the query
results have two columns and both columns, the payment type code
and the count (along with their headers), go into the chart. If there is a
non-data line between the header and the data, delete it (or copy the
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headers into the cells just above the data). To use keystrokes instead 
of the mouse to highlight the data, go to the first cell and type
<shift><control><down arrow>.

2. Bring up the Chart wizard. Using the mouse, choose the menu item
Insert ➪ Chart. The keystrokes <alt>-I <alt>-H do the same thing.

3. The default option for the sub-type of column chart is the one we
want — the first sub-type under the column chart.

4. Click “Next” and be sure that the “Columns” button is checked rather
than rows.

5. Click “Next” and add a title and axis labels. For this example, the title is
“Number of Orders by Payment Type,” and the Y-axis is “Num Orders.”

6. Click “Finish.” Further formatting can be done after the chart has 
been inserted.

7. Resize the chart to an appropriate size, if you like.

A chart, formatted with the default options, now appears in the spreadsheet.
This chart can be copied and pasted into other applications, such as Power-
Point, Word, and email applications. When pasting the chart into other appli-
cations, it can be convenient to paste the chart as a picture rather than as a live
Excel chart. To do this, use the File ➪ Paste Special (<alt>-E <alt>-S) menu
option and choose the picture option.

Formatting the Column Chart

The following are the formatting conventions to apply to the column chart:

■■ Resize the chart in the chart window;

■■ Format the legend;

■■ Change the fonts;

■■ Change chart colors; and,

■■ Adjust the horizontal scale.

For reference, Figure 2-3 shows the names of various components of a chart,
such as the chart area, plot area, horizontal gridlines, chart title, X-axis label, Y-axis
label, X-axis title, and Y-axis title.

Resize the Chart in the Chart Window

By default, the chart does not take up quite all the space in the chart window.
Why waste space? Click the gray area to select the plot area. Then make it big-
ger, keeping in mind that you usually don’t want to cover the chart title and
axis labels.
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Figure 2-3: An Excel chart consists of many different parts.

Format the Legend

By default, Excel adds a legend, containing the name of each series in the chart.
Having a legend is a good thing. By default, though, the legend is placed next
to the chart, taking up a lot of real estate and shrinking the plot area. In most
cases, it is better to have the legend overlap the plot area. To do this, click the
plot area (the actual graphic in the chart window) and expand to fill the chart
area. Then, click the legend and move it to the appropriate place, somewhere
where it does not cover data values.

When there is only one series, a legend is unnecessary. To remove it, just
click the legend box and hit the <delete> key.

Change the Fonts

The default fonts in the chart are variable sized. So, if the chart is made smaller,
the fonts become almost invisible. If the chart is enlarged, the text dominates it.

To change all the fonts in the chart at once, double-click the white area to
select options for the entire chart window. On the “Font” tab, deselect “Auto
scale” on the lower left. Sizes and choices of fonts are definitely a matter of
preference, but 8-point Arial is a reasonable choice.

Payment Type for All Orders

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

?? AE DB MC OC VI

Nu
m

be
r o

f O
rd

er
s

Horizontal
gridlines

Y-axis
labels

Chart Title Chart Area

X-axisY-axisY-axis
title

X-axis labelsThere is no X-axis
title in this chart

Plot Area

50 Chapter 2 ■ What’s In a Table? Getting Started with Data Exploration

99513c02.qxd:WileyRed  8/27/07  11:41 AM  Page 50



This change affects all fonts in the window. The chart title should be larger
and darker (such as Arial 12-point Bold), and the axis titles a bit larger and
darker (such as Arial 10-point Bold). The “Format Chart Title” dialog box
makes it possible to change the font. Access the dialog box by double-clicking
the text boxes themselves or right-clicking and choosing the format option.

Change Chart Colors

The default chart colors include a gray background. A white background is
often preferable, because it highlights the colors and is more similar to the
printed graphic. To change the background color, double-click the gray. In
the “Format Plot Area” dialog box, click the little white square on the lower
right to set the color. At the same time, eliminate the border on the chart area
by changing the border from “Custom” to “None” on the right of the dialog
box. To remove the outer border on the entire plot area, double-click the
white space around the outside of the chart area and change the border
option to “None.”

Adjust the Grid Lines

Grid lines should be visible to make chart values more readable. However, the
grid lines are merely sideshows on the chart; they should be faint, so they do
not interfere with or dominate the data points. On column charts, only hori-
zontal grid lines are needed; these make it possible to easily match the vertical
scale to the data points. On other charts, both horizontal and vertical grid lines
are recommended.

By default, Excel includes the horizontal grid lines but not the vertical ones. To
choose zero, one, or both sets of grid lines, right-click in the chart area, choose
“Chart Options,” and go to the “Gridlines” tab. Click the “Major Gridlines”
boxes for both the X and Y axes, and then click “OK”. The “Minor Gridlines” are
rarely needed.

To adjust the color of the grids, double-click the grid lines themselves. The
horizontal grid lines are present but not visible when they are the same shade
as the background. If this is the case, double-click where they should be to
bring up the “Format Gridlines” dialog box. A good choice of colors is the
lightest shade of gray, just above the white.

Adjust the Horizontal Scale

For a column chart, every category should be visible. By default, Excel might
only show some of the category names. To change this, double-click the hori-
zontal axis to bring up the “Format Axis” dialog box, and go to the “Scale” tab.
Set the second and third numbers, “Number of Categories between tick-mark
labels” and “Number of categories between tick-marks” both to 1. This con-
trols the spacing of the marks on the axis and of the labels.
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TI P To include text in a chart that is connected to a cell (and whose value
changes when the cell value changes), click the whole chart and type “=” and
click the cell. A text box appears with the text; this can be formatted and moved
however you choose. The same technique works for other text boxes, such as
titles; click the title box, type “=”, and click the cell.

Useful Variations on the Column Chart
This simple column chart illustrates many of the basic principles of using charts
in Excel. There are some useful variations on the column chart. To illustrate them,
a somewhat richer set of data is needed, which is provided by a new query.

A New Query

A richer set of data provides more information about the payment types, infor-
mation such as:

■■ Number of orders with each code;

■■ Number of orders whose price is in the range $0–$10, $10–$100,
$100–$1,000, and over $1,000; and,

■■ Total revenue for each code.

The following query produces this data:

SELECT paymenttype,

SUM(CASE WHEN 0 <= totalprice AND totalprice < 10

THEN 1 ELSE 0 END) as cnt_0_10,

SUM(CASE WHEN 10 <= totalprice AND totalprice < 100

THEN 1 ELSE 0 END) as cnt_10_100,

SUM(CASE WHEN 100 <= totalprice AND totalprice < 1000

THEN 1 ELSE 0 END) as cnt_100_1000,

SUM(CASE WHEN totalprice >= 1000 THEN 1 ELSE 0 END) as cnt_1000,

COUNT(*) as cnt, SUM(totalprice) as revenue

FROM orders

GROUP BY paymenttype

ORDER BY 1

The data divides the orders into four groups, based on the size of the orders.
It is a good set of data for showing different ways to compare values using
column charts.

Side-by-Side Columns

Side-by-side columns, as shown in Figure 2-4, are the first method for com-
paring order sizes among different payment types. This chart shows the actual
value of the number of orders for different groups. Some combinations are so
small that the column is not even visible. 
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Figure 2-4: Three different charts using the same data emphasize different types of
information, even though they contain the same raw data.
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This chart makes it clear that three payment methods predominate: AE
(American Express), MC (MasterCard), and VI (Visa). It also makes it clear that
orders in the range of $10 to $100 predominate.

To create such a side-by-side chart, highlight the first five columns of the
data, and then follow the chart wizard as described earlier. The side-by-side
chart is the default when more than one data column is selected.

Stacked Columns

The middle figure in Figure 2-4 shows stacked columns. This communicates
the total number of orders for each payment type, making it possible to find
out, for instance, where the most popular payment mechanisms are. Stacked
columns maintain the actual values; however, they do a poor job of communi-
cating proportions, particularly for smaller groups.

To create stacked columns, choose the second option under the column
charts, to the right of the basic chart.

Stacked and Normalized Columns

Stacked and normalized columns provide the ability to see proportions across
different groups, as shown in the bottom chart in Figure 2-4. Their drawback is
that small numbers — in this case, very rare payment types — have as much
weight visually as the more common ones. These outliers can dominate the chart.

One solution is to include payment type codes that have only some minimum
number of orders. Filtering the data, using the Data ➪ Filter ➪ Autofilter func-
tionality, is one way to do this. Another is by sorting the data in descending
order by the total count, and then choosing the top rows to include in the chart.

To create the chart, choose the third “Column Chart” option in the chart 
wizard. This is on the upper-right side.

Number of Orders and Revenue

Figure 2-5 shows another variation, where one column has the number of
orders, and the other has the total revenue. The number of orders varies up to
several tens of thousands. The revenue varies up to several millions of dollars.
On a chart with both series, the number of orders would disappear, because
the numbers are so much smaller.

The trick is to plot the two series of data using different scales, which means
plotting them on different axes: the number of orders on the left and the total
revenue on the right. Set the colors of the axes and axis labels to match the col-
ors of the columns.

Using a second axis for column charts creates overlapping columns. To get
around this, the number of orders is wide and the revenue is narrow. Also,
either chart can be modified to be of a different type, making it possible to cre-
ate many different effects.
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Figure 2-5: Showing the number of orders and revenue requires using two axes.

The first step is to include the revenue and number of orders data in the
chart. One way to do this is to choose all the columns in the data. After creat-
ing the chart, right-click, choose “Source data,” and go to the “Series” tab. One
by one, remove the series that should not be part of the chart, in this case, all
the counts of orders of particular size. An alternative method would be to add
each series, one by one.

Second, the revenue series needs to move to the secondary axis. To do this,
right-click the revenue columns. Choose “Format data series” and go to the
“Axis” tab. There, click the “Secondary axis.”

Third, add a title to the secondary axis by right-clicking the chart and choos-
ing “Chart Options.” The bottom choice is “Second value (y) axis.” After
adding the title, change the colors of the two axes to match the series; this
makes it possible to eliminate the legend, reducing clutter on the chart.

When creating charts with two Y-axes, the grid lines should align to the tick
marks on both axes. This requires some adjustment. In this case, set the scale
on the right-hand axis so the maximum is $8,000,000, instead of the default
$6,000,000. To do this, double-click the axis, go to the “Scale” tab, and change
the “Maximum” value. The grid lines match the scales on both sides.

The final step is to get the effect of the fat and skinny columns. To create the
fat column, double-click the number of orders data columns. Then go to the last
tab, “Options,” and set the “Overlap” to 0 and the “Gap Width” to 50. To get the
skinny columns, double-click the revenue data series. Set the “Overlap” to 100
and the “Gap Width” to 400.

Number of Orders and Revenue — Overlapping on Two Axes
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Other Types of Charts
A few other types of charts are used throughout the book. This section is intended
as an introduction to these charts. Many of the options are similar to the options
for the column charts, so the specific details do not need to be repeated.

Line Charts

The data in the column charts can all be represented as line charts, such as in
Figure 2-6. Line charts are particularly useful when the horizontal axis repre-
sents a time dimension, because they naturally show changes over time. Line
charts can also be stacked the same way as column charts, as well as normal-
ized and stacked.

Line charts have some interesting variations that are used in later chapters.
The simplest is deciding whether the line should have icons showing each
point, or simply the line that connects them. This is controlled by choosing the
sub-type of chart.

Other capabilities with line charts are the ability to add a trend line and
error bars, which are introduced in later chapters as needed.

Figure 2-6: The line chart is an alternative to a column chart. Line charts can make it
easier to spot certain types of trends.
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Area Charts

Area charts show data as a shaded region. They are similar to column charts,
but instead of columns, there is only the colored region with no spaces
between data points. They should be used sparingly, because they fill the plot
area with color that does not convey much information. Their primary use is
to convey information on the secondary axis using lighter, background colors.

Figure 2-7 shows the total orders as columns (with no fill on the columns)
and the total revenue presented as an area chart on the secondary Y-axis. This
chart emphasizes that there are three main payment types, AE, MC, and VI,
which are responsible for most orders and most revenue. Notice, though, that
AE and MC have about the same number of orders, but AE has much more
revenue. This means that the average revenue for customers who pay by
American Express is larger than the average revenue for customers who pay
by MasterCard.

Figure 2-7: This example shows the revenue on the secondary axis as an area chart.

To create this chart, follow the same steps as used for Figure 2-5. Click once
on the number of orders series to choose it. Then right-click and choose “Chart
type.” Under chart type, select “Area.” The default sub-type is the correct one.
To change the colors, double-click the colored area and choose appropriate
borders and colors for the region.

To change the column fill to transparent, double-click the number of orders
series. Under “Area” on the left, choose the button by “None.”

X-Y Charts (Scatter Plots)

Scatter plots are very powerful and are used for many examples. Figure 2-8
has a simple scatter plot that shows the number of orders and revenue for each
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payment type. This example has both horizontal and vertical gridlines, which
is a good idea for scatter plots.

Unfortunately, in Excel, it is not possible to label the points on the scatter
plot with codes or other information. You have to go back to the original data
to see what the points refer to. The point above the trend line is for American
Express. Orders paid for by American Express have more revenue than the
trend line suggests.

In this example, there is an obvious relationship between the two vari-
ables — payment types with more orders have more revenue. According to
the equation for the trend line, each additional order brings in about 
$75 additional revenue. To see the relationship, add a trend line (which is
discussed in more detail in Chapter 11). Click the series to choose it, then
right-click and choose “Add Trendline.” On the “Options” tab, you can
choose to see the equation by clicking the button next to the “Display equa-
tion on Chart.” Click “OK” and the trend line appears. It is a good idea to
make the trend line a similar color to the original data, but lighter, perhaps
using a dashed line. Double-clicking the line brings up a dialog box with
these options.

Figure 2-8: This scatter plot shows the relationship between the number of orders and
revenue for various payment types.

This section has discussed credit card types without any discussion of how
to determine the type. The aside “Credit Card Numbers” discusses the rela-
tionship between credit card numbers and credit card types.
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What Values Are in the Columns?

The basic charting mechanisms are a good way to see the data, but what do we
want to see? The rest of this chapter discusses things of interest when exploring
a single table. Although this discussion is in terms of a single table, remember
that SQL makes it quite easy to join tables together to make them look like a 
single table — and the methods apply equally well in this case.

CREDIT CARD NUMBERS

This section used payment types as the example, skipping how credit card
types are extracted from credit card numbers. Credit card numbers have 
some structure:

■ The first six digits are the Bank Identification Number (BIN). These are a
special case of Issuer Identification Numbers defined by an international
standard called ISO 7812.

■ An account number follows, controlled by whoever issues the credit card.

■ A checksum is at the end to verify the card number is valid.

Credit card numbers themselves are interesting, but don’t use them! Storing
credit card numbers, unencrypted in a database, poses privacy and security risks.
However, there are two items of interest in the numbers: the credit card type and
whether the same credit card is used on different transactions.

Extracting the credit card type, such as Visa, MasterCard, or American Express,
from the credit card number is only challenging because the folks who issue 
the BINs are quite secretive about who issues which number. However, over the
years, the most common credit card types have become known (Wikipedia is a
good source of information). The BINs for the most common credit card types are
in the following table:

PREFIX CC TYPE

4 VISA

6011 DISCOVER

2014, 2149 enRoute

300–305, 36, 38, 55 DINERS CLUB

34, 37 AMEX

35, 2131, 1800 JCB

51–55 MASTERCARD

560, 561 DEBIT

Continued on next page
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CREDIT CARD NUMBERS (CONTINUED)

The length of the prefix varies from 1 number to 4 numbers, which makes it a
bit difficult to do a lookup in Excel. The following CASE statement shows how
to assign credit card types in SQL:

SELECT (CASE WHEN LEFT(ccn, 2) IN (‘51’, ‘52’, ‘53’, ‘54’, ‘55’)

THEN ‘MASTERCARD’

WHEN LEFT(ccn, 1) IN (‘4’) THEN ‘VISA’

WHEN LEFT(ccn, 2) IN (‘34’, ‘37’) THEN ‘AMERICAN EXPRESS’

WHEN LEFT(ccn, 3) IN (‘300’, ‘301’, ‘302’, ‘303’, ‘304’,

‘305’) OR

LEFT(ccn, 2) IN (‘36’, ‘38’, ‘55’)

THEN ‘DINERS CLUB’

WHEN LEFT(ccn, 4) IN (‘6011’) THEN ‘DISCOVER’

WHEN LEFT(ccn, 4) IN (‘2014’, ‘2149’) THEN ‘ENROUTE’

WHEN LEFT(ccn, 2) IN (‘35’) OR

LEFT(ccn, 4) IN (‘2131’, ‘1800’)

THEN ‘JCB’

WHEN LEFT(ccn, 3) IN (‘560’, ‘561’) THEN ‘DEBIT’

ELSE ‘OTHER’ END) as cctypedesc

Recognizing when the same credit card number is used multiple times is both
easy and challenging. The simple solution is to store the credit card number in
the decision support database. However, this is not a good idea, for security
reasons. A better approach is to transform the number into something else that
doesn’t look like a credit card number. One possibility is to encrypt the number
(if your database supports this). Another mechanism is to maintain a lookup
table for credit card numbers that does not allow duplicates. The row number in
this table is then a good proxy for the credit card number. Using the row number
instead makes it possible to identify the same credit card over time, without
storing the credit card number explicitly.

The section starts by looking at frequencies of values, using histograms, for
both categorical and numeric values. It then continues to discuss interesting
measures (statistics) on columns. Finally, it shows how to gather all these sta-
tistics in one rather complex query.

Histograms 
A histogram is a basic chart that shows the distribution of values that a column
contains. For instance, the following query creates a table with the number of
orders in each state and the population of each state, answering the question:
What is the distribution of orders by state and how is this related to the state’s population?

SELECT state, SUM(numorders) as numorders, SUM(pop) as pop

FROM ((SELECT o.state, COUNT(*) as numorders, 0 as pop

FROM orders o
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GROUP BY o.state

)

UNION ALL

(SELECT state, 0 as numorders, SUM(pop) as pop

FROM zipcensus

GROUP BY state)) summary

GROUP BY state

ORDER BY 2 DESC

This query combines information from the Zipcensus and Orders tables. The
first subquery counts the number of orders and the second calculates the pop-
ulation. These are combined using UNION ALL, to ensure that all states that
occur in either database are included in the final result. Alternatively, there
could be two queries producing two result tables that are then combined 
in Excel.

Figure 2-9 shows the results. Notice that in this chart, the population is
shown as a lighter shaded area on the secondary axis and the number of orders
as a column chart. These are ordered by the number of orders.

The chart shows several things. For instance, California, which has the
largest population, is third in number of orders. Perhaps this is an opportunity
for more marketing in California. At the very least, it suggests that marketing
efforts are focused on the northeast, because New York and New Jersey have
larger numbers of orders. This chart also suggests a measure of penetration in
the state, the number of orders divided by the population.

Figure 2-9: This example shows the states with the number of orders in columns 
and the population as an area.

The resulting chart is a bit difficult to read, because there are too many state
abbreviations to show on the horizontal axis. In this case, it is possible to

Orders and Population by State

0

10,000

20,000

30,000

40,000

50,000

60,000

Nu
m

be
r o

f  
Or

de
rs

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

State Population

NY NJ CA FL CT PA M
A TX IL VA M
D OH M
I

W
A GA NC AZ CO DC M
N W
I

M
O OR IN TN ON RI SC VT M
E KY NH LA NM DE NV AL IA KS OK UT HI NE BC AR M
S ID PQ W
V PR AK AB M
T

W
Y SD AE ND

State Abbreviation

Chapter 2 ■ What’s In a Table? Getting Started with Data Exploration 61

99513c02.qxd:WileyRed  8/27/07  11:41 AM  Page 61



expand the horizontal axis and make the font small enough so all the abbrevi-
ations fit, just barely. This works for state abbreviations; for other variables it
might be impractical, particularly if there are more than a few dozen values.

One way to make the results more intelligible is to place the data into groups.
That is, take the states with few orders and collect them together into one
“OTHER” category; states with many orders are kept individually. For this pur-
pose, let’s say that states with fewer than 100 orders are placed in the “OTHER”
category. The following query answers the question: What is the distribution of
orders among states that have 100 or more orders?

SELECT (CASE WHEN cnt >= 100 THEN state ELSE ‘OTHER’ END) as state,

SUM(cnt) as cnt

FROM (SELECT o.state, COUNT(*) as cnt

FROM orders o

GROUP BY o.state

) a

GROUP BY (CASE WHEN cnt >= 100 THEN state ELSE ‘OTHER’ END)

ORDER BY 2 desc

This query puts the data in the same two-column format used previously for
making a histogram.

This approach has one drawback, which is the requirement for a fixed value
in the query — the “100” in the comparison. One possible modification is to
ask a slightly different question: What is the distribution of orders by state, for
states that have more than 2% of the orders?

SELECT (CASE WHEN bystate.cnt >= 0.02*total.cnt

THEN state ELSE ‘OTHER’ END) as state,

SUM(bystate.cnt) as cnt

FROM (SELECT o.state, COUNT(*) as cnt

FROM orders o

GROUP BY o.state

) bystate CROSS JOIN

(SELECT COUNT(*) as cnt FROM orders) total 

GROUP BY (CASE WHEN bystate.cnt >= 0.02*total.cnt

THEN state ELSE ‘OTHER’ END)

ORDER BY 2 desc

The first subquery calculates the total orders in each state. The second calcu-
lates the total orders. Because the total orders has only one row, the query uses
a CROSS JOIN. The aggregation then uses a CASE statement that chooses states
that have at least 2% of all orders.

Actually, this query answers the question and goes one step beyond. It does
not filter out the states with fewer than 2% of the orders. Instead, it groups
them together into the “OTHER” group. This is preferable, because it ensures
that no orders are filtered out, which helps prevent mistakes in understanding
the data.
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TI P When writing exploration queries that analyze data, keeping all the data
is usually a better approach than filtering rows. In such a case, a special group
can be made to keep track of what would have been filtered.

Another alternative is to have some number of states, such as the top 20 states,
with everything else placed in the other category, answering the question: What
is the distribution of the number of orders in the 20 states that have the largest number
of orders? Unfortunately, such a query is quite complex. The easiest approach
requires a row number calculation, which is non-standard across SQL dialects:

SELECT (CASE WHEN rank < 20 THEN state ELSE ‘OTHER‘ END) as state,

SUM(numorders) as numorders

FROM (SELECT o.state, COUNT(*) as numorders, <rownumber> as rank

FROM orders o

GROUP BY o.state

ORDER BY COUNT(*) DESC

) bystate

GROUP BY (CASE WHEN rank < 20 THEN state ELSE ‘OTHER‘ END)

ORDER BY 2 DESC

This query could also be accomplished in Microsoft SQL using the TOP option
and a subquery with an ORDER BY clause (both of these are SQL extensions):

SELECT state, numorders

FROM (SELECT TOP 20 o.state, COUNT(*) as numorders 

FROM orders o

GROUP BY o.state

ORDER BY COUNT(*) DESC

) bystate

ORDER BY numorders desc

In this version, the subquery sorts the data by the number of orders in
descending order. The TOP option then chooses the first twenty rows and
returns only these. This method does not make it possible to create the
“OTHER” category, so the results do not include data for all states.

The following version groups the other states into an “OTHER” category:

SELECT (CASE WHEN rank < 20 THEN state ELSE ‘OTHER’ END) as state,

SUM(numorders) as numorders

FROM (SELECT bystate.*,

ROW_NUMBER() OVER (ORDER BY numorders DESC) as rank

FROM (SELECT o.state, COUNT(*) as numorders

FROM orders o

GROUP BY o.state

) bystate

) a

GROUP BY (CASE WHEN rank < 20 THEN state ELSE ‘OTHER’ END)

ORDER BY 2 DESC
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This query uses the ROW_NUMBER() window function to define the ranking. A
second layer of subqueries is needed because the window functions cannot be
combined with aggregations. The ranking window functions are discussed in
more detail in Chapter 8.

An interesting variation on histograms is the cumulative histogram, which
makes it possible to determine, for instance, how many states account for half
the orders. To create one of these, order the results by the number of orders in
descending order (so the biggest states are at the top). Then, in Excel, add a
cumulative column.

To do this, let’s assume that the number of orders is in column B and the data
starts in cell B2. The easiest way to calculate the cumulative total is type the for-
mula “=C1+B2” in cell C2 and then copy this down the column. An alternative
formula that does not reference the previous cell is “=SUM($B$2:$B2).” If
desired, the cumulative number can be divided by the total orders to get a per-
centage, as shown in Figure 2-10.

Figure 2-10: The cumulative histogram shows that four states account for more 
than half of all orders.

Histograms of Counts
The number of states is relatively well-known. We learn that there are fifty
states in the United States, although the Post Office recognizes 59 — because
places such as Puerto Rico (PR), the District of Columbia (DC), Guam (GM),
and the Virgin Islands (VI) are treated as states — plus two more abbreviations
for “states” used for military post offices. Corporate databases might have
even more, sometimes giving equal treatment to Canadian provinces and
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American states, and even intermingling foreign country or province codes
with state abbreviations. 

Still, there are a relatively small number of states. By contrast, there are
thousands of zip codes. More than fit in a single histogram. Where to start with
such columns? A good question to ask is the histogram of counts question:
What is the number of zip codes that have a given number of orders? The following
query answers this:

SELECT numzips, COUNT(*) as numorders, MIN(zipcode), MAX(zipcode)

FROM (SELECT o.zipcode, COUNT(*) as numzips

FROM orders o

GROUP BY o.zipcode

) bystate

GROUP BY numzips

ORDER BY 1

The subquery calculates the histogram. The outer SELECT counts how often
each count occurs in the histogram.

The result set says how many values occur exactly one time, exactly two
times, and so on. For instance, in this data, there are 5,954 zip codes that occur
exactly once. The query also returns the minimum and maximum values,
which provide examples of such zip codes. Because the two examples in the
first row are not valid zip codes, some or all of the one-time zip codes seem to
be errors in the data. Note that for a primary key, all the values should be
unique, so the histogram of counts shows all values as being one-time.

TI P The histogram of counts for a primary key always has exactly one row,
where CNT is 1.

Another example comes from the Orderline table. The question is: What is
the number of order lines where the product occurs once (overall), twice, and so on?
The query that answers this is quite similar to the preceding query:

SELECT numol, COUNT(*) as numprods, MIN(productid), MAX(productid)

FROM (SELECT productid, COUNT(*) as numol

FROM orderline

GROUP BY productid

) a

GROUP BY numol

ORDER BY 1

The subquery counts the number of order lines where each product appears.
The outer query then creates a histogram of this number.

This query returns 385 rows; the first few rows and last row are in Table 2-1.
The last row of the table has the most common product, whose ID is 12820 and
appears in 18,648 order lines. The least common products are in the first row;
there are 933 that occur only once — about 23.1% of all products. However,
these rare products occur in only 933/286,017 orders, about 0.02% of orders.
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Table 2-1: Histogram of Counts of Products in Orderlines Table

NUMBER OF NUMBER OF MINIMUM MAXIMUM
ORDERS PRODUCTS PURCHASEID PURCHASEID

1 933 10017 14040

2 679 10028 14036

3 401 10020 14013

4 279 10025 14021

5 201 10045 13998

6 132 10014 13994

7 111 10019 13982

8 84 10011 13952

. . .

18,648 1 12820 12820

How many different values of PRODUCTID are there? This is the sum of
the second column in the table, which is 4,040. How many order lines? This 
is the sum of the product of the first two columns, which is 286,017. The ratio
of these two numbers is the average number of order lines per product, 70.8;
that is, a given product occurs in 70.8 order lines, on average. Calculating the
number of order lines uses the Excel function SUMPRODUCT(), which takes two
columns, multiplies them together cell by cell, and then adds the results
together. The specific formula is “=SUMPRODUCT(C13:C397, D13:D397).”

Cumulative Histograms of Counts
An interesting question is: What is the proportion of products that account for half
of all order lines? Answering this question requires two cumulative columns,
the cumulative number of order lines and the cumulative number of products,
as shown in Table 2-2:

This table shows that products with 6 or fewer order lines account for 65.0%
of all products. However, they appear in only 2.2% of order lines. We have to
go to row 332 (out of 385) to find the middle value. In this row, the product
appears in 1,190 order lines and the cumulative proportion of order lines
crosses the halfway point. This middle value — called the median — shows
that 98.7% of all products account for half the order lines, so 1.3% account for
the other half. In other words, the common products are much more common
than the rare ones. This is an example of the long tail that occurs when work-
ing with thousands or millions of products.
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Table 2-2: Histrogram of Counts of Products in Orde Lines Table with Cumulative Order
Lines and Products

NUMBER CUMULATIVE CUMULATIVE %
ORDER PRODUCTS ORDER PRODUCTS ORDER PRODUCTS
LINES LINES LINES

1 933 933 933 0.3% 23.1%

2 679 2,291 1,612 0.8% 39.9%

3 401 3,494 2,013 1.2% 49.8%

4 279 4,610 2,292 1.6% 56.7%

5 201 5,615 2,493 2.0% 61.7%

6 132 6,407 2,625 2.2% 65.0%

. . .

1,190 1 143,664 3,987 50.2% 98.7%

. . .

18,648 1 286,017 4,040 100.0% 100.0%

The cumulative number of products is the sum of all values in NUMPRODS
up to a given row. A simple way to calculate this is =SUM($D$284:$D284).
When this formula is copied down the column, the first half of the range stays
constant (that is, remains $D$284) and the second half increments (becoming
$D284 then $D285 and so on). This form of the cumulative sum is preferable to
the =H283+D284 form, because cell H283 contains a column title, which is not a
number, causing problems in the first sum. (One way around this is to use:
=IF(ISNUMBER(H283), H283, 0) + D284.)

The cumulative number of order lines is the sum of the product of the NUMOL
and NUMPRODS values (columns C and D) up to that point. The formula is:

=SUMPRODUCT($C$284:$C284, $D$284:$D284)

The ratios are the value in each cell divided by the last value in the column.

Histograms (Frequencies) for Numeric Values
Histograms work for numeric values as well as categorical ones. For instance,
the NUMUNITS column contains the number of different units of a product
included in an order and it takes on just a handful of values. How do we know
this? The following query answers the question: How many different values does
NUMUNITS take on?

SELECT COUNT(*) as numol, COUNT(DISTINCT numunits) as numvalues

FROM orderline
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It only takes on 158 values. On the other hand, the column TOTALPRICE in
the same table takes on over 4,000 values, which is a bit cumbersome for a his-
togram, although the cumulative histogram is still quite useful. A natural way
to look at numeric values is by grouping them into ranges. The next section
explains several methods for doing this.

Ranges Based on the Number of Digits, Using Numeric Techniques

Counting the number of important digits — those to the left of the decimal
point — is a good way to group numeric values into ranges. For instance, a
value such as “123.45” has three digits to the left of the decimal point. For
numbers greater than one, the number of digits is one plus the log in base 10 of
the number, rounded down to the nearest integer:

SELECT FLOOR(1+ LOG(val) / LOG(10)) as numdigits

However, not all values are known to be greater than 1. For values between –1
and 1, the number of digits is zero, and for negative values, we might as well
identify them with a negative sign. The following expression handles these cases:

SELECT (CASE WHEN val >= 1 THEN FLOOR(1+ LOG(val) / LOG(10))

WHEN -1 < val AND val < 1 THEN 0

ELSE - FLOOR(1+ LOG(-val) / LOG(10)) END) as numdigits

Used in a query for TOTALPRICE in Orders, this turns into:

SELECT numdigits, COUNT(*) as numorders, MIN(totalprice), MAX(totalprice)

FROM (SELECT (CASE WHEN totalprice >= 1

THEN FLOOR(1+ LOG(totalprice) / LOG(10))

WHEN -1 < totalprice AND totalprice < 1 THEN 0

ELSE - FLOOR(1+ LOG(-totalprice) / LOG(10)) END

) as numdigits, totalprice

FROM orders

) a

GROUP BY numdigits

ORDER BY 1

In this case, the number of digits is a small number between 0 and 4, because
TOTALPRICE is never negative and always under $10,000.

The following expression turns the number of digits into a lower and upper
bounds, assuming that the underlying value is never negative:

SELECT SIGN(numdigits)*POWER(10, numdigits-1) as lowerbound,

POWER(10, numdigits) as upperbound

This expression uses the SIGN() function, which returns –1, 0, or 1 depending on
whether the argument is less than zero, equal to zero, or greater than zero. A sim-
ilar expression can be used in Excel. Table 2-3 shows the results from the query.
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Table 2-3: Ranges of Values for TOTALPRICE in Orders Table

# DIGITS LOWER UPPER # ORDERS MINIMUM MAXIMUM 
BOUND BOUND

0 $0 $1 9,130 $0.00 $0.64

1 $1 $10 6,718 $1.75 $9.99

2 $10 $100 148,121 $10.00 $99.99

3 $100 $1,000 28,055 $100.00 $1,000.00

4 $1,000 $10,000 959 $1,001.25 $9,848.96

Ranges Based on the Number of Digits, Using String Techniques

There is a small error in the table. The number “1000” is calculated to have
three digits rather than four. The discrepancy is due to a rounding error in the
calculation. An alternative, more exact method is to use string functions.

This calculates the length of the string representing the number, using only
digits to the left of the decimal place. The SQL expression for this is:

SELECT LEN(CAST(FLOOR(ABS(val)) as INT))*SIGN(FLOOR(val)) as numdigits

This expression uses the non-standard LEN() function and assumes that the
integer is converted to a character value. See Appendix A for equivalent state-
ments in other databases.

More Refined Ranges: First Digit Plus Number of Digits

Table 2-4 shows the breakdown of values of TOTALPRICE in Orders by more
refined ranges based on the first digit and the number of digits. Assuming that
values are always non-negative (and most numeric values in databases are
non-negative), the expression for the upper and lower bound is:

SELECT lowerbound, upperbound, COUNT(*) as numorders, MIN(val), MAX(val)

FROM (SELECT FLOOR(val / POWER(10.0, SIGN(numdigits)*(numdigits - 1)))*

POWER(10.0, SIGN(numdigits)*(numdigits-1)) as lowerbound,

FLOOR(1+ (val / POWER(10.0, SIGN(numdigits)*(numdigits - 1))))*

POWER(10.0, SIGN(numdigits)*(numdigits-1)) as upperbound, a.*

FROM (SELECT (LEN(CAST(FLOOR(ABS(totalprice)) as INT)) * 

SIGN(FLOOR(totalprice))) as numdigits,

totalprice as val

FROM orders

) a

) b

GROUP BY lowerbound, upperbound

ORDER BY 1
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This query uses two subqueries. The innermost calculates NUMDIGITS and
the middle calculates LOWERBOUND and UPPERBOUND. In the compli-
cated expressions for the bounds, the SIGN() function is used to handle the
case when the number of digits is zero. 

Table 2-4: Ranges of Values for TOTALPRICE in Orders Table by First Digit and Number 
of Digits

LOWER- UPPER- NUMBER OF MINIMUM MAXIMUM 
BOUND BOUND ORDERS TOTALPRICE TOTALPRICE

$0 $1 9,130 $0.00 $0.64

$1 $2 4 $1.75 $1.95

$2 $3 344 $2.00 $2.95

$3 $4 2 $3.50 $3.75

$4 $5 13 $4.00 $4.95

$5 $6 152 $5.00 $5.97

$6 $7 1,591 $6.00 $6.99

$7 $8 2,015 $7.00 $7.99

$8 $9 1,002 $8.00 $8.99

$9 $10 1,595 $9.00 $9.99

$10 $20 54,382 $10.00 $19.99

$20 $30 46,434 $20.00 $29.99

$30 $40 20,997 $30.00 $39.99

$40 $50 9,378 $40.00 $49.98

$50 $60 6,366 $50.00 $59.99

$60 $70 3,629 $60.00 $69.99

$70 $80 2,017 $70.00 $79.99

$80 $90 3,257 $80.00 $89.99

$90 $100 1,661 $90.00 $99.99

$100 $200 16,590 $100.00 $199.98

$200 $300 1,272 $200.00 $299.97

$300 $400 6,083 $300.00 $399.95

$400 $500 1,327 $400.00 $499.50

$500 $600 1,012 $500.00 $599.95
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Table 2-4  (continued)

LOWER- UPPER- NUMBER OF MINIMUM MAXIMUM 
BOUND BOUND ORDERS TOTALPRICE TOTALPRICE

$600 $700 670 $600.00 $697.66

$700 $800 393 $700.00 $799.90

$800 $900 320 $800.00 $895.00

$900 $1,000 361 $900.00 $999.00

$1,000 $2,000 731 $1,000.00 $1,994.00

$2,000 $3,000 155 $2,000.00 $2,995.00

$3,000 $4,000 54 $3,000.00 $3,960.00

$4,000 $5,000 20 $4,009.50 $4,950.00

$5,000 $6,000 10 $5,044.44 $5,960.00

$6,000 $7,000 12 $6,060.00 $6,920.32

$8,000 $9,000 1 $8,830.00 $8,830.00

$9,000 $10,000 3 $9,137.09 $9,848.96

Breaking Numerics into Equal-Sized Groups

Equal-sized ranges are perhaps the most useful type of ranges. For instance,
the middle value in a list (the median) splits a list of values into two equal-
sized groups. Which value is in the middle? Unfortunately, SQL does not pro-
vide native support for finding median values.

With a bit of cleverness — and useful SQL extensions — it is possible to find
medians in most dialects of SQL. All that is needed is the ability to enumerate
rows. If there are nine rows of data and with ranks one through nine, the
median value is the value on the fifth row. 

Finding quintiles and deciles is the same process as finding the median.
Quintiles break numeric ranges into five equal-sized groups; four breakpoints
are needed to do this — the first for the first 20% of the rows; the second for the
next 20%, and so on. Creating deciles is the same process but with nine break-
points instead.

The following query provides the framework for finding quintiles, using the
ranking window function ROW_NUMBER():

SELECT MAX(CASE WHEN rownum <= totalrows * 0.2 THEN <val> END) as break1,

MAX(CASE WHEN rownum <= totalrows * 0.4 THEN <val> END) as break2,

MAX(CASE WHEN rownum <= totalrows * 0.6 THEN <val> END) as break3,

(continued)
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MAX(CASE WHEN rownum <= totalrows * 0.8 THEN <val> END) as break4

FROM (SELECT ROW_NUMBER() OVER (ORDER BY <val>) as rownum,

(SELECT COUNT(*) FROM <table>) as totalrows,

<val>

FROM <table>)

It works by enumerating the rows in order by the desired column, and com-
paring the resulting row number with the total number of rows. This tech-
nique actually works for any type of columns. For instance, it can break up
date ranges into equal-sized groups. 

More Values to Explore — Min, Max, and Mode

Apart from breaking values into ranges, there are other interesting character-
istics of columns. This section discusses extreme values and the most com-
mon value.

Minimum and Maximum Values
SQL makes it quite easy to find the minimum and maximum values in a table
for any data type. By default, the minimum and maximum values for strings
are based on the alphabetic ordering of the values. The query is simply:

SELECT MIN(<col>), MAX(<col>)

FROM <tab>

A related question is the frequency of maximum and minimum values in a
particular column. Answering this question uses a subquery in the SELECT
clause of the query. The general form is:

SELECT SUM(CASE WHEN <col> = minv THEN 1 ELSE 0 END) as freqminval,

SUM(CASE WHEN <col> = maxv THEN 1 ELSE 0 END) as freqmaxval

FROM <tab> t CROSS JOIN

(SELECT MIN(<col>) as minv, MAX(<col>) as maxv

FROM <tab>) vals

This query uses the previous query as a subquery to calculate the minimum
and maximum values. Because there is only one row, the CROSS JOIN operator
is used for the join. This technique can be extended. For instance, it might be
interesting to count the number of values within 10% of the maximum or min-
imum value for a numeric value. This calculation is as simple as multiplying
MAX(<col>) by 0.9 and MIN(<col>) by 1.1 and replacing the “=” with “>=” and
“<=” respectively.
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The Most Common Value (Mode)
The most common value is called the mode. The mode differs from other mea-
sures that we’ve looked at so far. There is only one maximum, minimum,
median, and average. However, there can be many modes. A common, but not
particularly interesting, example is the primary key of a table, which is never
repeated. The only frequency is one, so all values are the mode.

It is possible to calculate the mode in standard SQL. However, the process is
a bit cumbersome, and there are some alternative methods as well. The next
three sections show three different approaches to the calculation.

Calculating Mode Using Standard SQL

Calculating the mode starts with calculating the frequency of values in a column:

SELECT <col>, COUNT(*) as freq

FROM <tab>

GROUP BY <col>

ORDER BY 2

The mode is the last row (or the first row if the list is sorted in descending
order). Unfortunately, there is no way to get the last row in standard SQL.

Instead, let’s ask the question: What column values have the same frequency as
the maximum column frequency?

SELECT <col>, COUNT(*) as freq

FROM <tab>

GROUP BY <col>

HAVING COUNT(*) = (SELECT MAX(freq)

FROM (SELECT <col>, COUNT(*) as freq

FROM <tab> GROUP BY <col>) b)

In this query, the HAVING clause is doing almost all the work. It selects the
groups (column values) whose frequency is the same as the largest fre-
quency. What is the largest frequency? The innermost subquery calculates 
all the frequencies, the level above that takes the maximum of these values.
And the overall query returns all values whose frequency matches the maxi-
mum. The result is a list of the values whose frequencies match the maximum
frequency, a list of the modes.

Because there could be more than one, the following variation returns the
first mode:

SELECT MIN(<col>) as minmode

FROM (SELECT <col>, COUNT(*) as freq

FROM <tab>

GROUP BY <col>

HAVING COUNT(*) = (SELECT MAX(freq)

(continued)
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FROM (SELECT <col>, COUNT(*) as freq

FROM <tab> GROUP BY <col>) b)

) a

This variation simply uses the previous query as a subquery.
If, instead, we were interested in the values with the smallest frequency, the

“MAX(freq)” expression would be changed to “MIN(freq).” Such values could
be considered the antimode values.

These queries accomplish the task at hand. However, they are rather com-
plex, with multiple levels of subqueries and two references to the table. It is
easy to make mistakes when writing such queries, and complex queries are
harder to optimize for performance. The next two sections look at alternatives
that produce simpler queries, using SQL extensions.

Calculating Mode Using SQL Extensions

Different dialects of SQL have extensions that do one of the following:

■■ Enumerate rows in a subquery; or,

■■ Return the first row from a subquery.

Microsoft SQL happens to support both.
The following query uses enumeration to find the mode:

SELECT *

FROM (SELECT a.*,

ROW_NUMBER() OVER (ORDER BY cnt DESC) as rownum

FROM (SELECT <col>, COUNT(*) as freq

FROM <tab>

GROUP BY <col>) a

) b

WHERE rownum = 1

The innermost query produces the list of frequencies for values. The next
level adds the row counter. Unfortunately, Microsoft SQL does not allow
ROW_NUMBER() in the WHERE clause, which would eliminate the need for one of
the subqueries. So, the value is assigned to a column, which is then referenced
in the outermost query.

An alternative approach is to return the first row from the frequencies 
subquery:

SELECT TOP 1 <col>, COUNT(*) as freq

FROM <tab>

GROUP BY <col>

ORDER BY COUNT(*) DESC

In many ways, this approach is the simplest and clearest about what is 
happening.
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Calculating Mode Using String Operations

The final method for calculating the mode looks at the problem in a different
way. Instead of sorting the list and taking the maximum value, why can’t we
just request the value of <col> where the <freq> is maximized? The construct
might look like “SELECT MAX(<col> WHERE <freq> is MAX).” However, SQL
does not support such a statement.

There is a way to accomplish basically the same thing. Figure 2-11 shows the
dataflow. The freq value is converted into a string representation, padded out
with 0s. The <col> value is appended onto the string. The max of the result is
the maximum frequency, with the associated <col> value appended. The SUB-
STRING() function extracts the string at the end. Voila, the mode!

Figure 2-11: This dataflow shows how to calculate the mode using string operations.

OUTPUT orderid customerid 

104162 

47149 
 

47355 
 125694 

… 

… 
… 

… 

state 
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PA 

zipcode 

30012 
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… 

… 

… 

… 
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… 

MA 01040 

APPEND 
var=lpad(freq, 6, ‘0’)+state 

APPEND 
mode = substring(var, 6, 1000) 

AGGREGATE
group by state

freq = count(*)

READ
orders
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OH 
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1 
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4 
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var 

var 

053537NY 

mode 

NY 
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 3,922 
 

var = MAX(var)
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The following SQL finds the mode of STATE in the Orders table:

SELECT SUBSTRING(MAX(RIGHT(REPLICATE(‘0’, 6) + CAST(freq as VARCHAR), 6) + 

CAST(state as VARCHAR)), 7, 1000)

FROM (SELECT state, COUNT(*) as freq

FROM orders

GROUP BY state) a

Most of this expression is converting the frequency into a zero-padded 6-digit
number. The zero padding is needed because string values are ordered alpha-
betically for the MAX() function. With alphabetic ordering, “100000” comes
before “9.” Zero padding fixes this, so “100000” comes after “000009” alpha-
betically. STATE is then appended to the value, and the result is the maximum
frequency with the state at the end. The SUBSTRING() function then extracts the
most common value.

Exploring String Values

String values pose particular challenges for data exploration, because they can
take on almost any value. This is particularly true for free-form strings, such as
addresses and names, which may not be cleaned. This section looks at explor-
ing the length and characters in strings.

Histogram of Length
A simple way to get familiar with string values is to do a histogram of the
length of the values. The following answers the question: What is the length of
values in the CITY column in the Orders table?

SELECT LEN(city) as length, COUNT(*) as numorders, MIN(city), MAX(city)

FROM orders

GROUP BY LEN(city)

ORDER BY 1

The name of the LEN() function may differ among databases.
This query provides not only a histogram of the lengths, but also examples

of two values — the minimum and maximum values for each length. For the
CITY column, there are lengths from 0 to 20, which is the maximum length
the column stores.

Strings Starting or Ending with Spaces
Spaces at the beginning or end of string values can cause unexpected prob-
lems. The value “ NY” is not the same as “NY”, so a comparison operation or
join might fail — even though the values look the same to humans. It depends
on the database whether “NY ” and “NY” are the same.
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The following query answers the question: How many times do the values in
the column have spaces at the beginning or end of the value?

SELECT COUNT(*) as numorders

FROM orders

WHERE city IS NOT NULL AND LEN(city) <> LEN(LTRIM(RTRIM(city)))

This query works by stripping spaces from the beginning and end of the col-
umn, and then comparing the lengths of the stripped and unstripped values.
The datasets provided with this book do not have this problem.

Handling Upper- and Lowercase
Databases can be either case sensitive or case insensitive. Case sensitive means
that upper- and lowercase characters are considered different; case insensitive
means they are the same. Don’t be confused by case sensitivity in strings versus
case sensitivity in syntax. SQL keywords can be in any case (“SELECT,” “select,”
“Select”). This discussion only refers to how values in columns are treated.

For instance, in a case-insensitive database, the following values would all
be equal to each other:

■■ FRED;

■■ Fred; and,

■■ fRed.

By default, most databases are case insensitive. However, this can usually be
changed by setting a global option or by passing hints to a particular query
(such as using the COLLATE keyword in SQL Server). 

In a case-sensitive database, the following query answers the question: How
often are the values uppercase, lowercase, or mixed case?

SELECT SUM(CASE WHEN city = UPPER(city) THEN 1 ELSE 0 END) as uppers,

SUM(CASE WHEN city = LOWER(city) THEN 1 ELSE 0 END) as lowers,

SUM(CASE WHEN city NOT IN (LOWER(city), UPPER(city))

THEN 1 ELSE 0 END) as mixed

FROM orders

In a case-insensitive database, the first two values are the same and the third is
zero. In a case-sensitive database, the three add up to the total number of rows.

What Characters Are in a String?
Sometimes, it is interesting to know exactly which characters are in strings. For
instance, do email addresses provided by customers contain characters that
they shouldn’t? Such a question naturally leads to which characters are actually
in the values. SQL is not designed to answer this question, at least in a simple
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way. Fortunately, it is still possible to make an attempt. The answer starts with
a simpler question, answered by the following query: What characters are in the
first position of the string?

SELECT SUBSTRING(city, 1, 1) as onechar,

ASCII(SUBSTRING(city, 1, 1)) as asciival,

COUNT(*) as numorders

FROM orders

GROUP BY SUBSTRING(city, 1, 1)

ORDER BY 1

The returned data has three columns: the character, the number that represents
the character (called the ASCII value), and the number of times that the char-
acter occurs as the first character in the CITY column. The ASCII value is use-
ful for distinguishing among characters that might look the same, such as a
space and a tab.

TI P When looking at individual characters, unprintable characters and space
characters (space and tabs) look the same. To see what character is really there,
use the ASCII() function.

The following query extends this example to look at the first two characters
in the CITY column:

SELECT onechar, ASCII(onechar) as asciival, COUNT(*) as cnt

FROM ((SELECT SUBSTRING(city, 1, 1) as onechar

FROM orders WHERE LEN(city) >= 1)

UNION ALL

(SELECT SUBSTRING(city, 2, 1) as onechar

FROM orders WHERE LEN(city) >= 2)

) a

GROUP BY onechar

ORDER BY 1

This query combines all the first characters and all the second characters
together, using UNION ALL in the subquery. It then groups this collection of
characters together, returning the final result. Extending this query to all
twenty characters in the city is a simple matter of adding more clauses to the
UNION ALL subquery.

There is a variation of this query, which might be more efficient under some
circumstances. This variation pre-aggregates each of the subqueries. Rather
than just putting all the characters together and then aggregating, it calculates
the frequencies for the first position and then the second position, and then
combines the results:

SELECT onechar, ASCII(onechar) as asciival, SUM(cnt) as cnt

FROM ((SELECT SUBSTRING(city, 1, 1) as onechar, COUNT(*) as cnt

FROM orders WHERE LEN(city) >= 1
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GROUP BY SUBSTRING(city, 1, 1) )

UNION ALL

(SELECT SUBSTRING(city, 2, 1) as onechar, COUNT(*) as cnt

FROM orders WHERE LEN(city) >= 2

GROUP BY SUBSTRING(city, 2, 1) )

) a

GROUP BY onechar

ORDER BY 1

The choice between the two forms is a matter of convenience and efficiency,
both in writing the query and in running it.

What if the original question were: How often does a character occur in the first
position versus the second position of a string? This is quite similar to the original
question, and the answer is to modify the original query with information
about the position of the string:

SELECT onechar, ASCII(onechar) as asciival, COUNT(*) as cnt,

SUM(CASE WHEN pos = 1 THEN 1 ELSE 0 END) as pos_1,

SUM(CASE WHEN pos = 2 THEN 1 ELSE 0 END) as pos_2

FROM ((SELECT SUBSTRING(city, 1, 1) as onechar, 1 as pos

FROM orders WHERE LEN(city) >= 1 )

UNION ALL

(SELECT SUBSTRING(city, 2, 1) as onechar, 2 as pos

FROM orders WHERE LEN(city) >= 2)

) a

GROUP BY onechar

ORDER BY 1

This variation also works using the pre-aggregated subqueries.

Exploring Values in Two Columns

Comparing values in more than one column is an important part of data explo-
ration and data analysis. There are two components to this. This section focuses
on the first component, describing the comparison. Do two states differ by
sales? Do customers who purchase more often have larger average purchases?
The second component is whether the comparison is statistically significant, a
topic covered in the next chapter.

What Are Average Sales By State?
The following two questions are good examples of comparing a numeric value
within a categorical value:

■■ What is the average order totalprice by state?

■■ What is the average zip code population in a state?
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SQL is particularly adept at answering questions such as these, using 
aggregations.

The following query provides the average sales by state:

SELECT state, AVG(totalprice) as avgtotalprice

FROM orders

GROUP BY state

ORDER BY 2 DESC

This example uses the aggregation function AVG() to calculate the average. The
following expression could also have been used:

SELECT state, SUM(totalprice)/COUNT(*) as avgtotalprice

Although the two methods seem to do the same thing, there is a subtle dif-
ference between them, because they handle NULL values differently. In the first
example, NULL values are ignored. In the second, NULL values contribute to the
COUNT(*), but not to the SUM(). The expression COUNT(totalprice) fixes this,
by returning the number of values that are not NULL.

WARN I NG Two ways of calculating an average look similar and often return
the same result. However, AVG(<col>) and SUM(<col>)/COUNT(*) treat NULL
values differently.

How Often Are Products Repeated within a Single Order?
A reasonable assumption is that when a given product occurs multiple times
in an order, there is only one order line for that product; the multiple instances
are represented by the column NUMUNITS rather than by separate rows in
Orderlines. It is always worthwhile to validate such assumptions. There are
several different approaches.

Direct Counting Approach

The first approach directly answers the question: How many different order lines
within an order contain the same product? This is a simple counting query, using
two different columns instead of one:

SELECT cnt, COUNT(*) as numorders, MIN(orderid), MAX(orderid)

FROM (SELECT orderid, productid, COUNT(*) as cnt

FROM orderline ol

GROUP BY orderid, productid

) a

GROUP BY cnt

ORDER BY 1
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Here, CNT is the number of times that a given ORDERID and PRODUCTID
appear in the Orderline table.

The results show that some products are repeated within the same order, up
to a maximum of forty times. This leads to more questions. What are some
examples of orders where duplicate products occur? For this, the minimum
and maximum ORDERID provide examples. Another question might be:
Which products are more likely to occur multiple times within an order?

A result table with the following information would help in answering 
this question:

■■ PRODUCTID, to identify the product;

■■ Number of orders containing the product any number of times; and,

■■ Number of orders containing the product more than once.

These second and third columns compare the occurrence of the given product
overall with the multiple occurrence of the product within an order.

The following query calculates these columns:

SELECT productid, COUNT(*) as numorders,

SUM(CASE WHEN cnt > 1 THEN 1 ELSE 0 END) as nummultiorders

FROM (SELECT orderid, productid, COUNT(*) as cnt

FROM orderline ol

GROUP BY orderid, productid

) a

GROUP BY productid

ORDER BY 2 desc

The results (which have thousands of rows) indicate that some products are,
indeed, more likely to occur multiple times within an order than other products.
However, many products occur multiple times, so the problem is not caused by
one or a handful of products.

Comparison of Distinct Counts to Overall Counts

Another approach to answering the question “How often are products repeated in
an order?” is to consider the number of order lines in an order compared to the
number of different products in the same order. That is, calculate two values
for each order — the number of order lines and the number of distinct product
IDs; these numbers are the same when order lines within an order all have dif-
ferent products. 

One way of doing the calculation is using the COUNT(DISTINCT) function.
The following query returns orders that have more order lines than products:

SELECT orderid, COUNT(*) as numlines, 

COUNT(DISTINCT productid) as numproducts

FROM orderline
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GROUP BY orderid

HAVING COUNT(*) > COUNT(DISTINCT productid)

The HAVING clause chooses only orders that have at least one product on multi -
ple order lines.

Another approach to use a subquery:

SELECT orderid, SUM(numproductlines) as numlines,

COUNT(*) as numproducts

FROM (SELECT orderid, productid, COUNT(*) as numproductlines

FROM orderline

GROUP BY orderid, productid) op

GROUP BY orderid

HAVING SUM(numproductlines) > COUNT(*)

The subquery aggregates the order lines by ORDERID and PRODUCTID. This
makes it possible to count both the number of products and the number of
order lines. In general, a query using COUNT(DISTINCT) (or the much less fre-
quently used AVG(DISTINCT) and SUM(DISTINCT)) can also be rewritten to use
a subquery.

This results show that there are 4,878 orders that have more order lines than
products, indicating that at least one product occurs on multiple lines in the
order. However, the query does not give an idea of what might be causing this.

The following query calculates the number of orders that have more than
one product broken out by the number of lines in the order:

SELECT numlines, COUNT(*) as numorders,

SUM(CASE WHEN numproducts < numlines THEN 1 ELSE 0 END

) as nummultiorders,

AVG(CASE WHEN numproducts < numlines THEN 1.0 ELSE 0 END

) as ratiomultiorders,

MIN(orderid), MAX(orderid)

FROM (SELECT orderid, COUNT(*) as numproducts,

SUM(numproductlines) as numlines

FROM (SELECT orderid, productid, COUNT(*) as numproductlines

FROM orderline

GROUP BY orderid, productid) a

GROUP BY orderid

) op

GROUP BY numlines

ORDER BY 1

This query uses the subquery approach to calculate the number of products
and order lines within a query.

Table 2-5 shows the first few rows of the results. The proportion of multi-
orders increases as the size of the order increases. However, for all order sizes,
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many orders still have distinct products. Based on this information, it seems
that having multiple lines for a single product is a function of having larger
orders, rather than being related to the particular products in the order.

Table 2-5: Number of Products Per Order by Number of Lines in Order (First Ten Rows)

ORDERS WITH MORE
LINES THAN PRODUCTS

LINES IN ORDER NUMBER OF ORDERS NUMBER %

1 139,561 0 0.0%

2 32,758 977 3.0%

3 12,794 1,407 11.0%

4 3,888 894 23.0%

5 1,735 532 30.7%

6 963 395 41.0%

7 477 223 46.8%

8 266 124 46.6%

9 175 93 53.1%

10 110 65 59.1%

Which State Has the Most American Express Users?
Overall, about 24.6% of the orders are paid by American Express (payment
type AE). Does this proportion vary much by state? The following query answers
this question:

SELECT state, COUNT(*) as numorders,

SUM(CASE WHEN paymenttype = ‘AE’ THEN 1 ELSE 0 END) as numae,

AVG(CASE WHEN paymenttype = ‘AE’ THEN 1.0 ELSE 0 END) as avgae

FROM orders

GROUP BY state

HAVING COUNT(*) >= 100

ORDER BY 4 DESC

This query calculates the number and percentage of orders paid by American
Express, and then returns them with the highest proportion at the top. Notice that
the query only chooses states that have at least 100 orders, in order to eliminate
specious state codes. Table 2-6 shows the top ten states by this proportion. 
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Table 2-6: Percent of American Express Payment for Top Ten States with Greater Than 
100 Orders

STATE # ORDERS # AE % AE

GA 2,865 1,141 39.8%

PR 168 61 36.3%

LA 733 233 31.8%

FL 10,185 3,178 31.2%

NY 53,537 16,331 30.5%

DC 1,969 586 29.8%

NJ 21,274 6,321 29.7%

MS 215 63 29.3%

MT 111 29 26.1%

UT 361 94 26.0%

From Summarizing One Column to 
Summarizing All Columns

So far, the exploratory data analysis has focused on different aspects of sum-
marizing values in a single column. This section combines the various results
into a single summary for a column. It then extends this summary from a single
column to all columns in a table. In the process, we use SQL (or alternatively
Excel) to generate a SQL query, which we then run to get the summaries.

Good Summary for One Column
For exploring data, the following information is a good summary for a 
single column:

■■ The number of distinct values in the column;

■■ Minimum and maximum values;

■■ An example of the most common value (called the mode in statistics);

■■ An example of the least common value (called the antimode);

■■ Frequency of the minimum and maximum values;

■■ Frequency of the mode and antimode;
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■■ Number of values that occur only one time;

■■ Number of modes (because the most common value is not necessarily
unique); and,

■■ Number of antimodes.

These summary statistics are defined for all data types. Additional informa-
tion might be of interest for other data types, such as the minimum and maxi-
mum length of strings, the average value of a numeric, and the number of
times when a date has no time component.

The following query calculates these values for STATE in Orders:

SELECT COUNT(*) as numvalues,

MAX(freqnull) as freqnull,

MIN(minval) as minval,

SUM(CASE WHEN state = minval THEN freq ELSE 0 END) as numminvals,

MAX(maxval) as maxval,

SUM(CASE WHEN state = maxval THEN freq ELSE 0 END) as nummaxvals,

MIN(CASE WHEN freq = maxfreq THEN state END) as mode,

SUM(CASE WHEN freq = maxfreq THEN 1 ELSE 0 END) as nummodes,

MAX(maxfreq) as modefreq,

MIN(CASE WHEN freq = minfreq THEN state END) as antimode,

SUM(CASE WHEN freq = minfreq THEN 1 ELSE 0 END) as numantimodes,

MAX(minfreq) as antimodefreq,

SUM(CASE WHEN freq = 1 THEN freq ELSE 0 END) as numuniques

FROM (SELECT state, COUNT(*) as freq

FROM orders

GROUP BY state) osum CROSS JOIN

(SELECT MIN(freq) as minfreq, MAX(freq) as maxfreq,

MIN(state) as minval, MAX(state) as maxval,

SUM(CASE WHEN state IS NULL THEN freq ELSE 0 END) as freqnull

FROM (SELECT state, COUNT(*) as freq

FROM orders

GROUP BY state) osum) summary

This query follows a simple logic. There are two subqueries. The first summarizes
the STATE column, calculating the frequency for it. The second summarizes the
summary, producing values for:

■■ Minimum and maximum frequency;

■■ Minimum and maximum values; and

■■ Number of NULL values.

The results combine these two queries, making judicious use of the CASE
statement.

The results for STATE are as follows:

■■ Number of values: 92

■■ Minimum value: “”
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■■ Maximum value: YU

■■ Mode: NY

■■ Antimode: BD

■■ Frequency of Nulls: 0

■■ Frequency of Min: 1,119

■■ Frequency of Max: 2

■■ Frequency of Mode: 53,537

■■ Frequency of Antimode: 1

■■ Number of Unique Values: 14

■■ Number of Modes: 1

■■ Number of Antimodes: 14

As mentioned earlier, this summary works for all data types. So, the same
query using the TOTALPRICE column results in the following information:

■■ Number of values: 7,653

■■ Minimum value: $0.00

■■ Maximum value: $9,848.96

■■ Mode: $0.00

■■ Antimode: $0.20

■■ Frequency of Nulls: 0

■■ Frequency of Min: 9,128

■■ Frequency of Max: 1

■■ Frequency of Mode: 9,128

■■ Frequency of Antimode: 1

■■ Number of Unique Values: 4,115

■■ Number of Modes: 1

■■ Number of Antimodes: 4,115

The most common value of TOTALPRICE is $0. One reason for this is that all
other values have both dollars and cents in their values. The proportion of
orders with $0 value is small. This suggests doing the same analysis but using
only the dollar amount of TOTALPRICE. This is accomplished by replacing the
table name with a subquery such as “(SELECT FLOOR(totalprice) as dollars
FROM orders)”.
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The next two sections approach the question of how to generate this infor-
mation for all columns in a table. The strategy is to query the database for all
columns in a table and then use SQL or Excel to write the query.

Query to Get All Columns in a Table
SQL does not have a standard mechanism for returning the names of all the
columns in a table. However, databases are quite good at storing information.
So, most databases store information about their columns and tables in special
system tables. For instance, the following query returns the table name and
column names of all the columns in the Orders table, using a syntax common
to Microsoft SQL and mysql:

SELECT table_schema+’.’+table_name as table_name, column_name,

ordinal_position

FROM information_schema.columns

WHERE table_name = ‘orders’

See the Appendix for mechanisms in other databases.
The results are in Table 2-7, which is simply the table name and list of

columns in the table. The information_schema.columns table also contains
information that we are not using, such as whether the column allows NULL
values and the type of the column.

Table 2-7: Column Names in Orders

TABLE_NAME COLUMN_NAME ORDINAL_POSITION

Orders ORDERID 1

Orders CUSTOMERID 2

Orders CAMPAIGNID 3

Orders ORDERDATE 4

Orders CITY 5

Orders STATE 6

Orders ZIPCODE 7

Orders PAYMENTTYPE 8

Orders TOTALPRICE 9

Orders NUMORDERLINES 10

Orders NUMUNITS 11
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Using SQL to Generate Summary Code
The goal is to summarize all the columns in a table, using an information
summary subquery for each column. Such a query has the following pattern
for Orders:

(INFORMATION SUBQUERY for orderid)

UNION ALL (INFORMATION SUBQUERY for customerid)

UNION ALL (INFROMATION SUBQUERY for campaignid)

UNION ALL (INFROMATION SUBQUERY for orderdate)

UNION ALL (INFROMATION SUBQUERY for city)

UNION ALL (INFROMATION SUBQUERY for state)

UNION ALL (INFROMATION SUBQUERY for zipcode)

UNION ALL (INFROMATION SUBQUERY for paymenttype)

UNION ALL (INFORMATION SUBQUERY for totalprice)

UNION ALL (INFORMATION SUBQUERY for numorderlines)

UNION ALL (INFORMATION SUBQUERY for numunits)

The information subquery is similar to the earlier version, with the mode and
antimode values removed (just to simplify the query for explanation). 

There are three other modifications to the query. The first is to include a
placeholder called <start> at the beginning. The second is to include the col-
umn name and the third is to convert the minimum and maximum values to
strings, because all values in a given column need to be of the same type for
the UNION ALL. The resulting query has the general form:

<start> SELECT ‘<col>’ as colname, COUNT(*) as numvalues,

MAX(freqnull) as freqnull,

CAST(MIN(minval) as VARCHAR) as minval,

SUM(CASE WHEN <col> = minval THEN freq ELSE 0 END) as numminvals,

CAST(MAX(maxval) as VARCHAR) as maxval,

SUM(CASE WHEN <col> = maxval THEN freq ELSE 0 END) as nummaxvals,

SUM(CASE WHEN freq = 1 THEN freq ELSE 0 END) as numuniques

FROM (SELECT totalprice, COUNT(*) as freq

FROM <tab>

GROUP BY <col>) osum CROSS JOIN

(SELECT MIN(<col>) as minval, MAX(<col>) as maxval,

SUM(CASE WHEN <col> IS NULL THEN 1 ELSE 0 END) as freqnull

FROM (SELECT <col>

FROM <tab>) osum) summary

The preceding query has been placed in a single line for generality, because
some databases support strings that span multiple lines, and some do not. The
resulting query is rather ugly:

SELECT REPLACE(REPLACE(REPLACE(‘<start> SELECT ‘’<col>’‘ as colname, 

COUNT(*) as numvalues, MAX(freqnull) as freqnull, CAST(MIN(minval) as 

VARCHAR) as minval, SUM(CASE WHEN <col> = minval THEN freq ELSE 0 END) 

as numminvals, CAST(MAX(maxval) as VARCHAR) as maxval, SUM(CASE WHEN 
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<col> = maxval THEN freq ELSE 0 END) as nummaxvals, SUM(CASE WHEN freq = 

1 THEN 1 ELSE 0 END) as numuniques FROM (SELECT <col>, COUNT(*) as freq 

FROM <tab> GROUP BY <col>) osum CROSS JOIN (SELECT MIN(<col>) as minval, 

MAX(<col>) as maxval, SUM(CASE WHEN <col> IS NULL THEN 1 ELSE 0 END) as 

freqnull FROM (SELECT <col> FROM <tab>) osum) summary’,

‘<col>’, column_name),

‘<tab>’, table_name),

‘<start>’,

(CASE WHEN ordinal_position = 1 THEN ‘’

ELSE ‘UNION ALL’ END))

FROM (SELECT table_name, column_name, ordinal_position

FROM information_schema.columns

WHERE table_name = ‘orders’) a

This query replaces three placeholders in the query string with appropriate
values. The “<col>” string gets replaced with the column name, which comes
from the information_schema.columns table. The “<tab>” string gets replaced
with the table name. And, the “<starting>” string gets “UNION ALL” for all but
the first row.

Table 2-8 shows the results from running the resulting query. This logic can
also be accomplished in Excel, by copying the template query and using
Excel’s SUBSTITUTE() function.

Table 2-8: Information about the Columns in Orders Table

# MINIMUM # MAXIMUM
COLNAME # VALUES # NULL VALUE VALUE # UNIQUE

orderid 192,983 0 1 1 192,983

customerid 189,560 0 3,424 1 189,559

campaignid 239 0 5 4 24

orderdate 2,541 0 181 2 0

city 12,825 0 17 5 6,318

state 92 0 1,119 2 14

zipcode 15,579 0 144 1 5,954

paymenttype 6 0 313 77,017 0

totalprice 7,653 0 9,128 1 4,115

numorderlines 41 0 139,561 1 14

numunits 142 0 127,914 1 55
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Lessons Learned

Databases are well suited to data exploration because databases are close to
the data. In fact, because they are inherently parallel — that is, they can take
advantage of multiple processors and multiple disks — a database is often the
best choice in terms of performance as well. Excel charting is a powerful com-
panion, because it is familiar to end users and charts are a powerful way to
communicate results. This chapter introduces several types of charts including
column charts, line charts, and scatter plots.

Data exploration starts by investigating the values that are stored in various
columns in the data. Histograms are a good way to see distributions of values
in particular columns, although numeric values often need to be grouped to
see their distributions. There are various ways of grouping numeric values
into ranges, including “tiling” — creating equal-sized groups such as quintiles
and deciles.

Various other things are of interest in columns. The most common value is
called the mode, and there are several ways to calculate the mode using SQL.
The standard mechanism is a bit cumbersome and often performs ineffi-
ciently. The alternatives are easier to understand, but require SQL extensions.

Ultimately, though, it is more efficient to investigate all columns at once
rather than each column one at a time. The chapter ends with a mechanism for
creating a single query to summarize all columns at the same time. This
method uses SQL to create a complex query, which is then run to get sum-
maries for all the columns in a table.

The next chapter moves from just looking at the data to determining
whether patterns in the data are statistically significant.
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The previous two chapters show how to do various calculations and visual-
izations using SQL and Excel. This chapter moves from calculating results to
understanding the significance of the resulting measurements. When are two
values so close that they are essentially the same? When are two values far
enough apart that we are confident in their being different?

The study of measurements and how to interpret them falls under the
applied science of statistics. Although theoretical aspects of statistics can be
daunting, the focus here is on applying the results, using tools borrowed from
statistics to learn about customers through data. As long as we follow common
sense and a few rules, the results can be applied without diving into theoreti-
cal mathematics or arcane jargon.

The word “statistics” itself is often misunderstood. It is the plural of “statis-
tic,” and a statistic is just a measurement, such as the averages, medians, and
modes calculated in the previous chapter. A big challenge in statistics is gener-
alizing from results on a small group to a larger group. For instance, when a
poll reports that 50% of likely voters support a particular political candidate,
the pollsters typically also report a margin of error, such as 2.5%. This margin
of error, called the sampling margin of error, means that the poll asked a certain
number of people (the sample) a question and the goal is to generalize the
results from the sample to the entire population. If another candidate has 48%
support, then the two candidates are within the margin of error, and the poll
does not show definitive support for either one.

How Different Is Different?

C H A P T E R
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In business, the preferences or behaviors of one group of customers might be
similar to or different from another group; the measures are calculated from data-
bases rather than from samples. Of course, any calculation on any two groups of
customers is going to be different, if only in the fifth or sixth decimal place. But
does the difference matter? Do the measurements suggest that the groups are
equivalent? Or do the measurements provide evidence that the groups differ?
These are the types of questions that statistics can help answer.

This chapter introduces the statistics used for addressing the question “how
different is different,” with an emphasis on the application of the ideas rather
than their theoretical derivation. Throughout, examples use Excel and SQL to
illustrate the concepts. The chapter starts with a discussion of key statistical
concepts, such as confidence and the normal distribution, and how these are
applied to the most common statistic of all, the average value.

Two other statistical techniques are also introduced. One is the difference of
proportions, which is often used for comparing the response rates between
groups of customers. The other is the chi-square test, which is also used to com-
pare results among different groups of customers and determine whether the
groups are essentially the same or fundamentally different. Throughout the chap-
ter there are simple examples with small amounts of data to illustrate the ideas.
There are also larger examples using the purchase and subscriptions databases to
illustrate how to apply the ideas on real datasets stored in databases.

Basic Statistical Concepts

Over the past two centuries, statistics has delved into the mathematics of
understanding measurements and their interpretation. Although the theoreti-
cal aspects of the subject are beyond the range of this book, there are some
basic concepts that are very useful for our analyses. In fact, not using the foun-
dation of statistics would be negligent, because so many brilliant minds have
already answered questions quite similar to the ones being asked. Of course,
the great minds of statistics who were developing these techniques a century
ago did not have access to modern computing and data access, much less to
the vast volumes of data available today. Many of their methods, however,
have withstood the test of time. 

This section discusses the some important concepts in statistics, in the spirit
of introducing useful ideas and terminology. These concepts are:

■■ The Null Hypothesis;

■■ Confidence (versus probability); and,

■■ Normal Distribution.

The later sections in this chapter build on these ideas, applying the results to
real-world data.
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The Null Hypothesis
Statisticians are naturally skeptical, and that is a good thing. When looking at
data, their default assumption is that nothing out-of-the-ordinary is going on.
This, in turn, implies that any observed differences among groups are just due
to chance. So, if one candidate is polling 50% and the other 45%, statisticians
start with the assumption that there is no difference in support for the candi-
dates. Others may be astounded by such an assumption, because 50% seems
quite different from 45%. The statistician starts by assuming that the different
polling numbers are just a matter of chance, probably due to the particular
people who were included in the poll.

TI P Perhaps the most important lesson from statistics is skepticism and the
willingness to ask questions. The default assumption should be that differences
are due to chance; data analysis has to demonstrate that this assumption is
highly unlikely.

The assumption that nothing extraordinary is occurring has a name, the
Null Hypothesis. A vocabulary note: “Null” here is a statistical term and has
nothing to do with the database use of the term. To avoid ambiguity, “Null
Hypothesis” is a statistical phrase and any other use of “NULL” refers to the
SQL keyword.

The Null Hypothesis is the hallmark of skepticism, and also the beginning
of a conversation. The skepticism leads to the question: How confident are we
that the Null Hypothesis is true? This question is equivalent to: How confident
are we that the observed difference is due just to chance? And these questions
have an answer. The p-value is an estimate of how often the Null Hypothesis
is true. When the p-value is very small, such as 0.1%, the statement “I have
very little confidence that the observed difference is due just to chance” is
quite reasonable. This, in turn, implies that the observed difference is due to
something other than chance. In the polling example, a low p-value suggests
the following: “The poll shows that there is a significant difference in sup-
port for the two candidates.”

Statistical significance is equivalent to saying that the p-value is less than
some low number, often 5% or 10%. When the p-value is larger, the Null
Hypothesis has pretty good standing. The right way to think about this is
“There is no strong evidence that something occurred, so I’ll assume that the
difference was due to chance.” In the polling example, we might say “The
polling shows no definitive difference in support for the two candidates.” One
candidate might have slightly higher polling numbers than the other in the
small number of people polled. Alas, the difference is not large enough for us
to have confidence that one candidate has larger support than the other in the
much larger general (or voting) population.
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Imagine running a bunch of different polls at the same time, with the same
questions and the same methodology. The only difference among these polls is
the people who are contacted; each is a different random sample from the
overall population. The p-value says what proportion of all these polls would
have a difference at least as great as what the first poll finds, assuming that
each question has equal support for both sides. 

Sometimes, just formulating the Null Hypothesis is valuable, because it
articulates a business problem in a measurable and testable way. This chapter
includes various Null Hypotheses, such as:

■■ The average order amount in New York is the same as the average in
California.

■■ A committee with five members was chosen without taking gender 
into account.

■■ The stop rate for customers who started on 28 Dec 2005 is the same,
regardless of the market where they started.

■■ There is no affinity between the products that customers buy and the
states where customers live. That is, all customers are as likely to pur-
chase a particular product, regardless of where they live.

These hypotheses are stated in clear business terms. They can be validated,
using available data. The answers, however, are not simply “true” or “false.”
The answers are a confidence that the statement is true. Very low p-values
(confidence values) imply a very low confidence that the statement is true,
which in turn implies that the observed difference is significant.

Confidence and Probability
The idea of confidence is central to the notion of measuring whether two
things are the same or different. Statisticians do not ask “are these different?”
Instead, they ask the question “how confident are we that these are the same?”
When this confidence is very low, it is reasonable to assume that the two mea-
surements are indeed different.

Confidence and probability often look the same, because both are measured
in the same units, a value between zero and one that is often written as a per-
centage. Unlike probabilities, confidence includes the subjective opinion of the
observer. Probability is inherent in whatever is happening. There is a certain
probability of rain today. There is a certain probability that heads will appear
on a coin toss, or that a contestant will win the jackpot on a game show, or that
a particular atom of uranium will decay radioactively in the next minute.
These are examples where there is a process, and the opinions of the observer
do not matter.
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On the other hand, after an election has occurred and before the votes are
counted, one might be confident in the outcome of the election. The votes have
already been cast, so there is a result. Both candidates in the election might be
confident, believing they are going to win. However, each candidate being
90% confident in his or her odds of winning does not imply an overall confi-
dence of 180%! Although it looks like a probability, this is confidence, because
it is based on subjective opinion.

There is a tendency to think of confidence as a probability. This is not quite
correct because a probability is exact, with the uncertainty in the measure-
ment. A confidence may look exact, but the uncertainty is, at least partially, in
the opinion of the observer. The Monty Hall Paradox, explained in the aside, is
a simple “probability” paradox that illustrates the difference between the two.

The inverse notion of “how different is different” is “when are two things the
same.” One way of expressing this is by asking how confident we are that the
difference is or is not zero. In the polling example, where one candidate has 50%
support and the other 45%, the Null Hypothesis on the difference is: “The dif-
ference in support between the two candidates is zero,” meaning the two can-
didates actually have the same support in the overall population. A p-value of
1% means that if multiple polls were conducted at the same time, with the same
methodology and with the only difference being the people randomly chosen
to participate in the polls and the assumption that there is no difference in sup-
port for the candidates, then we would expect 99% of the polls to have less than
the observed difference. That is, the observed difference is big, so it suggests a
real difference in support for the candidates in the overall population. If the p-
value were 50%, then even though the difference is noticeable in the poll, it says
very little about which candidate has greater support.

Normal Distribution
The normal distribution, also called the bell curve and the Gaussian distribu-
tion, plays a special role in statistics. In many situations, the normal distribu-
tion can answer the following question: Given an observed measure on a
sample (such as a poll), what confidence do we have that the actual measure
for the whole population falls within a particular range? For instance, if 50% of
poll respondents say they support Candidate A, what does this mean about
Candidate A’s support in the whole population? Pollsters report something
like “There is a 95% confidence that the candidate’s support is between 47.5%
and 52.5%.”

In this particular case, the confidence interval is 47.5% to 52.5% and the confi-
dence is 95%. A different level of confidence would produce a different interval.
So the interval for 99.9% confidence would be wider. The interval for 90%
would be narrower.
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MONTY HALL PARADOX

Monty Hall was the famous host of the television show Let’s Make a Deal
from 1963 through 1986. This popular show offered prizes, which were hidden
behind three doors. One of the doors contained a grand prize, such as a car or
vacation. The other two had lesser prizes, such as a goat or rubber chicken. In
this simplification of the game show, a contestant is asked to choose one of the
doors and can keep the prize behind it. One of the remaining two doors is then
opened, revealing perhaps a rubber chicken, and the contestant is asked
whether he or she wants to keep the unseen prize behind the chosen door or
switch to the other unopened one.

Assuming that the contestant is asked randomly regardless of whether the
chosen door has the prize, should he or she keep the original choice or switch?
Or, does it not make a difference? The rest of this aside gives the answer, so
stop here if you want to think about it.

A simple analysis of the problem might go as follows. When the contestant
first makes a choice, there are three doors, so the odds of getting the prize are
initially one in three (or 33.3% probability). After the other door is opened,
though, there are only two doors remaining, so the probability of either door
having the prize is 50%. Because the probabilities are the same, switching does
not make a difference. It is equally likely that the prize is behind either door.

Although an appealing and popular analysis, this is not correct for a subtle
reason that involves a distinction similar to the distinction between confidence
and probability: Just because there are two doors does not mean that the
probabilities are equal.

Monty knows where the prize is. So, after the contestant chooses a door, 
any door, Monty can always open one of the remaining two and show a booby
prize. Opening one door and showing that there is no grand prize behind it
adds no new information. This is always possible, regardless of where the
grand prize is. Because opening some door with no grand prize offers no new
information, showing a booby prize does not change the original probabilities.

What are those probabilities? The probabilities are 33.3% that the prize 
is behind the door the contestant originally chose and 66.7% that the prize is
behind one of the other two. These do not change, so the contestant doubles
his or her chances of winning by switching.

Confidence levels can help us understand this problem. At the beginning, the
contestant should be 33.3% confident that the prize is behind the chosen door
and 66.7% confident that the prize is behind one of the other two. This confidence
does not change when another door without the prize is opened, because the
contestant should realize that it is always possible to show a door with no prize.
Nothing has changed. So given the opportunity to switch, the contestant should
do so, and double his or her chances of winning.

Measuring the confidence interval uses the normal distribution, shown in
Figure 3-1 for the data corresponding to the polling example. In this example,
the average is 50%, and the range from 47.5% and 52.5% has 95% confidence.
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The two points define the ends of the confidence interval, and the area under
the curve, between the two points, measures the confidence. The units on the
vertical axis are shown, but they are not important. They just guarantee that
the area under the entire curve equals 100%.

The normal distribution is a family of curves, defined by two numbers, the
average and standard deviation. The average determines where the center of
the distribution is, so smaller averages result in curves shifted to the left, and
larger averages have curves shifted to the right. The standard deviation deter-
mines how narrow and high or how wide and flat the hump is in the middle.
Small standard deviations make the curve spikier; larger standard deviations
spread it out. Otherwise, the shape of the curve remains the same, and the area
under all these curves is always one.

Properties of the normal distribution are well understood. So, about 68% of
the averages from samples fall within one standard deviation of the overall
average. About 95.5% fall within two standard deviations, and 99.73% fall
within three standard deviations. By tradition, statistical significance is often
taken at the 95% level, and this occurs at the not-so-intuitive level of 1.96 stan-
dard deviations from the average.

Table 3-1 shows the confidence for various confidence intervals measured in
terms of standard deviations. The distance from a value to the average, mea-
sured in standard deviations, is called the z-score. This is actually a simple
transformation on any set of data, where the difference between the value and
average is divided by the standard deviation. Z-scores are particularly useful
when comparing variables that have different ranges, such as the average age
and average income of a group of people. Z-scores are also useful for trans-
forming variables for data mining modeling.

Figure 3-1: The area under the normal distribution, between two points, is the
confidence that the measurement on the entire population falls in that range.
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Table 3-1: Confidence Levels Associated with Various Z-Scores (which is half the width of
the confidence interval measured in standard deviations)

Z-SCORE CONFIDENCE

1.00 68.269%

1.64 89.899%

1.96 95.000%

2.00 95.450%

2.50 98.758%

3.00 99.730%

3.29 99.900%

3.89 99.990%

4.00 99.994%

4.42 99.999%

5.00 100.000%

The values in Table 3-1 were calculated using the Excel formula:

<confidence> = NORMSDIST(<z-score>) – NORMSDIST(- <z-score>)

In Excel, the function NORMSDIST() calculates the area under the normal distribu-
tion up to a particular z-score. That is, it defines the confidence interval from
minus infinity to the z-score. To get a finite confidence interval on either side of
the average, calculate the one from minus infinity to <value> and then subtract
out the one from minus infinity to minus z-score, as shown in Figure 3-2.

Figure 3-2: The Excel function NORMSDIST() can be used to calculate the confidence
for an interval around the average.

xminus infinity avg
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The preceding formula works for z-scores that are positive. A slight varia-
tion works for all z-scores:

<confidence> = ABS(NORMSDIST(<z-score>) – NORMSDIST(- <z-score>))

From the preceding polling example, the standard deviation can be reverse
engineered. The confidence is 95%, implying that the confidence interval
ranges 1.96 times the standard deviation on either side of the average. Because
the confidence interval is 2.5% on either side of the average, the standard devi-
ation is 2.5%/1.96 or 1.276%. This information can be used to calculate the
99.9% confidence interval. It is 3.29 times the standard deviation. So, the confi-
dence interval for the poll with 99.9% confidence ranges from 50% –
3.29*1.276% to 50% + 3.29*1.276%, or 45.8% to 54.2%.

As a final note, the normal distribution depends on knowing the average
and standard deviation. All we have is data, which does not include this infor-
mation directly. Fortunately, statistics provides some methods for estimating
these values from data, as explained in examples throughout this chapter.

How Different Are the Averages?

The retail purchase data has purchases from all fifty states, and then some.
This section addresses the question of whether the average purchase amount
(in the column TOTALPRICE) differs in different states. Statistics answers this
question, and most of the calculations can be done using SQL queries.

Let’s start with the observation that the average purchase amount for the
17,839 purchases from California is $85.48 and the average purchase amount
for the 53,537 purchases from New York is $70.14. Is this difference significant?

The Approach
The approach to answering the question starts by putting all the orders from
New York and California into one big bucket whose overall average total price is
$73.98. The question is: What is the likelihood that a random subset of 17,839 purchases
from this bucket has an average TOTALPRICE of $85.48? If this probability is largish,
then orders from California look like a random sample, and there is nothing spe-
cial about them. On the other hand, if the p-value is small, there is evidence that
orders from California are different from a random sample of orders from the two
states, leading to the conclusion that California orders are different.

Looking at extreme cases can help shed light on this approach. Assume
that all orders from California are exactly $85.48 and all orders from New
York are exactly $70.14. In this case, there is only one group of orders from
the bucket whose average amount is $85.48 — the group that consists of
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100 Chapter 3 ■ How Different Is Different?

exactly the California orders. If the orders took on only these two values, it
would be safe to say that distinction between New York and California is not
due just to chance. It is due to some other factor.

A cursory look at the data shows that this is not the case. Given that TOTAL-
PRICE runs the gamut of values from $0 to $10,000, can we say anything about
whether the difference in average order size in New York and California is due
to randomness, or due to a difference in the markets?

Standard Deviation for Subset Averages
The preceding question is about averages of samples. Something called the Cen-
tral Limit Theorem in statistics sheds light on precisely the subject of the average
of a subset of values randomly selected from a larger group. This theorem says
that if we repeatedly take samples of a given size, then the distribution of the
averages of these samples approximates a normal distribution, whose average
and standard deviation are based on exactly three factors:

■■ The average of the original data;

■■ The standard deviation of the original data; and,

■■ The size of the sample.

Notice that the Central Limit Theorem says nothing about the distribution of
the original values. The wonder of this theorem is that it works for basically
any distribution of the original values. The Central Limit Theorem tells us
about the distribution of the averages of the samples, not the distribution of
the original values.

Consider the average TOTALPRICE of ten orders taken randomly. If this
process is repeated, the averages approximate a normal distribution. If instead
we were to take one hundred orders repeatedly rather than ten, the averages also
follow a normal distribution, but one whose standard deviation is a bit smaller.
As the size of the samples increases, the distribution of the average forms a nar-
rower band around the actual average in the original data. Figure 3-3 shows some
distributions for the average value of TOTALPRICE for different sized groups
coming from the California–New York orders.

The Central Limit Theorem says that the average of the distribution is the
average of the original data and the standard deviation is the standard devia-
tion of the original data divided by the square root of the sample size. As the
sample size gets larger, the standard deviation gets smaller, and the distribu-
tion becomes taller and narrower and more centered on the average. This
means that the average of a larger sample is much more likely to be very close
to the overall average, than the average of a smaller sample. In statistics-
speak, the standard deviation of the average of a sample is called the standard
error (of the sample). So, the previous formulation says that the standard error
of a sample is equal to the standard deviation of the population divided by
the square root of the sample size.
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Figure 3-3: The theoretical distributions of TOTALPRICE for different sample sizes follow
the normal distribution.

Now, the question about the average values of California and New York gets
a little tricky. It is trivial to calculate the average and standard deviation of the
New York and California orders, using the SQL aggregation functions AVG() and
STDDEV(). However, the question that we want to answer is slightly different.
The question is: What is the likelihood that taking the average of 17,839 values ran-
domly chosen from the population results in an average of $85.48 and taking a sample of
53,537 values results in $70.14?

Looking at the distribution of values from each state helps to understand
what is happening. The following SQL query returns the counts of the TOTAL-
PRICE column in five-dollar increments:

SELECT 5*FLOOR(totalprice/5),

SUM(CASE WHEN state = ‘CA’ THEN 1 ELSE 0 END) as CA,

SUM(CASE WHEN state = ‘NY’ THEN 1 ELSE 0 END) as NY

FROM orders o

WHERE o.state IN (‘CA’, ‘NY’)

GROUP BY 5*FLOOR(totalprice/5)

A histogram of the results is shown in Figure 3-4, which has the averages for
each state in the legend. Visually, the two histograms look quite similar, sug-
gesting that the average sizes for each state might well be within the margin of
error. However, the analysis is not yet complete.

Three Approaches
There are at least three statistical approaches to determining whether the aver-
age purchase sizes in New York and California are the same or different.

$50 $52 $54 $56 $58 $60 $62 $64 $66 $68 $70 $72 $74 $76 $78 $80 $82 $84 $86 $88 $90 $92 $94 $96 $98

Sample Size 250
Sample Size 100
Sample Size 50
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Figure 3-4: This chart shows the distribution of the TOTALPRICE of orders from 
New York and California.

The first approach is to treat the orders as two samples from the same popu-
lation and ask a question that is perhaps now familiar: What is the likelihood that
the differences are due just to random variation? The second approach is to take the
difference between the two means and ask: How likely it is that the difference could
be zero? If the difference could reasonably be zero, then the two observed values
are too close and should be treated as equivalent to each other.

The third approach is to list out all the different possible combinations of
purchases and to calculate the averages for all of them. The information from
all possible combinations makes it possible to determine how often the aver-
age in two groups exceeds the observed averages. This direct counting
approach is too computationally intensive in this case, so this section does not
go into detail into this approach. Later in this chapter, though, the counting
approach is used for a different problem. 

Estimation Based on Two Samples

There are 71,376 orders in New York and California, with an average order size
of $73.98 and a standard deviation of $197.23. The orders from California are a
subgroup of this population, comprising 17,839 orders with an average order
size of $85.48. What is the confidence that this subgroup is just a random sample
pulled from the data (meaning that the observed difference is due only to chance)?

As mentioned earlier, the standard deviation of the sample average is the
standard deviation of the overall data divided by the square root of the sample
size. For instance, the 17,839 orders from California constitute a sample from
the original population. Based on the overall data the average expected value
should be $73.98 and the standard deviation $197.23 divided by the square
root of 17,839, which is about $1.48.
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An average of $85.48 seems quite far from $73.98, so it seems unlikely that
the results for California are just “random” error. There is probably some cause
for the difference. Perhaps Californians are different from New Yorkers in their
affinity for various products. Perhaps marketing campaigns are different in
the two states. Perhaps brand awareness differs in the two states.

The NORMDIST() function in Excel makes it possible to quantify the confidence.
The first argument to NORMDIST() is the observed average, the second is the
expected average, and then the standard deviation. The last argument tells NOR-
MDIST() to return the cumulative area from minus infinity to the observed value.

Quantifying the confidence requires explaining what to look for. Getting
any particular value for the average — whether $85.48 or $73.98 or $123.45 or
whatever — is highly unlikely. Instead, the question is: What is the probability
that a random sample’s average value is at least as far from the overall average as the
observed sample average? Notice that this statement does not say whether the
value is bigger or smaller than the average, just the distance away. The expres-
sion to do this is:

=2*MIN(1-NORMDIST(85.14, 73.98, 1.48, 1), NORMDIST(85.14, 73.98, 1.48, 1))

This expression calculates the probability of a random sample’s average being
in the tail of the distribution of averages — that is, as far away as or farther
away from the overall average than the observed sample average.

The multiplication by two is because the tail can be on either side of the
overall average. The MIN() is needed because there are two cases. When the
observed sample average is less than the overall average, the tail is from minus
infinity to the observed value; NORMDIST() calculates this value. When the
observed sample average is greater than the overall average, then the tail is on
the other side and goes from the observed value to positive infinity; 1-NOR-
MDIST() calculates this value.

For the case at hand, the calculated result gives a probability, a p-value, that is
indistinguishable from zero, meaning that the high value for California relative
to New York is not due to chance.

Another way of looking at this is using the z-score, which measures the
distance from the average to the observed value, in multiples of standard
deviations. The expression to calculate the z-score is ($84.48 – $73.98)/$1.48,
which comes to 7.8 standard deviations away. That is a long way away, and
it is very, very, very unlikely that the average order size for California is due
to nothing more than chance.

TI P The z-score measures how far away an observed value is from the mean,
in units of standard deviations. It is the difference divided by the standard
deviation. The z-score can be turned into a probability using the Excel formula
2*MIN(1-NORMSDIST(z-score), NORMSDIST(z-score)).
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Estimation Based on Difference

The previous calculation compared the results of one state to the combined
orders from both states. The following series of questions is a chain of reason-
ing that shows another way to think about this problem:

■■ Does the average TOTALPRICE differ between New York and California?

■■ Could the difference between the average TOTALPRICE for the two
states be zero?

■■ What is the confidence of the Null Hypothesis that the difference
between the TOTALPRICE of New York and the TOTALPRICE of Cali-
fornia is zero?

That is, we can compare New York and California by looking at the difference
between the two values rather than looking at the values themselves. The dif-
ference is $15.34 = $85.48 – $70.14. Given the information about the two
groups, is this statistically significant?

Once again, the differences between the averages follow a distribution,
whose average is zero (because samples from the same distribution have the
same expected average). Calculating the standard deviation requires borrow-
ing another formula from statistics. The standard deviation of the difference is
the square root of the sum of the squares of the standard deviations of each
sample. This formula is similar to the Pythagorean formula from high school
geometry. Instead of sides of a right triangle, though, the formula is about
standard deviations.

In the example, the standard deviation for California is $1.48 and for 
New York it is $0.85. The square root of the sum of the squares yields $1.71.

The observed difference of $15.34 corresponds to about nine standard devi-
ations from zero. The corresponding p-value is essentially zero, meaning that
the observed difference is likely to be significant. This produces the same
result as before; orders from California and New York have differences that are
not due merely to chance.

Investigating the distributions of the orders highlights some differences.
New York has twice the proportion of orders whose TOTALPRICE is zero,
which suggests that there is a difference between the states. For orders less
than $100, the two states look identical. On the other hand, California has rel-
atively more orders greater than $100.

Counting Possibilities

Averages are interesting, but many of the comparisons between customers
involve counts, such as the number of customers who have responded to an
offer, or who have stopped, or who prefer particular products.  Counting is a
simple process, and one that computers excel at.
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Counting is not just about individuals, it is also about counting combinations.
For instance, if there are ten teams in a baseball league, how many different pos-
sible games are there? Figure 3-5 illustrates the 45 different possible games
between two teams in the league; each possible game is a line segment connect-
ing two boxes. This type of chart is called a link chart, and it can be created in
Excel as explained in the aside “Creating a Link Chart Using Excel Charts.”

The study of such combinations is called combinatorics, a field that straddles
the boundary between probability and statistics. The rest of the chapter looks
at statistical approximations to questions about combinations, approximations
that are good enough for everyday use.

This section starts with a small example that can easily be illustrated and
counted by hand. The ideas are then extended to the larger numbers found in
customer databases, along with the SQL and Excel code needed for doing the
calculations.

Figure 3-5: There are 45 different possible games 
in a Little League club with ten teams. In this chart, 
each line connecting two boxes represents one 
possible game.

How Many Men?
This first counting example asks the following two questions about a commit-
tee that has five members:

■■ What is the probability that the committee has exactly two men?

■■ What is the probability that the committee has at most two men?

A
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D

I

H
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For the purposes of this example, men and women are equally likely to be on
the committee.

CREATING A LINK CHART USING EXCEL CHARTS

The chart in Figure 3-5 is a link chart that shows connections between pairs 
of things (in this case teams). Perhaps surprisingly, this is an Excel scatter 
plot. There are two advantages to doing this in Excel rather than manually in
PowerPoint or another tool. First, the boxes and lines can be placed precisely
where they need to be, which gives the chart a cleaner and more professional
look. Second, making small changes, such as moving a box or changing a label,
should be easier, because everything in the chart is created from data that
describes what the chart looks like.

When thinking about making a complicated, non-traditional chart, it is
important to divide the problem into manageable pieces. This chart has three
such pieces:

■ The ten teams, which are represented as squares, arrayed around a circle;

■ The letter representing each team, inside the squares; and,

■ The lines connecting the teams together.

The first step is to place the squares representing the teams. For this, we dip
into trigonometry, and set the X-coordinates using the sine of an angle and the
Y-coordinate using the cosine. The basic formula for the nth team is:

<x-coordinate> = SIN(2*PI()/<n>)

<y- coordinate > = COS(2*PI()/<n>)

In the actual chart, these are rotated by a fraction, by adding an offset inside
the SIN() and COS() functions. These formulas give the positions of the
teams, as X- and Y-coordinates. 

Labeling the points with the team names is a bit more challenging. There are
three options for labeling points. Two of them use the X- and Y-coordinates, but
these are always numbers. The third option, the “Series name” option, is the
only way to get a name. This unfortunately requires creating a separate series
for each point, so each has a unique name. The following steps accomplish this:

■ Put the X-coordinate in one column.

■ Label the columns to the right sequentially with the desired names (A, B,
C, and so on). These columns contain the Y-coordinate for the points.

■ In the column for team “A,” all the values are NA(), except for the one
corresponding to the A value, and so on for the other columns.

A useful formula to set the values in this table is something like:

=IF($G3=J$2, $E3, NA())
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CREATING A LINK CHART USING EXCEL CHARTS (CONTINUED)

This formula assumes that the Y-coordinates are in column E, and the team
labels are in both row 2 as column headers and in column G as row labels. 
By careful use of absolute and relative references (the use of “$” in the cell
reference), this formula can be copied through the whole range of cells.

The result is an array of cells with values shown in Table 3-2. The first
column is the X-coordinate, the second is the Y-coordinate, and the rest are the
Y-coordinates for a single team, with other values in the columns being #N/A.

Table 3-2: Pivoting the Y-Values for a Circular Link Chart

Y-VALUE
Y X-VALUE ALL A B C D . . . J

A 0.00 1.00 1.00 #N/A #N/A #N/A #N/A

B 0.59 0.81 #N/A 0.81 #N/A #N/A #N/A

C 0.95 0.31 #N/A #N/A 0.31 #N/A #N/A

D 0.95 -0.31 #N/A #N/A #N/A -0.31 #N/A

E 0.59 -0.81 #N/A #N/A #N/A #N/A #N/A

F 0.00 -1.00 #N/A #N/A #N/A #N/A #N/A

G -0.59 -0.81 #N/A #N/A #N/A #N/A #N/A

H -0.95 -0.31 #N/A #N/A #N/A #N/A #N/A

I -0.95 0.31 #N/A #N/A #N/A #N/A #N/A

J -0.59 0.81 #N/A #N/A #N/A #N/A 0.81

With this arrangement, select the whole table starting from the X-value and
insert a scatter plot with no lines. The first series represents all ten teams. For
these, set the marker to squares with a white background and shadow; this chart
uses a size of 15 for the marker. The rest of the series are for the labels, which
have to be inserted individually. To do this, select the series on the chart and set
the line and marker patterns to “None.” Then click the “Data Labels” tab and
choose “Series name” and click “OK.” When the label appears, right-click it 
and choose “Format Data Labels.” On the “Alignment” tab, set the “Label Position”
to be “Center.” With this process, the boxes and their labels are on the chart.

The final step is to include the lines that connect the squares. The idea is to
have a table of X- and Y-coordinates and to add a new series into the scatter
plot that has lines between the points, but no markers. Unfortunately, the
scatter plot connects all points, one after the other, which is like trying to draw
the lines without lifting a pencil from the paper. This is hard. Fortunately, when
a point has an #N/A value, the scatter plot does not draw the lines going to or 

Continued on next page

Chapter 3 ■ How Different Is Different? 107

99513c03.qxd:WileyRed  8/10/07  10:52 PM  Page 107



CREATING A LINK CHART USING EXCEL CHARTS (CONTINUED)

from the point; this is like lifting the pencil off the paper. So, each pair of points
that defines a connection needs to be interspersed with #N/A values.

There are forty-five unique line segments in the chart, because each team
only needs to be connected to the teams after it alphabetically. “A” gets
connected to “B” and “C” and so on. However, “I” only gets connected to “J.”
These segments are placed in a table, where three rows define the segment.
Two rows define the beginning and ending of the line, and the third contains
the function NA(). There is no redundancy in these line segments, so removing
a point from the table makes the line disappear from the chart.

The resulting chart uses twelve different series. One series defines the
points, which are placed as boxes. Ten define the labels inside the boxes. And
the twelfth series defines the line segments that connect them together.

Table 3-3 lists the 32 possible combinations of people that could be on the
committee, in terms of gender. One combination has all males. One has all
females. Five each have exactly one male or exactly one female. In all, there are
32 combinations, which is two raised to the fifth power: “Two,” because there
are two possibilities, male or female; “Fifth power,” because there are five 
people on the committee.

All these combinations are equally likely, and they can be used to answer the
original questions. Ten rows in the table have exactly two males: rows 8, 12, 14,
15, 20, 22, 23, 26, 27, and 29. That is, 10/32 or about 31% of the combinations
have exactly two males. There are an additional six rows that have zero or one
males, for a total of sixteen combinations with two or fewer males. So, exactly
half of all possible committees have two or fewer men.

Listing the combinations provides insight, but is cumbersome for all but the
simplest problems. Fortunately, there are two functions in Excel that do 
the work for us. The function COMBIN(n, m) calculates the number of combi-
nations of m things taken from n things. The question “How many committees
of five people have two males” is really asking “How many ways are there to
choose two things (male) from five (the committee size).” The Excel formula is
“=COMBIN(5, 2)”.

This function returns the number of combinations, but the original ques-
tions asked for the proportion of possible committees having exactly two, or
two or fewer, males. This proportion is answered using something called the
binomial formula, which is provided in Excel as the function BINOMDIST().
This function takes four arguments:

■■ The size of the group (the bigger number);

■■ The number being chosen (the smaller number);

■■ The probability (50%, in this case) of being chosen; and,

■■ A flag that is 0 for the exact probability and 1 for the probability of less
than or equal to the number chosen.
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Table 3-3: Thirty-two Possibilities of Gender on a Committee of Five

PERSON PERSON PERSON PERSON PERSON
#1 #2 #3 #4 #5 # M # F

1 M M M M M 5 0

2 M M M M F 4 1

3 M M M F M 4 1

4 M M M F F 3 2

5 M M F M M 4 1

6 M M F M F 3 2

7 M M F F M 3 2

8 M M F F F 2 3

9 M F M M M 4 1

10 M F M M F 3 2

11 M F M F M 3 2

12 M F M F F 2 3

13 M F F M M 3 2

14 M F F M F 2 3

15 M F F F M 2 3

16 M F F F F 1 4

17 F M M M M 4 1

18 F M M M F 3 2

19 F M M F M 3 2

20 F M M F F 2 3

21 F M F M M 3 2

22 F M F M F 2 3

23 F M F F M 2 3

24 F M F F F 1 4

25 F F M M M 3 2

26 F F M M F 2 3

27 F F M F M 2 3

28 F F M F F 1 4

29 F F F M M 2 3

30 F F F M F 1 4

31 F F F F M 1 4

32 F F F F F 0 5
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So, the following two formulas provide the answers to the original questions:

=BINOMDIST(5, 2, 50%, 0)

=BINOMDIST(5, 2, 50%, 1)

These formulas simplify the calculations needed to answer each question to a
single function call. The purpose here is not to show the actual steps that
BINOMDIST() uses to make the calculation (which is just a lot of messy arith-
metic). Instead, the purpose is to describe intuitively what’s happening in
terms of combinations of people. The binomial distribution function merely
simplifies the calculation.

How Many Californians?
The second example asks a very similar question about a group of five people.
In this case, the question is about where people are from. Let’s assume that one
in ten people who could be on the committee are from California (because very
roughly about one in ten Americans are from California).

■■ What is the probability that the committee has exactly two Californians?

■■ What is the probability that the committee has at most two Californians?

Table 3-4 lists all the possibilities. This table is similar to the example for gen-
der, but with two differences. First, each possibility consists of five probabili-
ties, one for each person in the group. The probability is either 10% for the
possibility that someone is from California or 90% for the possibility that 
the person is from somewhere else.

In addition, the overall probability for that occurrence is included as an
additional column. In the gender example, each gender was equally likely,
so all rows had equal weights. In this case, being from California is much
less likely than not being from California, so the rows have different
weights. The overall probability for any given row is the product of that
row’s probabilities. The probability that all five people are from California
is 10%*10%*10%*10%*10%, which is 0.001%. The probability that none of
the five are from California is 90%*90%*90%*90%*90%, or about 59%. The
possibilities are no longer equally likely.

Once again, the detail is interesting. In such a small example, it is possible to
count all the different possibilities to answer questions. For example, Table 3-5
shows the probabilities for having zero to five Californians in the group. These
numbers can be readily calculated in Excel using the BINOMDIST() function,
using an expression such as BINOMDIST(5, 2, 10%, 0) to calculate the proba-
bility that the committee has exactly two Californians.
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Table 3-4: Thirty-two Possibilities of State of Origin on a Committee of Five

#1 #2 #3 #4 #5 PROB # CA # NOT CA

1 10% 10% 10% 10% 10% 0.001% 5 0

2 10% 10% 10% 10% 90% 0.009% 4 1

3 10% 10% 10% 90% 10% 0.009% 4 1

4 10% 10% 10% 90% 90% 0.081% 3 2

5 10% 10% 90% 10% 10% 0.009% 4 1

6 10% 10% 90% 10% 90% 0.081% 3 2

7 10% 10% 90% 90% 10% 0.081% 3 2

8 10% 10% 90% 90% 90% 0.729% 2 3

9 10% 90% 10% 10% 10% 0.009% 4 1

10 10% 90% 10% 10% 90% 0.081% 3 2

11 10% 90% 10% 90% 10% 0.081% 3 2

12 10% 90% 10% 90% 90% 0.729% 2 3

13 10% 90% 90% 10% 10% 0.081% 3 2

14 10% 90% 90% 10% 90% 0.729% 2 3

15 10% 90% 90% 90% 10% 0.729% 2 3

16 10% 90% 90% 90% 90% 6.561% 1 4

17 90% 10% 10% 10% 10% 0.009% 4 1

18 90% 10% 10% 10% 90% 0.081% 3 2

19 90% 10% 10% 90% 10% 0.081% 3 2

20 90% 10% 10% 90% 90% 0.729% 2 3

21 90% 10% 90% 10% 10% 0.081% 3 2

22 90% 10% 90% 10% 90% 0.729% 2 3

23 90% 10% 90% 90% 10% 0.729% 2 3

24 90% 10% 90% 90% 90% 6.561% 1 4

25 90% 90% 10% 10% 10% 0.081% 3 2

26 90% 90% 10% 10% 90% 0.729% 2 3

27 90% 90% 10% 90% 10% 0.729% 2 3

28 90% 90% 10% 90% 90% 6.561% 1 4

29 90% 90% 90% 10% 10% 0.729% 2 3

30 90% 90% 90% 10% 90% 6.561% 1 4

31 90% 90% 90% 90% 10% 6.561% 1 4

32 90% 90% 90% 90% 90% 59.049% 0 5
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Table 3-5: Probability of Having n Californians on a Committee of Five

# CA # NON-CA PROBABILITY

0 5 59.049%

1 4 32.805%

2 3 7.290%

3 2 0.810%

4 1 0.045%

5 0 0.001%

Null Hypothesis and Confidence
Let’s return to the gender breakdown of five people on a committee. This
example shows that even when there is a 50% chance of members being male 
or female, there is still a chance of finding a unisex committee (either all 
male or all female). In fact, 6.2% of the time the committee is unisex assuming
that the participants are chosen randomly. Another way of looking at this is
that if there were enough committees,  about 6.2% of them would be unisex,
assuming the members are chosen randomly from a pool that is half women
and half men.

Does one committee that is unisex support that idea that gender was used to
select the members? Or, is it reasonable that the committee was selected ran-
domly? Intuitively we might say that it is obvious that gender was used as a
selection criterion. Because people of only one gender were included, it seems
obvious that people of the other gender were excluded. This intuition would
be wrong over 6% of the time. And without any other information, whether we
think the committee shows bias or not depends on our own personal confi-
dence thresholds.

The Null Hypothesis is that the committee members are chosen randomly,
without regard to gender. What is the confidence that the Null Hypothesis is true,
assuming that there is one committee and that committee is unisex? Out of 32 possible
gender combinations, two are unisex. Randomly, unisex committees would be
chosen 2/32 or 6% of the time. A common statistical test is 5%, so this exceeds the
statistical threshold. Using this level of statistical significance, even a unisex
committee is not evidence of bias.

On the other hand, a unisex committee is either all female or all male. Look-
ing at the particular gender reduces the possibilities to one out of 32 (that is,
one out of 32 possible committees are all female; and one out of 32 are all
male). Including the gender changes the confidence to about 3%, in which case
an all-male or all-female committee suggests that the Null Hypothesis is false,
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using the standard statistic level of significance. The fact that looking at the
problem in two slightly different ways produces different results is a good les-
son to remember when facing problems in the real world.

WARN I NG Slightly changing the problem (such as looking at unisex
committees versus all-male or all-female committees) can change the answer
to a question. Be clear about stating the problem being solved.

Let’s now look at the second example of Californians. What if all members
were from California? The Null Hypothesis is that people in the committee are
chosen irrespective of their state of origin. However, there is only a 0.001%
chance that a randomly selected committee of five would consist only of Cali-
fornians. In this case, we would be quite confident that the Null Hypothesis is
false. And that in turn suggests some sort of bias in the process of choosing
members in the committee. In this case, we would be right in assuming a bias
99.999% of the time.

How Many Customers Are Still Active?
Analyzing committees of five members gives insight into the process of count-
ing possibilities to arrive at probabilities and confidence levels. More interesting
examples use customer data. Let’s consider the customers in the subscription
database who started exactly one year before the cutoff date, and of them, the
proportion that stopped in the first year. In this table, active customers are iden-
tified by having the STOP_TYPE column set to a value other than NULL. The fol-
lowing SQL calculates this summary information: 

SELECT COUNT(*) as numstarts,

SUM(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END) as numstops,

AVG(CASE WHEN stop_type IS NOT NULL THEN 1.0 ELSE 0 END

) as stoprate

FROM subs

WHERE start_date = ‘2005-12-28’

Notice that the query uses the floating-point constant 1.0 for the average rather
than the integer 1. This ensures that the average is a floating-point average,
regardless of the database.

This query returns the following results:

■■ Exactly 2,409 customers started one year before the cutoff date.

■■ Of these, 484 were stopped on the cutoff date.

■■ The stop rate is 20.1%.

Both the number stopped and the stop rate are accurate measurements about
what happened to the 2,409 customers who started on Dec 28, 2005. How much
confidence do we have in these numbers as representative of all customers one
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year after they start? The idea in answering this question is that there is a
process that causes customers to stop. This process is random and behaves like
a lottery. Customers who have the right lottery ticket stop (or perhaps cus-
tomers that have the wrong ticket?); everyone else remains active. Our goal is
to understand this process better.

The first question assumes that the number of stops is fixed. Given the num-
ber of stops, what range of stop rates is likely to cause exactly that number of stops?

The second question assumes that the stop rate is really fixed at 20.1%. If this
is the case, how many customers would we expect to stop? Remember the commit-
tee example. Even though the members have an equal probability of being
male or female, the committee can still take on any combination of genders.
The same is true here. The next two subsections examine these questions in
more detail. The methods are similar to the methods used for understanding
the committee; however, the details are a bit different because the sizes are
much larger.

Given the Count, What Is the Probability?

The observed stop rate is 20.1% for the one-year subscribers. Let’s propose a
hypothesis, that the stop process actually has a stop rate of 15% in the first year
rather than the observed rate. The observed 484 stops are just an outlier, in the
same way that five people chosen for a committee, at random, all turn out to
be women.

Figure 3-6 shows the distribution of values for the number of stops, given
that the stop rate is 15%, both as a discrete histogram and as a cumulative dis-
tribution. The discrete histogram shows the probability of getting exactly that
number of stops; this is called the distribution. The cumulative distribution
shows the probability of getting up to that many stops.

Figure 3-6: The proportion of combinations with a given number of stops, assuming a
15% stop rate and 2,409 starts, follows a binomial distribution.
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A 15% stop rate should produce, on average, 361 stops (15% of 2,409); this
overall average is called the expected value. The 484 stops are actually 123 more
stops than the expected value, leading to the question: What is the probability (p-
value) of being 123 or more stops away from the expected value? And this question
has an answer. To a very close approximation, the probability is 0%. The actual
number is more like 0.0000000015%; calculated using the formula 2*MIN(1-
BINOMDIST(484, 2409, 15%, 1), BINOMDIST(484, 2409, 15%, 1)). The 
p-value is twice the size of the tail of the distribution.

So, it is very, very, very unlikely that the original stop rate was 15%. In fact,
it is so unlikely that we can simply ignore the possibility and assume that the
stop rate was higher. Okay, so the stop rate is not 15%. What about 16%? Or
17%? Table 3-6 shows the probability of being in the tail of the distribution for
a range of different stop rates. Based on this table, it is reasonable to say that
the stop rate for the underlying stop process could really be anywhere from
about 18.5% to about 21.5%.

Table 3-6: Probability of Having 484 Stops on 2,409 Starts Given Various Hypothetical
Stop Rates

PROBABILITY OF
STOP RATE EXPECTED STOPS DIFFERENCE THAT FAR OFF

17.00% 409.5 -74.5 0.01%

18.00% 433.6 -50.4 0.77%

18.50% 445.7 -38.3 4.33%

18.75% 451.7 -32.3 8.86%

19.00% 457.7 -26.3 16.56%

19.25% 463.7 -20.3 28.35%

19.50% 469.8 -14.2 44.70%

19.75% 475.8 -8.2 65.23%

19.90% 479.4 -4.6 79.06%

20.00% 481.8 -2.2 88.67%

20.10% 484.2 0.2 98.42%

20.25% 487.8 3.8 87.01%

20.50% 493.8 9.8 64.00%

20.75% 499.9 15.9 44.12%

21.00% 505.9 21.9 28.43%

21.25% 511.9 27.9 17.08%

Continued on next page
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Table 3-6  (continued)

PROBABILITY OF
STOP RATE EXPECTED STOPS DIFFERENCE THAT FAR OFF

21.50% 517.9 33.9 9.56%

21.75% 524.0 40.0 4.97%

22.00% 530.0 46.0 2.41%

22.50% 542.0 58.0 0.45%

23.00% 554.1 70.1 0.06%

This is a very important idea, so it is worth reconstructing the thought
process. First, there was a hypothesis. This hypothesis stated that the actual
stop process stop rate is 15% rather than the observed value of 20.1%. Assum-
ing this hypothesis to be true, we then looked at all the different possible com-
binations of stops that a 15% stop rate would result in. Of course, listing out all
the combinations would be too cumbersome; fortunately, the binomial for-
mula simplifies the calculations. Based on these counts, we saw that the
observed number of stops — 484 — was quite far from the expected number
of stops, 361. In fact, there is essentially a 0% probability that an observation
123 or more stops away from the average would be observed.

There is nothing magic or general about the fact that 15% does not work and
values roughly in the range 19%–21% do work. The confidence depends on the
number of starts in the data. If there were only 100 starts, the difference
between 15% and 20% would not be statistically significant.

Given the Probability, What Is the Number of Stops?

The second question is the inverse of the first one: Given that the underlying stop
process has stop rate of 20.1%, what is the likely number of stops? This is a direct appli-
cation of the binomial formula. The calculation, BINOMDIST(484, 2409, 20.1%,
0) returns 2.03%, saying that only about one time in fifty do exactly 484 stops
result. Even with a stop rate of exactly 20.1%, the expected value of 484 stops is
achieved only 2% of the time by a random process. With so many starts, getting
a few more or a few less is reasonable assuming that the underlying process 
is random.

The expected range accounting for 95% of the number of stops can be calcu-
lated using the binomial formula. This range goes from 445 stops to 523 stops,
which in turn corresponds to a measured stop rate between 18.5% and 21.7%.
Table 3-7 shows the probability of the number of stops being in particular
ranges around 484 stops.
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Table 3-7: Probability of a 20% Stop Rate Resulting in Various Ranges Around the
Expected Value of 484 Stops

WIDTH LOWER BOUND HIGHER BOUND PROBABILITY

3 483.0 485.0 4.42%

15 477.0 491.0 27.95%

25 472.0 496.0 45.80%

51 459.0 509.0 79.46%

75 447.0 521.0 93.91%

79 445.0 523.0 95.18%

101 434.0 534.0 98.88%

126 421.0 546.0 99.86%

151 409.0 559.0 99.99%

The Rate or the Number?
Time for a philosophy break. This analysis started with very hard numbers:
exactly 484 out of 2,409 customers stopped in the first year. After applying
some ideas from statistics and probability, the hard numbers have become
softer. What was an exact count becomes a confidence of a value within a cer-
tain interval. Are we better off with or without the statistical analysis?

The situation is more reasonable than it appears. The first observation is that
the range of 445 stops to 523 stops might seem wide. In fact, it is rather wide.
However, if there were a million customers who started, with a stop rate of
20.1%, then the corresponding range would be much tighter. The equivalent
confidence range would be from about 200,127 to 201,699 stops — or from
20.01% to 20.17%. More data implies narrower confidence intervals.

Why is there a confidence interval at all? This is an important question. The
answer is that we are making an assumption, and the assumption is that cus-
tomers stop because of some unseen process that affects all customers. This
process causes some percentage of customers to stop in the first year. How-
ever, the decision of whether one particular customer stops is like rolling dice
or tossing a coin, which means that there might be unusual lucky streaks
(lower stop rates) or unusually unlucky streaks (higher stop rates), in the same
way that a randomly chosen committee could have five men or five women.

A random process is different from a deterministic process that says that
every fifth customer is going to stop in the first year, or that we’ll cancel the
accounts of everyone named “Pat” at day 241. The results from a deterministic
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process are exact, ignoring the small deviations that might arise due to opera-
tional error. For instance, for customers who have already started, the start
process is deterministic; 2,409 customers started. There is no confidence inter-
val on this. The number really is 2,409. The statistics measure the “decision-to-
stop” process, something that is only observed by its actual effects on stops.

This section started with an example of a committee with five members and
moved to a larger example on thousands of starts. As the size of the population
increases, confidence in the results increases as well, and the corresponding
confidence intervals become narrower. As the population gets larger, whether
we look at the ratio or the absolute number becomes less important, simply
because both appear to be quite accurate. Fortunately, there is a lot of data
stored in databases, so corresponding confidence intervals are often small
enough to ignore.

TI P On large datasets, charts that show visible differences between groups of
customers are usually showing differences that are statistically significant.

Ratios, and Their Statistics

The binomial distribution really just counts up all the different combinations
and determines which proportion of them meets particular conditions. This is
very powerful for finding confidence intervals for a random process, as shown
in the previous section. This section introduces an alternative method that esti-
mates a standard deviation for a ratio, and uses the normal distribution to
approximate confidence ratios.

Using the normal distribution has two advantages over the binomial distri-
bution. First, it is applicable in more areas than the binomial distribution; for
instance, the methods here are more suited for comparing two ratios and ask-
ing whether they are the same. Second, SQL does not support the calculations
needed for the binomial distribution, but it does support almost all the calcu-
lations needed for this method.

This section introduces the method for estimating the standard deviation of
a ratio (which is actually derived from the standard error of a proportion). This is
then applied to comparing two different ratios. Finally, the section shows how
to use these ideas to produce lower bounds for ratios that might be more
appropriate for conservative comparisons of different groups.

Standard Error of a Proportion
Remember that a standard error is just the standard deviation of some statistic
that has been measured on some subgroup of the overall data. In this case, the
statistic is a proportion of two variables, such as the number of stops divided by
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the number of starts. The formula for the standard error in this case is simple
and can easily be expressed in SQL or Excel:

STDERR = SQRT(<ratio> * (1-<ratio>) / <number of data points>)

That is, the standard error is the square root of the product of the observed prob-
ability times one minus the observed probability divided by the sample size.

The following SQL query calculates both the standard error and the lower
and upper bounds of the 95% confidence interval:

SELECT stoprate - 1.96 * stderr as conflower,

stoprate + 1.96 * stderr as confupper,

stoprate, stderr, numstarts, numstops

FROM (SELECT SQRT(stoprate * (1 - stoprate)/numstarts) as stderr,

stoprate, numstarts, numstops

FROM (SELECT COUNT(*) as numstarts,

SUM(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 

END) as numstops,

AVG(CASE WHEN stop_type IS NOT NULL THEN 1.0 ELSE 0 

END) as stoprate

FROM subs

WHERE start_date = ‘2005-12-28’) s

) s

This SQL query uses two nested subqueries to define the columns NUM-
STOPS, STOPRATE, and STDERR. The overall expression could be written
without subqueries, but that would result in a much messier query.

This query uses the constant 1.96 to define the 95% confidence bounds for
the interval. The result is the interval from 18.5% to 21.7%. Recall that using the
binomial distribution, the exact confidence interval was 18.5% to 21.7%. The
results are, fortunately and not surprisingly, remarkably close. Even though
the standard error of proportions is an approximation that uses the normal dis-
tribution, it is a very good approximation.

The standard error can be used in reverse as well. In the earlier polling
example, the standard error was 1.27% and the expected probability was 50%.
What does this say about the number of people who were polled? For this, the
calculation simply goes in reverse. The formula is:

<number> = <ratio>*(1-<ratio>)/(<stderr>^2)

For the polling example, it gives the value of 1,552, which is a reasonable size
for a poll.

One important observation about the standard error and the population size
is that halving the standard error corresponds to increasing the population
size by a factor of four. In plainer language, there is a trade-off between cost
and accuracy. Reducing the standard error on the poll to 0.635%, half of 1.27%,
would require polling four times as many people, over 6,000 people instead of
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1,500. This would presumably increase costs by a factor of four. Reducing the
standard error increases costs.

Confidence Interval on Proportions
Confidence intervals can be derived from the standard error. For instance,
there are three markets in the subscription data: Gotham, Metropolis, and
Smallville. These three markets have the following stop rates for customers
who started on 26 Dec 2005 (this example uses a slightly different stop rate
from the previous example):

■■ Gotham, 35.2%

■■ Metropolis, 34.0%

■■ Smallville, 20.9%

Are we confident that these stop rates are different? Or, might they all be the
same? Although it seems unlikely that they are the same, because Smallville is
much smaller than the others, remember that a group of five people drawn at
random will all have the same genders over 5% of the time. Even though Smal-
lville has a lower stop rate, it might still be just another reasonable sample.

The place to start is with the confidence intervals for each market. The fol-
lowing query does this calculation: 

SELECT market, stoprate - 1.96 * stderr as conflower,

stoprate + 1.96 * stderr as confupper,

stoprate, stderr, numstarts, numstops

FROM (SELECT market,

SQRT(stoprate * (1 - stoprate)/numstarts) as stderr,

stoprate, numstarts, numstops

FROM (SELECT market, COUNT(*) as numstarts,

SUM(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0

END) as numstops,

AVG(CASE WHEN stop_type IS NOT NULL THEN 1.0 ELSE 0

END) as stoprate

FROM subs

WHERE start_date in (‘2005-12-26’)

GROUP BY market) s

) s

This query is very similar to the query for the overall calculation, with the
addition of the aggregation by market.

The results in Table 3-8 make it clear that the stop rate for Smallville is dif-
ferent from the stop rate for Gotham and Metropolis. The 95% confidence
interval for Smallville does not overlap with the confidence intervals of the
other two markets, as shown in Figure 3-7. This is a strong condition. When
the confidence intervals do not overlap, there is a high confidence that the
ratios are different.
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Table 3-8: Confidence Intervals by Markets for Starts on 26 Dec 2005

STOPS 95% CONFIDENCE
LOWER UPPER STANDARD

MARKET STARTS # RATE BOUND BOUND ERROR

Gotham 2,256 794 35.2% 33.2% 37.2% 1.0%

Metropolis 1,134 385 34.0% 31.2% 36.7% 1.4%

Smallville 666 139 20.9% 17.8% 24.0% 1.6%

Figure 3-7, by the way, is an Excel scatter plot. The X-axis has the stop rate for
each market. The Y-values are simply 1, 2, and 3 (because Excel does not allow
names to be values for a scatter plot); the Y-axis itself has been removed,
because it adds no useful information to the chart. The intervals use the X-Error
Bar feature, and the labels on the points were added manually, by typing in text
and placing the labels where desired.

Figure 3-7: When confidence intervals do not overlap, there is a high level of confidence
that the observed values really are different. So Smallville is clearly different from Gotham
and Metropolis.

Difference of Proportions
For Metropolis and Gotham, the situation is different, because their confidence
intervals do overlap. The difference between their observed stop rates is 1.2%.
How likely is it that this difference is due just to chance, if we assume the Null Hypoth-
esis that the two values are really equal?

There is another estimate of the standard error that is used for the difference
between two proportions, which is quite reasonably called the standard error of the
difference of proportions. The formula for this is easily calculated in Excel or SQL:

STDERR = SQRT((<ratio1>*(1-<ratio1>)/<size1>) + 

(<ratio2>*(1-<ratio2>)/<size2>)

That is, the standard error of the difference of two proportions is the square
root of the sum of the squares of the standard errors of each proportion (this
is basically the same as the standard error of a difference of two values). The
calculation yields a standard error of 1.7% for the difference. The observed

17% 18% 19% 20% 21% 22% 23% 24% 25% 26% 27% 28% 29% 30% 31% 32% 33% 34% 35% 36% 37% 38%

Smallville
Metropolis

Gotham
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difference is 1.2%, resulting in a z-score of 0.72 (the z-score is 1.2%/1.7%).
Such a small z-score is well within a reasonable range, so the difference is not
significant.

Another way of looking at this is using the 95% confidence interval. The
lower bound is at the observed difference minus 1.96*1.7% and the upper
bound is the observed difference plus 1.96*1.7%, which comes to a range from
–2.2% to 4.6%. Because the confidence interval is both positive and negative, it
includes zero. That is, Gotham and Metropolis could actually have the same
stop rate, or Metropolis’s stop rate could even be bigger than Gotham’s (the
opposite of the observed ordering). The observed difference could easily be
due to randomness of the underlying stop process.

This example shows the different ways that the standard error can be used.
When confidence intervals do not overlap, the observed values are statistically
different. It is also possible to measure the confidence of the difference
between two values, using the standard error of the difference of proportions.
This calculation uses similar methods. When the resulting confidence interval
contains zero, the difference is not significant.

The techniques are only measuring a certain type of significance, related to
the randomness of underlying processes. The observed values can still provide
guidance. There is some evidence that Gotham has a higher stop rate than
Metropolis, some evidence but not enough to be confident in the fact. If we
had to choose one market or the other for a retention program to save cus-
tomers, Gotham would be the likely candidate, because its stop rate is larger.
However, the choice of Gotham over Metropolis is based on weak evidence,
because the difference is not statistically significant.

Conservative Lower Bounds
Notice that the confidence intervals for the three markets all have different
standard errors. This is mostly because the size of each market is different (and
to a much lesser extent to the fact that the measured stop rates are different).
To be conservative, it is sometimes useful to use the observed value minus one
standard error, rather than the observed value. This can change the relative
values of different groups, particularly because the standard error on a small
group is larger than the standard error on a larger group. In some cases, using
a conservative estimate changes the ordering of the different groups, although
that is not true in this case.

TI P When comparing ratios on different groups that are different sizes, a
conservative estimate for the comparison is the observed ratio minus one
standard deviation.
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Chi-Square

The chi-square test (pronounced to rhyme with “guy” and starting with a hard
“c” sound) provides another method for addressing the question “how differ-
ent is different?” The chi-square test is appropriate when there are multiple
dimensions being compared to each other. Instead of just looking at the “stop
rate” for customers, for instance, the customers are divided into two distinct
groups, those who stopped and those who are active. These groups can then
be compared across different dimensions, such as channel, market, or the
period when they started.

The chi-square test does not create confidence intervals, because confidence
intervals do not make as much sense across multiple dimensions. Instead, it
calculates the confidence that the observed counts are due to chance, by com-
paring the observed counts to expected counts. Because the chi-square test
does not use confidence intervals, it avoids some of the logical conundrums
that occur at the edges, such as when the confidence interval for a ratio crosses
the 0% or 100% thresholds. Proportions are in the range of 0% to 100%, and so
too should be their confidence intervals. 

Expected Values
Consider customers who started on December 26, 2005. What is the number of
stops expected for each of the three markets? A simple way to calculate these
expected values is to observe that the overall stop rate is 32.5% for starts from
that day. So, given that Gotham had 2,256 starts, there should be about 733.1
stops (32.5% * 2,256). In other words, assuming that all the markets behave the
same way, the stops should be equally distributed.

In actual fact, Gotham has 794 stops, not 733.1. It exceeds the expected num-
ber by 60.9 stops. The difference between the observed value and the expected
value is the deviation; Table 3-9 shows the observed values, expected values,
and deviations for stops in all three markets.

Table 3-9: Observed and Expected Values of Active and Stopped Customers, by Market

OBSERVED EXPECTED DEVIATION
ACTIVE STOP ACTIVE STOP ACTIVE STOP

Gotham 1,462 794 1,522.9 733.1 -60.9 60.9

Metropolis 749 385 765.5 368.5 -16.5 16.5

Smallville 527 139 449.6 216.4 77.4 -77.4
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The expected values have some useful properties. For instance, the sum 
of the expected values is the same as the sum of the observed values. In addi-
tion, the total number of expected stops is the same as the number of observed
stops; and the totals in each market are the same. The expected values have the
same numbers of actives and stops; they are just arranged differently.

The deviations for each row have the same absolute values, but one is posi-
tive and the other negative. For Gotham, the “active customer” deviation is
–60.9 and the “stopped customer” deviation is +60.9, so the row deviations sum
to zero. This property is not a coincidence. The sum of the deviations along each
row and each column always adds up to zero, regardless of the number of rows
and columns.

Calculating the expected values from the raw tabular data is quite simple.
Figure 3-8 shows the Excel formulas. First, the sums of the counts in each row
and each column are calculated, as well as the sum of all cells in the table. The
expected value for each cell is the row sum total times the column sum divided
by the overall sum. With good use of relative and absolute cell range references,
it is easy to write this formula once, and then copy it to the other five cells.

With this background, the chi-square question is: What is the likelihood that the
deviations are due strictly to chance? If this likelihood is very low, then we are con-
fident that there is a difference among the markets. If the likelihood is high (say
over 5%), then there may be a difference among the markets, but the observed
measurements do not provide enough evidence to draw that conclusion.

Chi-Square Calculation
The chi-square measure of a single cell is the deviation squared divided by the
expected value. The chi-square measure for the entire table is the sum of 
the chi-square measures for all the cells in the table.

Table 3-10 extends Table 3-9 with the chi-square values of the cells. The sum
of the chi-square values for all cells is 49.62. Notice that the chi-square values
no longer have the property that the sum of each row is zero and the sum of
each column is zero. This is obvious, because the chi-square value is never neg-
ative. The two divisors are always positive: variance squared is positive, and
the expected value of a count is always positive.

Figure 3-8: Expected values are easy to calculate in Excel.
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The chi-square value is interesting, but it does not tell us if the value is
expected or unexpected. For this, we need to compare the value to a distribu-
tion, to turn the total chi-square of 49.62 into a p-value. Unfortunately, chi-
square values do not follow a normal distribution. They do, however, follow
another well-understood distribution.

Table 3-10: Chi-Square Values by Market

OBSERVED EXPECTED DEVIATION CHI-SQUARE
ACT STOP ACT STOP ACT STOP ACT STOP

Gotham 1,462 794 1,522.9 733.1 -60.9 60.9 2.4 5.1

Metropolis 749 385 765.5 368.5 -16.5 16.5 0.4 0.7

Smallville 527 139 449.6 216.4 77.4 -77.4 13.3 27.7

TOTAL 2,738 1,318 2,738.0 1,318.0 0.0 0.0 16.1 33.5

Chi-Square Distribution
The final step in the calculation is to translate the chi-square value into a 
p-value. Like the standard error, this is best understood by referring to an
underlying distribution. In this case, the distribution is not the normal distrib-
ution. It is the appropriately named chi-square distribution.

Actually, the chi-square distribution is a family of distributions, based on
one parameter, called the degrees of freedom. The calculation of the degrees of
freedom of a table is simple. It is one less than the number of rows in the table
times one less than the number of columns in the table. This example has three
rows (one for each market) and two columns (one for actives and one for
stops), so the degrees of freedom is (3–1)*(2–1) which equals 2. The aside
“Degrees of Freedom for Chi-Square” discusses what the concept means in
more detail.

Figure 3-9 shows the chi-square distributions for various degrees of freedom.
As the degrees of freedom gets larger, the bump in the distribution moves to the
left. In fact, the bump is at the value degrees of freedom minus two. The 95%
confidence level for each of the curves is in parentheses. If the chi-square value
exceeds this confidence level, it is reasonable to say that the distribution of 
values is not due to chance.

The Excel function CHIDIST() calculates the confidence value associated
with a chi-square value for a particular degrees of freedom. CHIDIST(49.62, 2)
returns the miniscule value of 0.0000000017%. This number is exceedingly
small, which means that we have very little confidence that the actives and
stops are randomly distributed by market. In other words, something else
seems to be going on.
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Figure 3-9: The chi-square distribution becomes flatter as the number of degrees of
freedom increases; the 95% confidence bound is in parentheses.

As shown earlier in Figure 3-8, the sequence of calculations from the
expected value to the variance to the chi-square calculation can all be done in
Excel. The formula for the degrees of freedom uses functions in Excel that
return the number of rows and columns in the table, so the degrees of freedom
of a range of cells is (ROWS(<table>)-1)*(COLUMNS(<table>)-1). The
CHIDIST() function with the appropriate arguments then calculates the associ-
ated probability.

DEGREES OF FREEDOM FOR CHI-SQUARE

The degrees of freedom for the chi-square calculation is not a difficult idea,
although understanding it requires some algebra. Historically, the first person
to investigate degrees of freedom was the British statistician Sir Ronald Fisher,
perhaps the greatest statistician of the twentieth century. He was knighted for
his contributions to statistics and science.

The idea behind degrees of freedom addresses the question of how many
independent variables are needed to characterize the observed data, given the
expected values and the constraints on the rows and columns. This may sound
like an arcane question, but it is important for understanding many types of
statistical problems. This section shows how the particular formula in the text
is calculated. 

The first guess is that each observed value is an independent variable. That is,
the number of degrees of freedom is r*c, where r is the number of rows and c
is the number of columns in the data. However, the constraints mean that there
are some relationships among the variables. For instance, the sum of each row
has to be equal to the sum of each corresponding row in the expected values. 
So, the number of variables needed to describe the observed values is reduced
by the number of rows. Taking into account the row constraints reduces the
degrees of freedom to r*c-r. Because similar constraints apply to the columns,
the degrees of freedom becomes r*c – r – c.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Chi-Square Value

DOF 15 (25.00)

DOF 1 (3.84)

DOF 3 (7.81)
DOF 5 (11.07) DOF 10 (18.31)
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DEGREES OF FREEDOM FOR CHI-SQUARE (CONTINUED)

However, the constraints on the rows and columns are themselves
redundant, because the sum of all the rows is the same as the sum of the
columns — in both cases, the sum is equal to total sum of all the cells. One of
the constraints is unnecessary; the preceding formula has overcounted by 1.
The formula for the degrees of freedom is r*c – r – c + 1. This is equivalent to
(r-1) * (c-1), the formula given in the text.

An example should help clarify this. Consider the general 2x2 table, where a,
b, c, and d are the expected values in the cells, and R1, R2, C1, C2, and T are the
constraints. So R1 refers to the fact that the sum of the observed values in the
first row equals the sum of the expected values, a+b.

The degrees of freedom for this example is one. That means that knowing
one of the observed values along with the expected values defines all the other
observed values. Let’s call the observed values A, B, C, and D and assume the
value of A is known. What are the other values?

The following formulas give the answer:

■ B = R1 – A

■ C = C1 – A

■ D = C2 – B = C2 – R1 + A

The degrees of freedom are the number of variables we need to know in order
to derive the original data from the expected values.

For the mathematically inclined, the degrees of freedom is the dimension of
the space of observed values, subject to the row and column constraints. The
precise definition is not needed to understand how to apply the ideas to the
chi-square calculation. But it is interesting that the degrees of freedom
characterizes the problem in a fundamental way.

Chi-Square in SQL
Calculating the chi-square value uses basic arithmetic, so it can be readily cal-
culated in SQL. The challenge is keeping track of the intermediate values, such
as the expected values and the variances.

There are two dimensions in the chi-square table, the rows and the columns.
The calculation in SQL uses four summaries along these dimensions:

■■ An aggregation along both the row and column dimensions. This calcu-
lates the values observed in each cell.

■■ An aggregation along the row dimension. This calculates the sum for
each row and is used for the expected value calculation.

■■ An aggregation along the column dimension. This calculates the sum
for each column and is used for the expected value calculation.

■■ The sum of everything.
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The following SQL shows the calculation, liberally using subqueries for each
of the preceding aggregations:

SELECT market, isstopped, val, exp, SQUARE(val - exp) / exp as chisquare

FROM (SELECT cells.market, cells.isstopped,

1.0*r.cnt * c.cnt /

(SELECT COUNT(*) FROM subs

WHERE start_date in (‘2005-12-26’)) as exp,

cells.cnt as val

FROM (SELECT market,

(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END

) as isstopped, COUNT(*) as cnt

FROM subs

WHERE start_date in (‘2005-12-26’)

GROUP BY market,

(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END)

) cells LEFT OUTER JOIN

(SELECT market, COUNT(*) as cnt

FROM subs

WHERE start_date in (‘2005-12-26’)

GROUP BY market

) r

ON cells.market = r.market LEFT OUTER JOIN

(SELECT (CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END

) as isstopped, COUNT(*) as cnt

FROM subs

WHERE start_date in (‘2005-12-26’)

GROUP BY (CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END)

) c

ON cells.isstopped = c.isstopped) a

ORDER BY 1, 2

This SQL follows the same logic as the Excel method for calculating the chi-
square value. The row totals are in the query whose alias is R. The column
totals are in the table whose alias is C. The expected value is then R.CNT times
C.CNT divided by the sum for the entire table.

What States Have Unusual Affinities for Which Types 
of Products?
The overall chi-square value tells us how unlikely or likely the values in each
cell are. The values for each cell can be used as a measure of likelihood for that
particular combination. The purchases data contains eight product groups and
over fifty states. The question is: Which states (if any) have an unusual affinity
(positive or negative) for product groups? That is, is there a geographical compo-
nent to product preferences at the product group level?
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Imagine the orders data summarized into a table, with product groups
going across and states going down, and each cell containing the number of
customers ordering that product group in that state. This looks like the tables
used for chi-square calculations. Which cells have the largest chi-square values?

Data Investigation

The first step in addressing a question such as this is investigating features of
the data. Chapter 2 shows the distribution of orders by state. Figure 3-10
shows the distribution of orders by product group. A typical query to produce
this distribution is:

SELECT productgroupname, COUNT(*) as numorderlines,

COUNT(DISTINCT o.orderid) as numorders,

COUNT(DISTINCT o.customerid) as numcustomers

FROM orders o LEFT OUTER JOIN

orderline ol

ON o.orderid = ol.orderid LEFT OUTER JOIN

product p

ON ol.productid = p.productid

GROUP BY productgroupname

ORDER BY 1

The results show that books are the most popular product group. Is this true
on a state-by-state basis? It is indeed true that with very few exceptions, the
most popular items in each state are books.

Figure 3-10: Some product groups attract more customers than other groups.

The following SQL answers this question, by calculating the number of cus-
tomers in each state that have ordered books, and then choosing the one that is
largest for each state. Chapter 2 discussed various methods of pulling the largest
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value out from a list. This example converts the frequency to a zero-padded
number, concatenates the product group name to it, and takes the maximum.

SELECT state,

SUBSTRING(MAX(RIGHT(‘0000000’+CAST(numcustomers as VARCHAR), 7)+

productgroupname), 8, 100) as prodgroup,

MAX(numcustomers) as numcustomers

FROM (SELECT o.state, productgroupname,

COUNT(DISTINCT o.customerid) as numcustomers

FROM orders o LEFT OUTER JOIN

orderline ol

ON o.orderid = ol.orderid LEFT OUTER JOIN

product p

ON ol.productid = p.productid

GROUP BY o.state, productgroupname) a

GROUP BY state

ORDER BY 3 DESC

The result confirms the hypothesis that books are, by far, the most popular
product in most states. The first exception is the state “AE,” which has nine
customers buying ARTWORK. By the way, the state “AE” is not a mistake. It
refers to military post offices in Europe.

SQL to Calculate Chi-Square Values

Calculating the chi-square calculations for the state-group combinations requires
a long SQL query. This query follows the same form as the earlier chi-square 
calculation, where there are three subqueries for the three aggregations of inter-
est: by state and product group, by state alone, and by product group alone. The
query itself joins these three tables and then does the appropriate aggregations.

SELECT state, productgroupname, val, exp,

SQUARE(val - exp) / exp as chisquare

FROM (SELECT cells.state, cells.productgroupname,

1.0*r.cnt * c.cnt /

(SELECT COUNT(DISTINCT customerid) FROM orders) as exp,

cells.cnt as val

FROM (SELECT state, productgroupname,

COUNT(DISTINCT o.customerid) as cnt

FROM orders o LEFT OUTER JOIN

orderline ol

ON o.orderid = ol.orderid LEFT OUTER JOIN

product p

ON ol.productid = p.productid

GROUP BY state, productgroupname

) cells LEFT OUTER JOIN

(SELECT state, COUNT(DISTINCT customerid) as cnt

FROM orders o

GROUP BY state

) r
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ON cells.state = r.state LEFT OUTER JOIN

(SELECT productgroupname,

COUNT(DISTINCT customerid) as cnt

FROM orders o LEFT OUTER JOIN

orderline ol

ON o.orderid = ol.orderid LEFT OUTER JOIN

product p

ON ol.productid = p.productid

GROUP BY productgroupname

) c

ON cells.productgroupname = c.productgroupname) a

ORDER BY 5 DESC

The subquery for Cells calculates the observed value in each cell. The sub-
query called R calculates the row summaries, and the one called C calculates
the column summaries. With this information, the chi-square calculation is just
a matter of arithmetic.

Affinity Results

Table 3-11 shows top ten combinations of state and product group that are most
unexpected, based on the chi-square calculation. The first row in the table says
that the most unexpected combination is GAMES in New York. Based on the
information in the database, we would expect to have 3,306.1 customers 
purchasing games in that state. Instead, there are only 2,598, a difference of 708
customers. On the other hand, customers in Massachusetts are more likely to
purchase games than we would expect.

Table 3-11: Unexpected Product-Group/State Combinations

STATE GROUP OBSERVED EXPECTED CHI-SQUARE

NY GAME 2,599 3,306.4 151.4

FL ARTWORK 1,848 2,391.6 123.5

NY FREEBIE 5,289 6,121.4 113.2

NY ARTWORK 13,592 12,535.2 89.1

NJ ARTWORK 5,636 4,992.6 82.9

NY OCCASION 9,710 10,452.0 52.7

NJ GAME 1,074 1,316.9 44.8

AP OTHER 5 0.5 44.2

FL APPAREL 725 571.9 41.0

MA GAME 560 428.9 40.1

NJ CALENDAR 785 983.2 40.0
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This table cannot tell us that the results themselves are significant, simply
that the differences exist. It does suggest asking about the differences between
New York and Massachusetts that would explain why games are more popu-
lar in one state than the other. Or why ARTWORK is less popular is Florida
than in New Jersey. Perhaps by changing marketing practices, there is oppor-
tunity to sell more products in the games category in New York, and more
ARTWORK in Florida.

Lessons Learned

This chapter strives to answer the questions of the genre “how different is dif-
ferent.” Such questions necessarily bring up the subject of statistics, which has
been studying ways to answer such questions for almost two centuries.

The normal distribution, which is defined by its average and standard devi-
ation, is very important in statistics. Measuring how far a value is from the
average, in terms of standard deviations, is the z-score. Large z-scores (regard-
less of sign) have a very low confidence. That is, the value is probably not pro-
duced by a random process, so something is happening.

Counts are very important in customer databases. There are three
approaches to determining whether counts for different groups are the same
or different. The binomial distribution counts every possible combination, so it
is quite precise. The standard error of proportions is useful for getting z-scores.
And, the chi-square test directly compares counts across multiple dimensions.
All of these are useful for analyzing data.

The chi-square value and the z-score can both be informative. Although
they use different methods, they can both find groups in the data where par-
ticular measures are unexpected. This can in turn lead to understanding things
such as where certain products are more or less likely to be selling.

The next chapter moves from statistical measures of difference to geogra-
phy, because geography is one of the most important factors in differentiating
between customer groups.
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From foreign policy to politics to real estate and retailing, many would agree
with Napoleon’s sentiment that “geography is destiny.” Where customers
reside and the attributes of that area are among customers’ most informative
characteristics: East coast, west coast, or in-between? Red state or blue state?
Urban, rural, or suburban? Sun belt or snow belt? Good school district or
retirement community? Geography is important.

Incorporating this rich source of information into data analysis poses
some challenges. One is geocoding, the process of identifying where
addresses are physically located, based on information in databases. Loca-
tion information typically includes latitude and longitude, as well as the
identification of multiple geographic areas, such as zip code, county, and
state. This information makes it possible to determine who are neighbors
and who are not.

Another challenge is incorporating the wealth of information about geo-
graphic areas. In the United States, the Census Bureau provides demographic
and economic information about various levels of geography. The Bureau
divides the country into very specific geographic pieces, such as census tracts
and block groups and zip code tabulation areas (ZCTAs, which are like zip
codes). The Bureau then summarizes information for these areas, information
such as the number of households, the median household income, and the per-
cent of housing units that use solar heat. The best thing about census data is
that it is free and readily accessible on the web.

Where Is It All Happening?
Location, Location, Location

C H A P T E R

4
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The Zipcode table contains just a small fraction of the available census
variables. These are interesting by themselves. More importantly, such
demographic data complements customer data. Combining the two pro-
vides new insight into customers.

This chapter introduces the information provided by geocoding and how to
use this information in databases. The chapter continues by adding customer
data into the mix. The examples in the chapter use the purchase dataset,
because it has zip codes. Matching zip codes to census zip codes (actually zip
code tabulation areas) serves as a rudimentary form of geocoding.

No discussion of geography would be complete without including maps,
which are a very powerful way of communicating information. Once upon a
time (prior to Excel 2002), Excel had built-in mapping capabilities; unfortu-
nately, such capabilities now require purchasing additional products. Never-
theless, there are some clever things to do in Excel to visualize data, and it is
even possible to connect Excel to maps on the web. This chapter starts with a
discussion of geographic data and ends with an overview of the role that map-
ping can play in data analysis.

Latitude and Longitude

Each point on the earth’s surface is described by a latitude and a longitude.
Because the earth is basically a sphere and not a flat plane, latitudes and 
longitudes behave a bit differently from high school geometry. This section
uses the Zipcode table to investigate latitudes and longitudes.

Definition of Latitude and Longitude
The “lines” of latitude and longitude are actually circles on the earth’s globe.
All “lines” of longitude go through the north and south poles. All “lines” of
latitude are circles parallel to the equator. The actual measurements are angles,
measured from the center of the earth to the Greenwich meridian (for longi-
tude) or to the equator (for latitude). Figure 4-1 shows examples of latitudes
and longitudes.

Although the two seem quite similar, there are some important and interest-
ing differences between them. One difference is historical. Longitude (how far
east and west) is difficult to measure without accurate time-keeping devices,
which are a relatively modern invention.

Latitude (how far north or south) has been understood for thousands of
years and can be measured by the angle of stars in the sky or the position of the
sun when it is directly overhead. By observing the position of the sun at noon
on the summer solstice several thousand years ago, the ancient Greek
astronomer Eratosthenes estimated the circumference of the earth. He noted
three facts. At noon on the summer solstice, the sun was directly overhead in
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the town of Syene. At the same time, the sun was at an angle of 7.2 degrees
from the vertical in his town of Alexandria. And, Syene was located a certain
distance south of Alexandria. According to modern measurements, his 
estimate of the circumference was accurate within two percent — pretty
remarkable accuracy for work done twenty-five centuries ago.

Figure 4-1: Lines of latitude and longitude make it possible to locate any point on the
earth’s surface.

Unlike lines of longitude, lines of latitude do not intersect. The distance
between two lines of latitude separated by one degree is always about 68.7
miles (the earth’s circumference divided by 360 degrees). The distance
between two lines of longitude separated by one degree varies by latitude,
being about 68.7 miles at the equator and diminishing to zero at the poles.

Recall from high school geometry that one definition of a line is the shortest
distance between two points. On a sphere, lines of longitude have this prop-
erty. So for two locations, one directly north or south of the other, following the
line of longitude is the shortest path between the two points.

Lines of latitude do not have this property (so they are not strictly lines in
the sense of spherical geometry). For two locations at the same latitude, such
as Chicago, IL and Providence, RI or Miami, FL and Brownsville, TX, the lati-
tude line connecting them is not the shortest distance. This is one reason why
airplanes flying between the East Coast and West Coast often go into Canadian
airspace, and why flights from the United States to Asia and Europe often go
far north near the North Pole. The airplanes are following a shorter path by
going farther north.

Lines of longitude pass through
the north and south poles.

Lines of latitude are parallel 
to the equator.
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Degrees, Minutes, Seconds, and All That
Latitude and longitude are measured in degrees, usually ranging from minus
180 degrees to positive 180 degrees. For latitude, the extremes are the South
and North Poles, respectively. Negative degrees are traditionally south of the
equator, and positive degrees are north of the equator, probably due to the fact
that people living in the northern hemisphere invented the whole system in
the first place.

Longitudes also range from minus 180 degrees to positive 180 degrees. Tradi-
tionally, locations west of Greenwich, England have negative longitudes and
those east of Greenwich have positive longitudes, so all of North and South
America, with the exception of very small parts of far western Alaska, have neg-
ative longitudes. People in Europe — which mostly has positive longitudes —
invented the numbering scheme rather than people in the Americas.

Angles are traditionally measured in degrees, minutes, and seconds. One
degree consists of sixty minutes. One minute consists of sixty seconds, regard-
less of whether the minute is a fraction of a degree or a fraction of an hour. This
is not a coincidence. Thousands of years ago, the ancient Babylonians based
their number system on multiples of sixty (which they in turn may have bor-
rowed from the more ancient Sumerians), rather than the multiples of ten that
we are familiar with. They divided time and angles into sixty equal parts,
which is why there are sixty minutes in both one hour and one degree. Such a
system is called a sexagesimal number system, a piece of trivia otherwise irrel-
evant to data analysis.

When working with degrees, both databases and Excel prefer to work with
decimal degrees. How can we convert degrees/minutes/seconds to decimal degrees
and vice versa? The first part of this question is easy to answer. The author was
born at approximately at 25° 43’ 32” degrees north and 80° 16’ 22” degrees
west. To convert this to decimal degrees, simply divide the minutes by 60 and
the seconds by 3600 to arrive at 25.726° N and 80.273° W. This is easily done in
either Excel or SQL.

Although decimal degrees are quite sufficient for our purposes, it is worth
considering the reverse computation. The following expressions calculate the
degrees, minutes, and seconds from a decimal degree using Excel functions
(assuming the decimal degrees are in cell A1):

<degrees> = TRUNC(A1)

<minutes> = MOD(TRUNC(ABS(A1)*60), 60)

<seconds> = MOD(TRUNC(ABS(A1)*3600), 60)

The MOD() function returns the remainder when the second argument is
divided by the first. For instance, when the second argument is two, MOD()
returns zero for even numbers and one for odd numbers. The TRUNC() function
removes the fractional part of a number for both positive and negative values. 
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Unfortunately, Excel does not have a number format that supports degrees,
minutes, and seconds. However, the following expression takes degrees, min-
utes, and seconds and creates an appropriate string:

<degrees>&CHAR(176)&“ “&<minutes>&“‘ “&<seconds>&“”“”

The function CHAR(176) returns the degree symbol. The symbol for minutes is
a single quote. The symbol for seconds is a double quote. Putting a double
quotation mark in a string requires using four double quotes in a row.

TI P Any character can be included in an Excel text value. One way to add a
character is with the CHAR() function. Another way is to use the Insert ➪ Symbol
menu option.

Distance between Two Locations
Longitudes and latitudes make it possible to calculate the distance between two
locations. This section introduces two methods for calculating the distance, a
less accurate but easier way, and a more accurate method. The distances are
then used to answer some questions about zip codes, because the latitude and
longitude of the center of each zip code is available in the Zipcensus table.

This section uses trigonometric functions, which expect their arguments 
to be in units called radians rather than the more familiar degrees. There is a
simple conversion from degrees to radians and back again:

<radians> = <degrees>*PI()/180

<degrees> = <radians>*180/PI()

The conversion is simple because pi radians equal exactly 180 degrees. Both
SQL and Excel support the function PI(), which is used for the conversion.
Excel also has the function RADIANS() that also does the conversion.

WARN I NG When working with angles, be careful whether the measurements
should be in degrees or radians. Usually, functions that operate on angles expect
the angles in radians.

Euclidian Method

The Pythagorean formula calculates the length of the long side of a right triangle
as the square root of the sum of the squares of the lengths of the two shorter sides.
An equivalent formulation is that the distance between two points is the square
root of the sum of the squares of the X-coordinate difference and the Y-coordinate
difference. These are handy formulas when two points lie on a flat plane.
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The same formula could be applied directly to latitudes and longitudes, but
the result does not make sense — latitudes and longitudes are measured in
degrees, and distance in degrees does not make sense. The distance should be
measured in miles or kilometers.

The degrees need to be converted to miles before applying the formula. The
north-south distance between two lines of latitude is simply the difference in
degrees times 68.7 miles, regardless of the longitude. The east-west distance
between two lines of longitude depends on the latitude; the distance is the dif-
ference in degrees of longitude times 68.7 times the cosine of the bigger latitude.

For two points on the surface of the earth, the north-south distance and east-
west distance are the sides of a right triangle, as shown in Figure 4-2. Note that a
right triangle on the earth’s surface does not necessarily look like one in a picture.

Figure 4-2: The distance between two points on the earth’s surface can be
approximated by converting the latitude and longitudes to miles and then using 
the Pythagorean Theorem.

The geographic center of the continental United States is in the middle of
Kansas and has a longitude of –98.6° and a latitude of 39.8°. By converting the
differences in coordinates to miles, the following query finds the ten closest zip
codes to the geographic center:

SELECT TOP 10 zipcode, state, population, latitude, longitude, disteuc

FROM (SELECT zc.*,

(CASE WHEN latitude > 39.8

THEN SQRT(SQUARE(difflat*68.9) + 
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SQUARE(difflong*SIN(latrad)*68.9))

ELSE SQRT(SQUARE(difflat*68.9) +

SQUARE(difflong*SIN(centerlatrad)*68.9))

END) as disteuc

FROM (SELECT zc.*, latitude - 39.8 as difflat,

longitude - (-98.6) as difflong,

latitude*PI()/180 as latrad,

39.8*PI()/180 as centerlatrad

FROM zipcensus zc) zc) zc

ORDER BY disteuc

The innermost subquery defines useful variables, such as the latitude and lon-
gitude in radians (perhaps the trickiest part of the calculation). The next sub-
query calculates the distance. The CASE statement chooses the larger latitude to
get the smaller distance. The ten zip codes closest to the geographic center of
the continental United States are in Table 4-1.

Table 4-1: The Closest Zip Codes by Euclidean Distance to the Geometric Center of the
United States

EUCLIDIAN CIRCULAR
ZIP CODE STATE LONGITUDE LATITUDE DISTANCE DISTANCE

66952 KS -98.59 39.84 2.5 2.5

66941 KS -98.44 39.83 7.2 8.5

66967 KS -98.80 39.79 8.6 10.4

66932 KS -98.92 39.76 14.5 17.3

67638 KS -98.85 39.64 15.4 17.0

66936 KS -98.29 39.91 15.4 17.8

67474 KS -98.70 39.58 15.8 16.1

66956 KS -98.21 39.79 17.3 20.8

67628 KS -98.97 39.65 19.4 22.2

66951 KS -99.04 39.79 19.4 23.2

Accurate Method

This formula for distance between two locations is not accurate because the
calculation uses formulas from flat geometry. The distance does not take the
curvature of the earth into account.
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There is a formula for the distance between two points on a sphere, based on
a simple idea. Connect the two points to the center of the earth. This forms an
angle. The distance is the angle measured in radians times the radius of the
earth. A simple idea, but it leads to a messy formula. The following SQL query
uses this formula to find the ten zip codes closest to the center of the continen-
tal United States using the more accurate method:

SELECT TOP 10 zipcode, state, population, latitude, longitude, disteuc,

distcirc

FROM (SELECT zc.*,

ACOS(COS(centerlatrad)*COS(latrad)*

COS(centerlongrad - longrad) +

SIN(centerlatrad)*SIN(latrad))*radius as distcirc,

(CASE WHEN latitude > 39.8

THEN SQRT(SQUARE(difflat*68.9) +

SQUARE(difflong*SIN(latrad)*68.9))

ELSE SQRT(SQUARE(difflat*68.9) +

SQUARE(difflong*SIN(centerlatrad)*68.9))

END) as disteuc

FROM (SELECT zc.*, latitude - 39.8 as difflat,

longitude - (-98.6) as difflong,

latitude*PI()/180 as latrad,

39.8*PI()/180 as centerlatrad,

longitude*PI()/180 as longrad,

(-98.6)*PI()/180 as centerlongrad,

3949.9 as radius

FROM zipcensus zc) zc) zc

ORDER BY disteuc

This formula uses several trigonometric functions, so the innermost query
converts all the latitudes and longitudes to radians. In addition, this method
uses the radius of the earth, which is taken to be 3,949.9 miles.

Table 4-1 shows the circular distance as well as the Euclidean distance.
Although the results are similar, there are some discrepancies. For points due
north or south of the center, such as zip codes 68970 and 67437, the two methods
produce similar distances, down to a fraction of a mile. Both are measuring the
distance along the shortest path between the two points.

However, for points that lie due east or west of the center point, the two meth-
ods produce different results. For zip code 66956 the Euclidean method pro-
duces a distance of 17.3 miles and the circular produces a distance of 20.8 miles.
Overall, the two methods are usually within about 10%–20% of each other.

The spherical method is not perfect, because the earth is not a perfect
sphere. A better approximation could take into account the bulges around the
equator. Improvements might take into account altitude, because not all loca-
tions are at sea level. And finally, the travel distance along roads rather than
the theoretical distance between two locations may be the right distance. Such
a calculation requires special-purpose tools and databases of roads and is not
feasible in Excel and SQL.
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Finding All Zip Codes within a Given Distance

Being able to find the distance between two locations can be useful. It makes it
possible to find the nearest Wal-Mart to where a customer lives or the closest
repair center to where a car broke down or the distance from home to where a
customer paid for a restaurant dinner. Each of these applications assumes that
the locations (customers’ and otherwise) are available as latitudes and longi-
tudes, typically through the process of geocoding or through the use of global
positioning systems (GPS).

Finding the zip codes within a certain distance of a location is another appli-
cation. Once upon a time, a newspaper was interested in areas where it could
provide home delivery copies. One part of the newspaper delivered copies to
university campuses. Another part arranged for home delivery. Some univer-
sities received newspapers, even though the surrounding areas were not
routable for home delivery. Why not also offer home delivery in the surround-
ing area? A brilliant idea that led to the question: Which zip codes are within eight
miles of a specific set of university zip codes?

One way to answer the question is with a big map, or with a mapping web
site (such as Google Maps, MapQuest, Yahoo! Maps, or Microsoft Live). This
would be a manual process of looking up each zip code to find the neighbor-
ing ones. Manual solutions are prone to error. Because the Census Bureau pro-
vides the latitude and longitude of the center of each zip code, why not use this
information instead?

The actual solution was an Excel worksheet that used the census informa-
tion to find the distance from each zip code to the chosen zip code. The spread-
sheet then created a table with the zip codes within eight miles.

Such a spreadsheet is useful for manual processing, but the processing can
also be done in SQL. The following query calculates all zip codes within eight
miles of Dartmouth University in Hanover, NH:

SELECT z.zipcode, z.state, zco.poname, distcirc, population, hh,

hhmedincome

FROM (SELECT zips.*,

ACOS(COS(comp.latrad)*COS(zips.latrad)*

COS(comp.longrad - zips.longrad) +

SIN(comp.latrad)*SIN(zips.latrad))*radius as distcirc

FROM (SELECT zc.*, latitude*PI()/180 as latrad,

longitude*PI()/180 as longrad, 3949.9 as radius

FROM zipcensus zc) zips CROSS JOIN

(SELECT zc.*, latitude*PI()/180 as latrad,

longitude*PI()/180 as longrad

FROM zipcensus zc

WHERE zipcode IN (‘03755’)) comp) z LEFT OUTER JOIN

zipcounty zco

ON z.zipcode = zco.zipcode

WHERE distcirc < 8

ORDER BY distcirc
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The two innermost subquerys, Zips and Comp, convert latitudes and longi-
tudes to radians. These two subqueries are joined using CROSS JOIN because
Comp has only one row, the zip code for Dartmouth (03755). This join provides
the data for calculating the distance, and then the Zipcounty table is joined in
for the post office name. More zip codes can be included by expanding the list
in the Comp subquery. 

The closest zip codes are shown in Table 4-2. Some are in New Hampshire and
some are in Vermont, because Hanover is near the border between these states.

Table 4-2: Zip Codes within Eight Miles of Hanover, NH

HOUSEHOLDS
ZIP PO NAME MEDIAN

CODE AND STATE DISTANCE POPULATION # INCOME

03755 Hanover, NH 0.0 9,877 2,504 $69,430

05055 Norwich, VT 2.3 3,500 1,348 $66,214

03750 Etna, NH 2.8 962 319 $86,421

05088 Wilder, VT 4.1 777 316 $34,444

03766 Lebanon, NH 5.3 8,628 3,759 $42,693

03784 West Lebanon, NH 5.6 3,701 1,594 $42,397

05043 East Thetford, VT 5.6 596 247 $49,750

05074 Thetford, VT 6.8 166 49 $68,250

05001 White River Junction, VT 7.0 9,172 3,939 $43,125

05075 Thetford Center, VT 7.8 1,487 597 $47,321

It is tempting to extend the find-the-nearest-zip-code query to find the near-
est zip code to every zip code in the table. As a query, this is a slight modifica-
tion of the Dartmouth query (Comp would choose all zip codes). However,
such a query is going to take a long time to complete. The problem is that the
distance between every possible pair of all 32,038 zip codes needs to be calcu-
lated — over one billion distance calculations. The distances between zip
codes in Florida and zip codes in Washington (state) have to be calculated,
even though no zip code in Washington is close to any zip code in Florida. 

Unfortunately, SQL does not, in general, have the ability to make these
queries run faster. Using indexes does not help, because the distance calcula-
tion requires two columns, both latitude and longitude. Indexes speed up
access to one column at a time, not both at once. There are special-purpose
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databases that use special-purpose data structures to store geographic infor-
mation and make such queries much more feasible; however, these are not
part of standard SQL.

Finding Nearest Zip Code in Excel

This section does a very similar calculation in Excel, finding the nearest zip
code to a given zip code. The Excel spreadsheet consists of the following areas:

■■ The input area is for typing in a zip code.

■■ The output area for the nearest zip code and distance.

■■ The table contains all the zip codes, each with its latitude and longitude.

The user types a zip code in the spreadsheet in the input area. The spreadsheet
looks up the latitude and longitude using the VLOOKUP() function. The dis-
tance from every zip code to the chosen zip code is then calculated as an addi-
tional column.

Figure 4-3 shows the functions in the worksheet. The nearest zip code is cho-
sen using the MIN() function, with a small caveat. The minimum distance is
clearly going to be zero, which is the distance from any given zip code to itself.
The minimum uses a nested IF() to exclude the input zip code. This is an
example of an array function, discussed in the aside “Array Functions in
Excel.” With the minimum distance, the actual zip code is found using a com-
bination of MATCH() to find the row with the zip code and then OFFSET() to
return the value in the correct column.

Figure 4-3: This Excel spreadsheet calculates the closest zip code to any other zip 
code. The curly braces in the formula line indicate that this particular formula is an 
array function.
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ARRAY FUNCTIONS IN EXCEL

Many functions in Excel, such as SUM() and COUNT(), accept ranges of cells.
This is quite useful for choosing the rows for a calculation according to some
condition. Excel offers two functions that do this, SUMIF() and COUNTIF().
However, this functionality may not be enough. The conditions are limited to
simple comparisons, and the functions are limited to summation and counting.

To extend this functionality, Excel has the concept of array functions. These
are functions that operate on arrays of spreadsheet values, typically columns.
Array functions can be nested, so they have the full power of Excel functions.
Some of them can even return values in multiple cells, although these are not
discussed until Chapter 11.

An example perhaps explains this best. The following are two ways of taking
the sum of the product of the values in two columns of cells:

=SUMPRODUCT($A$2$A$10, $B$2$B$10)

{=SUM($A$2$A$10 * $B$2$B$10)}

These two methods are equivalent. The first uses the built-in function
SUMPRODUCT() that does exactly what we want. The second combines the SUM()
function and the multiplication operator as an array function. It says to multiply
the values in the two columns row-by-row and then to take the sum. Think of the
expression as reading each row, multiplying together the corresponding values in
columns A and B and saving all these products somewhere. This somewhere is
then an array of values passed to SUM().

Entering an array function takes a sleight of hand. The expression is typed 
in just like any other expression. Instead of hitting the <return> key after
entering the formula, hit <control><shift><return> at the same time. Excel
encloses the formula in curly braces on the formula bar to indicate that it is an
array function. The curly braces are not entered as part of the function, though.

One particularly useful application of array functions is combining them with
IF(). In the text, the problem is to find the minimum distance, where the zip
code is not the given zip code. The formula for this is:

{=MIN(IF($A$7:$A$32044<>B2, $E$7:$E$32044))}

This says to take the minimum of the values in column E, but only where the
corresponding value in column A is not equal to the value in cell B2.

Array functions can be as complicated as other Excel functions. Although
they are easy to express, a column filled with thousands of array functions can
take a while to calculate.

And they come with one small warning. The functions AND() and OR()
do not always work as expected. Instead, just use nested IF() statements to
achieve the same logic.
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Pictures with Zip Codes
Latitudes and longitudes are coordinates, and these can be plotted using scatter
plots. Such plots are a poor-man’s geographic information system (GIS). This
section introduces the idea, along with some caveats about the process.

The Scatter Plot Map

There are enough zip codes in the United States that just the center points
form a recognizable outline of the country. Figure 4-4 shows a zip code map
of the continental United States, where each zip code is represented as a small
hollow circle. The reason for using a hollow circle is to see where zip codes
overlap each other.

Figure 4-4: The center of zip codes form a recognizable map of the United States.

This map is based on the same latitude and longitude data used for the dis-
tance calculations. The latitude is assigned as the Y-axis in a scatter plot and
the longitude is assigned as the X-axis. To focus on the continental United
States, the horizontal scale goes from –65 to –125 and the vertical scale from 20
to 50. Lines are drawn every five degrees on both scales. Although far from
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perfect, the zip code centers do form a blob that is recognizable as the conti-
nental United States.

Cartographers — the people who study maps and how to convey informa-
tion on them — have many standards for what makes a good map. This simple
zip code scatter plot fails almost all of them. It distorts distances and areas. For
instance, small land areas in the north appear bigger, and larger land areas near
the equator appear smaller. It does not have boundaries or features, such as
mountains, cities, and roads. And, if the dimensions of the chart are not right,
the map is stretched in unusual ways.

Nonetheless, the result is recognizable and actually useful for conveying
information. It is also easy to create. Even the simple zip code map shows area
where there are many zip codes (along the coasts) and where there are few (in
the mountainous states of the west, in the Everglades in South Florida).

Who Uses Solar Power for Heating?

The census provides many attributes about people, households, families, and
housing units. One of them, for instance, happens to be the source of heat. The
column HHUFUELSOLAR contains the proportion of housing units using solar
power in a zip code. To convert this to a count, multiply by HHUOCCUPIED,
the number of occupied housing units.

In 2000, solar power was not particularly widespread, but a simple zip code
map can show where it existed. Which zip codes have any household with solar
power? Figure 4-5 shows a map with this information. The faint grey areas are
zip codes that do not have solar power; the larger darker triangles show zip
codes that do.

Arranging the data in the spreadsheet can make it easier to create the map.
The first column is the X-value for the chart and the second two columns are
the Y-values for two series in the chart. The data should be laid out as:

■■ Longitude, which is along the X-axis;

■■ Latitude for non-solar zip codes; and,

■■ Latitude for solar zip codes.

Each row has exactly one value for latitude, in one of the two columns, with
the latitude only in the appropriate column. The following query returns the
data in this format: 

SELECT zipcode, longitude,

(CASE WHEN hhuofuelsolar = 0 THEN latitude END) as nosolarlat,

(CASE WHEN hhuofuelsolar > 0 THEN latitude END) as solarlat

FROM zipcensus

WHERE latitude BETWEEN 20 and 50 AND

longitude BETWEEN -135 AND -65
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Figure 4-5: This map shows the zip codes that have housing units with solar power,
based on the 2000 Census.

An alternative approach would be to have the query provide a “solar” indi-
cator along with the longitude and latitude. The data would be put into the
right format using the IF() function in Excel. Both methods work, but there is
no reason to do the extra work in Excel when it can be done in SQL. 

TI P Pulling the data in the right format using SQL can often save time and
effort in Excel.

The little triangles in the chart are the zip codes that have solar power. Not
surprisingly, Florida and California have a high concentration of these, because
these are two states that are both sunny and highly populated. The cloudy
northeast has many solar zip codes, but this is probably because there are so
many zip codes in such a densely populated area. Some states in the west, such
as New Mexico, Arizona, and Colorado have a relatively high number of solar
zip codes, but because these states are less dense, there are not as many triangles.

A map is useful for seeing what is happening. The data itself can be verified
by asking: What proportion of zip codes in each state have at least one solar powered
residence? The following query answers this question, using the Census Bureau
definition of a state:

SELECT TOP 10 state,

SUM(CASE WHEN hhuofuelsolar > 0 THEN 1.0 END)/COUNT(*) as propzips,

SUM(hhuofuelsolar*hhuoccupied)/SUM(hhuoccupied) as prophhu
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FROM zipcensus zc

GROUP BY state

ORDER BY 3 DESC

This query actually calculates two numbers: the proportion of zip codes
with solar power and the proportion of households. For most states, there is a
strong correlation between these as shown in Table 4-3. However, for some
states such as Wyoming, solar power is concentrated in a few zip codes (fewer
than 14%), but a relatively high proportion of housing units have it (0.10%).

Table 4-3: The Top Ten States by Penetration of Solar Power in Housing Units

PROPORTION PROPORTION HOUSING
STATE ZIPS SOLAR UNITS SOLAR

HI 87.64% 1.51%

PR 97.60% 1.31%

NM 30.35% 0.37%

CO 35.48% 0.14%

CA 37.09% 0.12%

WY 13.61% 0.10%

AZ 33.70% 0.06%

NV 17.69% 0.05%

MT 10.60% 0.05%

NC 16.60% 0.04%

Where Are the Customers?

Questions about zip codes are not limited to the census information. The Orders
table contains information about where customers place orders. The following
query summarizes the number of orders in each zip code and then joins this
information to the latitude and longitude in the Zipcensus table:

SELECT zc.zipcode, longitude, latitude, numords,

(CASE WHEN hh = 0 THEN 0.0 ELSE numords*1.0/hh END) as penetration 

FROM zipcensus zc JOIN

(SELECT zipcode, COUNT(*) as numords

FROM orders

GROUP BY zipcode) o

ON zc.zipcode = o.zipcode

WHERE latitude BETWEEN 20 and 50 AND

longitude BETWEEN -135 AND -65
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The results are shown in Figure 4-6 as a bubble chart. The size of the bubbles
is the number of orders placed in the zip code; the X-axis is the longitude, and
the Y-axis is the latitude. Like the scatter plot, this bubble chart is a rudimen-
tary map; however, bubble charts have fewer formatting options available
than scatter plots (for instance, the shape of the bubbles cannot be changed).
The bubbles in this chart are disks, colored on the outside and transparent
inside. This is important because bubbles may overlap each other.

Figure 4-6: This bubble chart shows the order penetration in each zip code.

This map has fewer zip codes than the previous ones, because only about
11,000 zip codes have orders. Many of these zip codes are in the northeast, so
that region of the country is overrepresented.

Such a map conveys interesting information about customers. By using
multiple series, for instance, orders could be classified by the products they
contain, or customers by the number of purchases they make.

Census Demographics

Solar power is interesting, but not as useful as economic information for
understanding customers. This section looks at some other types of informa-
tion available, and at ways of combining this information with the purchase
data. Of course, the Zipcensus table contains only a subset of all the possible
information available (for free) from the census web site.
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The Extremes: Richest and Poorest
There are several columns in the data related to wealth, which is very valuable
information for understanding customers. You may not know how wealthy
your customers are, but you can know how wealthy their neighbors are.

Median Income

The median household income in a zip code is the income in the middle,
where half the households earn more than the median and half earn less. The
median income is a very useful measure for understanding whether a given
area is relatively wealthy or relatively poor. Households are a reasonable unit
because they tend to correspond to an economic marketing unit — groups in
the population bound together economically.

However, median household income is not the only measure available. The
Census Bureau also provides the average household income, as well as dividing
income into ranges (how many households earned $45,000 to $50,000 dollars, for
instance). This information is provided at the household level, at the family
level, and for individuals. There is even information about sources of income,
separating out earned income, social security income, and government benefits.
There is a wealth of variables just describing wealth, but we’ll generally stick
with median household income.

One query for finding the zip code with the highest median household
income is:

SELECT TOP 1 zipcode, hhmedincome

FROM zipcensus

ORDER BY hhmedincome DESC

To find the poorest, the sort order is changed to ASC rather than DESC.
This query is simple, but it has a flaw: more than one zip code could be

tied for the richest or the poorest. A better approach finds all zip codes that
match the extreme values. The following query counts the number of match-
ing zip codes:

SELECT hhmedincome, COUNT(*) as numzips,

SUM(CASE WHEN population = 0 THEN 1 ELSE 0 END) as pop0,

SUM(CASE WHEN hh = 0 THEN 1 ELSE 0 END) as hh0,

AVG(population*1.0) as avgpop, AVG(hh*1.0) as avghh

FROM zipcensus zc JOIN

(SELECT MAX(hhmedincome) as hhmax, MIN(hhmedincome) as hhmin

FROM zipcensus) minmax

ON zc.hhmedincome IN (minmax.hhmax, minmax.hhmin)

GROUP BY hhmedincome
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This query returns some additional information, such as the number of zip
codes where the population is zero, where the number of households is zero,
and the average population of the zip code.

Table 4-4 shows that 149 zip codes have zero median income. Although
some people live in these zip codes, there are no households. These zip codes
probably contain institutions of some sort, where everyone is in group hous-
ing, rather than private residences (for example, prisons and college dorms).
Because there are no households, the household income is zero, which appears
to be a placeholder for NULL.

Table 4-4: Information About the Wealthiest and Poorest Zip Codes

HOUSE-
HOLD AVERAGE AVERAGE

MEDIAN NUMBER NO POPU- NO HOUSE- POPU- HOUSE-
INCOME OF ZIPS LATION HOLDS LATION HOLDS

$0 149 55 149 710.4 0.0

$200,001 10 0 0 1,057.9 339.3

The ten zip codes with the maximum median income are shown in Table
4-5. These are almost all small, except for one in Illinois and one in California.

Table 4-5: The Wealthiest Zip Codes by Household Income in the 2000 Census

MEDIAN INCOME
ZIP PO NAME POPU- HOUSE- FAMI- HOUSE-

CODE AND STATE LATION HOLDS LIES HOLDS FAMILY 

12429 Esopus, NY 15 7 7 $200,001 $200,001

38157 Memphis, TN 95 5 5 $200,001 $200,001

33109 Miami Beach, FL 339 204 118 $200,001 $200,001

60043 Kenilworth, IL 2,550 820 732 $200,001 $200,001

19736 Yorklyn, DE 66 22 22 $200,001 $200,001

32447 Marianna, FL 236 19 7 $200,001 $28,750

19710 Montchanin, DE 26 16 8 $200,001 $200,001

94027 Atherton, CA 6,872 2,258 1,859 $200,001 $200,001

19732 Rockland, DE 46 26 19 $200,001 $200,001

28378 Rex, NC 33 16 16 $200,001 $200,001
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Proportion of Wealthy and Poor

Median household income is interesting, but, like all medians, it provides
information about only one household, the one whose income is in the middle.
An alternative approach is to consider the distribution of incomes, by looking
at the proportion of the very rich or very poor in the zip codes. The column
FAMINC000_010 identifies for the poorest group, those whose family income
is less than ten thousand dollars per year. At the other extreme are the wealth-
iest whose income exceeds two hundred thousand dollars per year, counted
by FAMINC200. The resulting query looks like:

SELECT zipcode, state, hhmedincome, fammedincome, pop, hh

FROM zipcensus zc CROSS JOIN

(SELECT MAX(faminc200) as richest, MAX(faminc000_010) as poorest

FROM zipcensus

WHERE hh >= 1000 AND state <> ‘PR’) minmax

WHERE (zc.faminc200 = richest OR zc.faminc000_010 = poorest) AND

zc.hh >= 1000

One thing notable about this query are the parentheses in the outer WHERE
clause. Without the parentheses, the clause would be evaluated as:

WHERE (zc.faminc200 = richest) OR (zc.faminc000_010 = poorest AND

zc.hh >= 1000)

That is, the condition on the number of households would apply only to the poor-
est condition and not the richest, which is not the intended behavior. Misplaced
or missing parentheses can alter the meaning and performance of a query.

TI P In WHERE clauses that mix ANDs and ORs, be sure to use parentheses to
ensure that the clauses are interpreted correctly.

The results are similar to the previous results. The poorest zip code has now
switched to an inner city neighborhood of another city. At the time of the 2000
Census, 70112 was a poor district in New Orleans, but this data predates Hur-
ricane Katrina, so this zip code is probably very sparsely populated now.

Income Similarity and Dissimilarity Using Chi-Square

The distribution of income is another level of information that goes beyond
median or average income. The Census Bureau breaks income into sixteen
buckets, the poorest being family income less than $10,000 and the wealthiest
being family income in excess of $200,000. The proportion of families in each
of these sixteen buckets is available at the zip code level, and this is a good
description of the income distribution.
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In which zip codes does the income distribution match the country as a
whole? These zip codes are all over the entire United States. Such representa-
tive areas can be useful. What works well in these areas may work well across
the whole country. At the other extreme are zip codes that differ from the
national distribution, the most unrepresentative areas.

The chi-square calculation is one way to measure both these extremes. To
use the chi-square, an expected value is needed, and this is the income distrib-
ution at the national level. The key to calculating the national numbers is to
multiply the proportions in each of the buckets by the total number of families
to obtain counts of families. This total number can be aggregated across all zip
codes, and then divided by the number of families to get the distribution at the
national level. The following query provides an example of this calculation for
zip codes having a population of more than one thousand:

SELECT SUM(faminc000_010*fam)/SUM(fam) as faminc000_010,

. . .

SUM(faminc150_200*fam)/SUM(fam) as faminc150_175,

SUM(faminc200*fam)/SUM(fam) as faminc200

FROM zipcensus

WHERE pop >= 1000

Which zip codes are most similar (or most dissimilar) can be expressed as a
question: What is the likelihood that the income distribution seen in a given zip code
is due to chance, relative to the national average? Or, to slightly simplify the calcu-
lation: What is the chi-square value of the income distribution of the zip code com-
pared to the national income distribution? The closer the chi-square value is to
zero, the more representative the zip code. Higher chi-square values suggest
that the observed distribution is not due to chance.

The calculation requires a lot of arithmetic. The chi-square value for a given
income column, such as FAMINC000_010, is the square of the difference
between the variable and the expected value divided by the expected value.
For each of the sixteen buckets, the following expression calculates its contri-
bution to the total chi-square value:

POWER(zc.FAMINC000_010 – usa.FAMINC000_010, 2)/usa.FAMINC000_010

The total chi-square is the sum of the chi-square values for all the bins.
As an example, the following query finds the top ten zip codes most similar to

the national distribution of incomes and having a population greater than 1000:

SELECT TOP 10 zipcode, state,

(SQUARE(zc.faminc000_010 - usa.faminc000_010)/usa.faminc000_010 +

. . .

SQUARE(zc.faminc150_200 - usa.faminc150_175)/usa.faminc150_175 +

SQUARE(zc.faminc200 - usa.faminc200)/usa.faminc200

) as chisquare,

(continued)
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pop, fammedincome

FROM zipcensus zc CROSS JOIN

(SELECT SUM(faminc000_010*fam)/SUM(fam) as faminc000_010,

. . .

SUM(faminc150_200*fam)/SUM(fam) as faminc150_175,

SUM(faminc200*fam)/SUM(fam) as faminc200

FROM zipcensus

WHERE pop > 1000) usa

WHERE pop >= 1000

ORDER BY 3 DESC

This uses a subquery to calculate the distribution at the national level, which is
joined in using the CROSS JOIN. The actual chi-square value is calculated as a
long expression in the outermost query.

The zip codes most similar to the national income distribution are dispersed
across the United States, as shown in Table 4-6.

Table 4-6: Top Ten Zip Codes by Chi-Square Income Similarity

INCOME POPU- FAMILY MEDIAN
ZIP CODE STATE CHI-SQUARE LATION INCOME

87505 NM 0.007 69,700 $51,062

70065 LA 0.008 53,565 $52,001

95076 CA 0.009 81,131 $47,365

95670 CA 0.009 50,135 $51,105

55104 MN 0.010 46,169 $50,165

30263 GA 0.010 41,393 $50,525

93277 CA 0.010 44,788 $50,461

72205 AR 0.011 23,892 $50,432

97202 OR 0.011 37,407 $51,968

29407 SC 0.011 36,515 $47,323

Table 4-7 shows the ten zip codes with the highest deviation from the
national income distribution. Visualizing the income variables for these ten zip
codes helps explain why these are different. Figure 4-7 is an example of a par-
allel dimension plot, where each zip code is a line on the chart, and each point
on a line is the value of one of the income variables. The thickest line is the
average for the United States. The plot shows that there are five zip codes that
differ from the national distribution because everyone earns the same amount
of money — so 100% of families in those zip codes are in one income bucket.
One of these, 75207, happens to have a family median income very close to the
national average.
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Table 4-7: Top Ten Zip Codes by Chi-Square Income Disparity

INCOME POPU- FAMILY MEDIAN
ZIP CODE STATE CHI-SQUARE LATION INCOME

53706 WI 21.6 5,217 $11,250

75207 TX 17.8 8,121 $48,750

46556 IN 15.9 6,731 $26,250

24142 VA 15.5 2,765 $31,250

97331 OR 15.5 1,390 $31,250

60043 IL 10.8 2,550 $200,001

94027 CA 10.6 6,872 $200,001

92067 CA 9.8 7,250 $200,001

07078 NJ 9.0 12,888 $200,001

60022 IL 8.5 8,602 $200,001

The remaining five zip codes all differ from the national average because
they have a lot of wealthy people. These all have very similar distributions,
with about half the households at the highest income levels.

Figure 4-7: This parallel dimension plot compares the top ten zip codes least similar 
to the United States by income distribution.
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The query that returns this information is a modification of the chi-square
query. It replaces the CROSS JOIN with UNION ALL, does not have the chi-
square calculation, and lists the zip codes explicitly:

(SELECT CAST(zipcode as varchar), state, fammedincome, zc.faminc000_010

. . .

zc.faminc200

FROM zipcensus zc

WHERE zipcode in (‘53706’, ‘75207’, ‘46556’, ‘24142’, ‘97331’, ‘60043’,

‘94027’, ‘92067’, ‘07078’, ‘60022’)

) UNION ALL

(SELECT CAST(‘XXXXX’ as varchar) as zipcode, NULL as state,

SUM(fammedincome*fam)/SUM(fam) as fammedincome,

SUM(faminc000_010*fam)/SUM(fam) as faminc000_010,

. . .

SUM(faminc200*fam)/SUM(fam) as faminc200

FROM zipcensus)

The difference between the UNION ALL and the CROSS JOIN is that the UNION
ALL adds a new row into the data with the same columns, so the result here has
eleven rows, ten for the zip codes and one for the entire United States. The
CROSS JOIN, by contrast, does not add new rows (assuming there is one row 
in the second table). Instead, it adds additional columns to the result. As a
result, the overall values for the United States are added onto the row for each
zip code, so the two sets of values can be compared within a single row. 

Comparison of Zip Codes with and without Orders
The orders in the purchases database have zip codes assigned to them. Many
of these zip codes have demographic data. Others have no corresponding cen-
sus zip code, are mistakes, or are for non-US addresses. This section investi-
gates the intersection of orders in zip codes and zip code demographic data.

Zip Codes Not in Census File

There are two lists of zip codes, one in the Orders table and one in the Zipcen-
sus table. How many zip codes are in each table and how many are in both? This is a
question about the relationship between two sets of zip codes. The right way
to answer it is by comparing the zip codes in the two tables using the UNION
ALL technique:

SELECT inorders, incensus, COUNT(*) as numzips,

SUM(numorders) as numorders, MIN(zipcode), MAX(zipcode)

FROM (SELECT zipcode, MAX(inorders) as inorders,

MAX(incensus) as incensus, MAX(numorders) as numorders

FROM ((SELECT zipcode, 1 as inorders, 0 as incensus,
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COUNT(*) as numorders

FROM orders o

GROUP BY zipcode)

UNION ALL

(SELECT zipcode, 0 as inorders, 1 as incensus, 0 as numorders

FROM zipcensus zc)

) a

GROUP BY zipcode

) b

GROUP BY inorders, incensus

The first subquery in the UNION ALL sets a flag for all zip codes in the Orders
table and counts the number of orders in the zip code. The second subquery sets
a flag for all zip codes in the Zipcensus table. These are aggregated by zip code
to produce two flags for each zip code, one indicating whether it is in Orders and
the other indicating whether it is in Zipcensus. Each zip code also has a count 
of the number of orders. These flags are summarized again in the outer query to
obtain information about the overlap of zip codes in the two tables.

The results in Table 4-8 show that most zip codes in Zipcensus do not have
orders. On the other hand, most order zip codes are in Zipcensus. And, by far
most orders are in recognized zip codes. It is quite likely that many of the
unrecognized zip codes are for foreign orders.

Table 4-8: Overlaps of Zip Codes between Census Zips and Purchase Zips

NUMBER MINIMUM MAXIMUM
IN ORDERS IN CENSUS COUNT ORDERS ZIP ZIP

0 1 20,501 0 00601 99950

1 0 4,042 7,565 00000 Z5B2T

1 1 11,537 185,418 00646 99901

Profiles of Zip Codes with and without Orders

Are the zip codes with orders different from the zip codes without orders? Information
such as the following can distinguish between these two groups:

■■ Estimated number of households;

■■ Estimated median income;

■■ Percent of households on public assistance;

■■ Percent of population with a college degree; and,

■■ Percent of housing units that are owned.
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Table 4-9 shows summary statistics for the two groups. Zip codes without orders
are smaller, poorer, and have more home owners. Zip codes with orders are
more populous, richer, and better educated. Given that the numbers of zip codes
in the two groups are so large, these differences are statistically significant.

Table 4-9: Some Demographic Information about Zip Codes with and without Purchases

HAS ORDER
MEASURE NO YES

Number of Zip Codes 20,501 11,537

Average Number of Households 1,201.4 7,121.3

Average Median Income $34,417 $48,238

Households on Public Assistance 4.6% 3.4%

Population with College Degree 12.9% 27.8%

Owner Occupied Households 74.0% 63.9%

The following query was used to calculate the information in the table:

SELECT (CASE WHEN o.zipcode IS NULL THEN ‘NO’ ELSE ‘YES’ END) as hasorder,

COUNT(*) as cnt, AVG(hh*1.0) as avg_hh,

AVG(hhmedincome) as avg_medincome,

SUM(numhhpubassist) / SUM(hh) as hhpubassist,

SUM(numcoll) / SUM(popedu) as popcollege,

SUM(numhhowner) / SUM(hhuoccupied) as hhowner

FROM (SELECT zc.*, hhpubassist*hh as numhhpubassist,

(popedubach + popedumast + popeduprofdoct)*popedu as numcoll,

hhuowner*hhuoccupied as numhhowner

FROM zipcensus zc) zc LEFT OUTER JOIN

(SELECT DISTINCT zipcode FROM orders o) o

ON zc.zipcode = o.zipcode

GROUP BY (CASE WHEN o.zipcode IS NULL THEN ‘NO’ ELSE ‘YES’ END)

This query uses a LEFT OUTER JOIN in order to retain all the information in the
Zipcensus table. From the Orders table, only the distinct zip codes are needed;
use of the DISTINCT keyword eliminates the need for an explicit GROUP BY and
ensures that no duplicate rows are inadvertently created.

The census values are ratios. To calculate overall ratios at the group levels, it
might be tempting to use something like AVG(HHPUBASSIST). However, this is not
correct, because different zip codes have different sizes. The correct way is to con-
vert the ratios to counts by multiplying by the appropriate factor, sum the counts,
and then divide by the sum of the factor. For instance, the ratio of the households
on public assistance, HHPUBASSIST, is multiplied by HH to get the number of
households on public assistance. Dividing this product by SUM(HH) gets the ratio
at the aggregated level.
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The preceding analysis shows that zip codes that place orders are indeed
more likely to be richer and larger. However, there is a subtle bias in this analy-
sis. Orders are more likely to come from larger zip codes, simply because there
are more people in larger zip codes who could place the order. Smaller zip
codes are more likely to be rural and poor than larger ones. This is an example
of a sampling bias. The zip codes vary by size, and characteristics of zip codes
are sometimes related to their sizes.

Restricting the query to largish zip codes helps eliminate this bias. For
instance, any area with one thousand households has a reasonable opportu-
nity to have someone who would place an order, because the national rate is
about 0.23%. Table 4-10 shows the zip code characteristics with this restriction.
Even among these zip codes, the same pattern holds of richer, larger, better
educated areas placing orders.

Table 4-10: Some Demographic Information about Zip Codes with and without Purchases
with More Than 1000 Households

HAS ORDER
MEASURE NO YES

Number of Zip Codes 6,244 9,947

Average Number of Households 3,168.7 8,182.1

Average Median Income $35,815 $48,660

Households on Public Assistance 4.9% 3.4%

Population with College Degree 13.1% 27.8%

Owner Occupied Households 72.5% 63.8%

Classifying and Comparing Zip Codes

Wealthier zip codes place orders and less wealthy zip codes do not place
orders. Extending this observation a step further leads to the question: Among
zip codes that place orders, do wealthier ones place more orders than less wealthy ones?
This is a reasonable extrapolation, so it is worth investigating.

One approach is to classify the zip codes by the penetration of orders within
them. Penetration is the number of orders in the zip code divided by the num-
ber of households. Based on the previous analysis, we would expect the aver-
age median household income to increase as penetration increases. Similarly,
we would expect the proportion of college educated people to increase, and
the proportion of households on public assistance to decrease. These expecta-
tions are all extensions of trends seen for zip codes with and without orders.
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First, let’s look at the median household income. Figure 4-8 shows a scatter
plot of zip code penetration by household median income, along with the best
fit line (these are discussed in more detail in Chapter 11) and its equation. Each
point on this chart is a zip code. Although the data looks like a big blob, it does
show that higher penetration zip codes tend to be on the higher income side.

Figure 4-8: This plot shows household median income and penetration by zip code, 
for zip codes with more than 1,000 households. This pattern is noticeable but not
overwhelming.

The horizontal scale uses a clever trick to remove the last three zeros of the
median income and replace them with the letter “K.” This is accomplished
using the number format “$#,K”. The best fit line shows both the equation and
the R2 value, which is a measure of how good the line is (Chapter 11 discusses
both the best fit line and the R2 value in more detail). The value of 0.26 indi-
cates some relationship between the median income and the penetration, but
the relationship is not overpowering.

TI P The number format “$#,K” will drop the last three zeros from a number
and replace them with the letter “K.”

The query that produces the data for this chart is:

SELECT zc.zipcode, hhmedincome,

(CASE WHEN o.numorders IS NULL OR zc.hh = 0 THEN 0

ELSE o.numorders * 1.0/ zc.hh END) as pen

FROM zipcensus zc LEFT OUTER JOIN

(SELECT zipcode, COUNT(*) as numorders

FROM orders o

y = 1E-07x - 0.0042
R2 = 0.2551
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GROUP BY zipcode) o

ON zc.zipcode = o.zipcode

WHERE zc.hh >= 1000 AND state <> ‘PR’

An alternative approach is to classify zip codes by penetration, and to com-
pare demographic variables within these groups. Overall, there is 0.23% order
penetration at the national level by households. All zip codes fall into one of
five groups:

■■ Zip codes with no orders (already seen in the previous section);

■■ Zip codes with fewer than 1,000 households;

■■ Zip codes with penetration less than 0.1% (low penetration);

■■ Zip codes with penetration between 0.1% and 0.3% (medium penetra-
tion); or,

■■ Zip codes with penetration greater than 0.3% (high penetration).

The following query summarizes information about these groups:

SELECT (CASE WHEN o.zipcode IS NULL THEN ‘ZIP MISSING’

WHEN zc.hh < 1000 THEN ‘ZIP SMALL’

WHEN 1.0*o.numorders / zc.hh < 0.001 THEN ‘SMALL PENETRATION’

WHEN 1.0*o.numorders / zc.hh < 0.003 THEN ‘MED PENETRATION’

ELSE ‘HIGH PENETRATION’ END) as ziptype,

SUM(numorders) as numorders,

COUNT(*) as numzips,

AVG(1.0*hh) as avg_hh,

AVG(hhmedincome) as avg_medincome,

SUM(numhhpubassist) / SUM(hh) as hhpubassist,

SUM(numcoll) / SUM(popedu) as popcollege,

SUM(numhhowner) / SUM(hhuoccupied) as hhowner

FROM (SELECT zc.*,

hhpubassist*hh as numhhpubassist,

(popedubach + popedumast + popeduprofdoct)*popedu as numcoll,

hhuowner*hhuoccupied as numhhowner

FROM zipcensus zc) zc LEFT OUTER JOIN

(SELECT zipcode, COUNT(*) as numorders

FROM orders o

GROUP BY zipcode) o

ON zc.zipcode = o.zipcode

GROUP BY (CASE WHEN o.zipcode IS NULL THEN ‘ZIP MISSING’

WHEN zc.hh < 1000 THEN ‘ZIP SMALL’

WHEN 1.0*o.numorders / zc.hh < 0.001 THEN ‘SMALL PENETRATION’

WHEN 1.0*o.numorders / zc.hh < 0.003 THEN ‘MED PENETRATION’

ELSE ‘HIGH PENETRATION’ END)

ORDER BY 1 DESC

This query is similar to the previous query with two differences. First, the inner
subquery on the Orders table uses an aggregation, because now the number of
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orders is needed as well as the presence of any order. And, the outer aggregation
is a bit more complicated, defining the five groups just listed.

The results in Table 4-11 confirm what we expected to see. As penetration
increases, the zip codes become wealthier, better educated, and have fewer
households on public assistance.

Table 4-11: As Penetration Increases, Zip Codes Become Wealthier and Better Educated

ZIP CODE GROUP
ZIP ZIP SMALL MIDDLE HIGH

MEASURE SMALL MISSING PEN PEN PEN

Number of Orders 4,979 0 19,462 33,117 127,860

Number of Zip Codes 1,590 20,501 5,765 2,326 1,856

Average Number 
of Households 484.5 1,201.4 8,407.6 8,165.1 7,503.1

Average Median 
Income $45,592 $34,417 $42,388 $50,720 $65,562

Households on 
Public Assistance 2.4% 4.6% 3.9% 2.9% 2.1%

Population with 
College Degree 25.5% 12.9% 20.5% 33.3% 45.7%

Owner Occupied 
Households 76.4% 74.0% 65.5% 62.3% 60.1%

Geographic Hierarchies

The zip code information has a natural hierarchy in it: zip codes are in coun-
ties, and counties are in states, for instance. Such hierarchies are important for
understanding and effectively using geographic information. This section dis-
cusses information at different levels of geographic hierarchies.

Wealthiest Zip Code in a State?
Wealth is spread unevenly across the United States. Relative wealth is often
more important than absolute wealth, although actual income levels may differ
considerably. This inspires a question: What is the wealthiest zip code in each state?

This question is about geographic hierarchies. Locations are simultaneously
in multiple geographic areas, so zip codes are in counties and counties are in
states. Someone residing in zip code 10011 in Manhattan is also living in New
York County, and in New York City, and in New York State, and in the United
States. Of course, some zip codes do straddle state and county borders, as
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explained in Chapter 1. However, there is a predominant state and county
assigned to each zip code.

The following query finds the wealthiest zip code in each state:

SELECT zc.*

FROM zipcensus zc JOIN

(SELECT state, MAX(hhmedincome) as maxincome

FROM zipcensus zc

GROUP BY state) hhmax

ON zc.state = hhmax.state AND

zc.hhmedincome = hhmax.maxincome

It uses a subquery to calculate the zip code with the maximum income, and
then joins this back to the zip code table to get information about the zip code. 

Figure 4-9 shows a scatter plot of zip codes that have the maximum median
household income in each state. Some states, such as Florida, have more than
one zip code that matches the maximum. In this case, all are shown. This chart
includes state boundaries, which are explained later in this chapter.

Figure 4-9: The wealthiest zip codes in each state are scattered across the map. Here
they are shown placed into four income buckets.

The chart places the zip codes into four buckets based on the maximum
median household income:

■■ Greater than $200,000;

■■ $150,000 to $200,000;

■■ $100,000 to $150,000; and,

■■ $50,000 to $100,000.
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The chart is created using four different series for each of these groups. The
first series — the very wealthiest zip codes — are labeled with the name of the
state and the zip code. Unfortunately, Excel does not make it possible to label
scatter plots. Fortunately, there is a simple add-in that enables this functional-
ity, as explained in the aside “Labeling Points on Scatter Plots.”

The spreadsheet shown in Figure 4-10 pivots the data for the chart. The data
starts out as a table describing zip codes with columns for zip code, state, longi-
tude, latitude, and median household income. The data for the chart is in an
adjacent five columns, with longitude in the first. The next four contain the lati-
tude for the bucket the zip code belongs in or NA(). Column titles are con-
structed from the ranges defining the buckets. The scatter plot can then be
created by selecting the five columns and inserting the chart.

Figure 4-10: This Excel spreadsheet pivots the data and assigns the names of the series
for the chart in the previous figure (formulas for first bin are shown).

The spreadsheet creates reasonable names for each of the series. The bucket
is defined by two values, the minimum and maximum of the income range.
The label is created using string functions in Excel:

=TEXT(L7, “$#,K”)&IF(L8>L7+1, “ to “&TEXT(L8, “$#,K”), “”)

This formula uses the TEXT() function to transform a number into a string. The
second argument is a number format that drops the last three digits and
replaces them with a “K” (“$#,K”). The IF() takes care of the bucket that does
not have an upper bound.

The following query obtains the data for the chart:

SELECT zc.zipcode, zc.state, zc.longitude, zc.latitude, zc.hhmedincome

FROM zipcensus zc JOIN

(SELECT state, MAX(hhmedincome) as maxincome

FROM zipcensus zc

GROUP BY state) hhmax

ON zc.state = hhmax.state AND

zc.hhmedincome = hhmax.maxincome
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This query calculates the maximum median income for zip codes in each state,
and then joins in the zip code information by matching to the maximum value.

LABELING POINTS ON SCATTER PLOTS

The ability to label points in scatter plots and bubble plots (as in Figure 4-9) is
very useful, but not part of Excel. Fortunately, Rob Bovey has written a small
application to do this. Better yet, this application is free for download from
http://www.appspro.com/Utilities/ChartLabeler.htm.

The XY-Labeler installs new functionality in Excel by adding a new menu item
called “XY Chart Labels” to the “Tools” menu, which makes it possible to:

■ Add labels to a chart, where the labels are defined by a column in the
spreadsheet;

■ Modify existing labels; and,

■ Add labels to individual points in any series.

In the chart, the labels behave like labels on any other series. Just like other
text, they can be formatted as desired, with fonts, colors, backgrounds, and
orientations. They can be deleted by clicking them and hitting the <delete> key.

When inserting the labels, the chart labeler asks for several items of
information. First, it needs the series to label. Second, it needs the labels, which
are typically in a column in the same table. And third, it needs to know where to
place the labels: above, below, to the right, to the left, or on the data points.

The labels themselves are values in a column, so they can be arbitrary text
and as informative as needed. In this case, the label for each point consists of
the state abbreviation with the zip code in parentheses, created using the
following formula:

=D10&“ (“&TEXT(C10, “00000”)&“)“

where D10 contains the state and C10 contains the zip code. The TEXT()
function adds zeros to the beginning of the zip codes to ensure that zip codes
starting with “0” look correct.

Zip Code with the Most Orders in Each State
Of course, there is no reason to limit examples to demographic features of the
zip codes. The same ideas can be used to identify the zip code in each state that
has the most orders and the most orders per household.

Figure 4-11 shows a map showing the zip codes with the most orders in each
state. Zip codes with the most orders are typically large, urban zip codes. If the
measure were penetration, the zip codes with the most orders per household
would be small zip codes that have very few households.
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Figure 4-11: This map shows the zip code with the largest number of orders. The size of
the circles represents the number of orders.

The query that generates the information for this chart finds the zip code
with the most orders in each state. Figure 4-12 shows a dataflow diagram that
describes how the query processes the data, using the following steps:

1. The number of orders for each zip code in each state is calculated, by
counting the orders and aggregating by state and zip code.

2. The maximum number of orders is determined, by calculating the max-
imum value of number of orders in each state, from step (1).

3. The zip code associated with the maximum number of orders in each
state is calculated by finding the zip code from (1) whose number of
orders matches the maximum from (2).

The resulting query looks like:

SELECT zc.zipcode, zc.state, longitude, latitude, numorders

FROM (SELECT zipcode, state, COUNT(*) as numorders

FROM orders

GROUP BY zipcode, state) ozip JOIN

(SELECT state, MAX(numorders) as maxorders

FROM (SELECT zipcode, state, COUNT(*) as numorders

FROM orders

GROUP BY zipcode, state) o

GROUP BY state) ostate
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ON ozip.state = ostate.state AND

ozip.numorders = ostate.maxorders JOIN

zipcensus zc

ON zc.zipcode = ozip.zipcode

WHERE latitude BETWEEN 20 and 50 AND longitude BETWEEN -135 AND -65

ORDER BY 2

This query uses multiple levels of subqueries to find the zip code with the
most orders. Standard SQL does not make it easy to answer such questions.
However, there are SQL extensions that facilitate these calculations. The win-
dow function extensions are discussed in more detail in Chapter 8.

Figure 4-12: This dataflow diagram for query finds the zip code with the most orders in
each state.

Interesting Hierarchies in Geographic Data
Zip codes within states are only one example of geographic levels nestling
inside each other. This section discusses some other geographic levels, even
though most of these are not in the datasets.

Counties

Every state is divided into counties. Some states such as Texas have hundreds
of counties (254). By contrast, Delaware and Hawaii have only three. Counties
are useful precisely because every address has some county associated with it,
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on state 
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even though the location may not be in a village, town, or city. The table Zip-
county maps zip codes to counties.

Counties in different states can have the same name. Once upon a time, the
author was surprised to see a map highlighting two counties in northern Min-
nesota as having very large marketing potential. Between them, these counties
have a population of less than fifteen thousand people, which is not very big at
all. Although Lake County and Cook County are small and out of the way in
Minnesota, their namesakes in Illinois are two of the most populous counties in
the country.

To prevent such confusion, the Census Bureau has a numbering system for
geographic areas called FIPS (Federal Information Processing Standard). The
FIPS county codes consist of five digits. The first two digits are for the state
and the last three are for the counties. In general, the state number is obtained
by alphabetizing the states and assigning sequential numbers, starting with 01
for Alabama. The counties in each state are similarly numbered, so Alabaster
County in Alabama has the FIPS code of 01001.

Counties are useful for other purposes as well. For instance, sales taxes are
often set at the county level.

Designated Marketing Areas (DMAs)

Designated marketing areas are the invention of Nielsen Market Research and
were originally designed as the markets for television advertising. These are
groups of counties that form marketing regions, and are good approximations
to metropolitan areas. There are 210 DMAs in the United States. The largest
DMA by population is the one containing New York City with about 7.4 million
households (in 2004) and it has twenty-nine counties spread over four states.

A big advantage of DMAs is that they are defined as groups of counties,
because all areas in the United States are in some county. Hence, every location
is in some DMA. Unfortunately, the definition is privately owned, so the map-
ping from county to DMA or zip code to DMA needs to be purchased for a
nominal amount of money.

Each company may have its own definition of its marketing area. Newspapers
and radio stations also have designated marketing areas. This is the area where
they compete for readers and advertising in the “local” market.

Census Hierarchies

The Census Bureau in the United States has quite a challenge. As mandated by
the Constitution, the Bureau is responsible for “enumerating” the population
of every state in the United States every ten years. The purpose is to determine
the number of seats assigned to each state in the House of Representatives. In
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addition to counting residents, the census also estimates various demographic
and economic statistics.

The Census Bureau divides the United States into a mosaic of small geo-
graphic entities, such as:

■■ Census block;

■■ Census block group; and,

■■ Census tract.

The census block is the smallest unit and typically has a population of a few
dozen people in a small area (such as along one side of a street). The United
States is divided into over eight million census blocks. The Bureau publishes
very few statistics at the block level, because such statistics could compromise
the privacy of the individuals living in such a small area.

Block groups are collections of census blocks that typically have up to about four
thousand people. Both census blocks and block groups change at the whims and
needs of the Census Bureau, as populations grow and shrink, and shift.

Census tracts are intended to be more permanent statistical subdivisions,
with about two to eight thousand people each (although the largest can be
much larger). Unlike zip codes, census tracts are designed to be statistically
homogeneous and relevant to local governments. This is in contrast to post
offices that are intended to serve diverse areas. Further information about the
census divisions is available at www.census.gov.

The low-level census hierarchies are then aggregated into a cornucopia of
other groupings, such as:

■■ Metropolitan Statistical Area (MSA);

■■ Consolidated Metropolitan Statistical Area (CMSA); and,

■■ New England Consolidated Metropolitan Areas (NECMAs).

And more! The problem with these hierarchies boils down to one word, poli-
tics. The funding for various federal programs is tied to populations. Perhaps
for this reason, these are defined by the Office of Management and Budget
(OMB) rather than the Census Bureau. For instance, in the 2000 Census,
Worcester, MA was included in the Boston metropolitan statistical area. By
2003, it had been split out into its own area.

Other Geographic Subdivisions

There are a host of other geographic subdivisions, which might be useful for
special purposes. The following discusses some of these.
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Zip+2 and Zip+4

The five-digit zip code in the United States has been augmented with four
additional digits, commonly known as zip+4. The first two are the carrier
route code and the second two are the stop along the route. Because zip+4s
change at the whim of the post office, they are not particularly useful for com-
parisons over time.

Electoral Districts

People vote. And the wards and precincts where they vote are located in Con-
gressional districts and state-wide office districts. Such information is particu-
larly useful for political campaigns. However, the districts change at least
every ten years, so these are not so useful for other purposes.

School Districts

School districts are another geographic grouping. School districts can be use-
ful, because each school district has its own schedule. When do you want to
send customers “back-to-school” messages? Some districts start the school
year in early August. Others start a month later. Similarly, some end in early
May and some continue well into June.

Catchment Areas

A catchment area is the area from where a retail establishment draws its cus-
tomers. The definition of a catchment area can be quite complicated, taking
into account store locations, road patterns, commuting distances, and com-
petitors. Retailing companies often know about their catchment areas and the
competition inside them.

Calculating County Wealth
This section looks at wealth in counties, which provides an opportunity to
make comparisons across different levels of geography. The place to begin is in
identifying the counties.

Identifying Counties

If the Orders table contained complete addresses and the addresses were
geocoded, the county would be available as well as the zip code (and census
tract and other information). However, the data contains zip codes, rather than
geocoded addresses. The county for a zip code can be looked up using Zip-
county. This is an approximate mapping, based on the zip codes existing in
1999. Even though zip codes can span both state and county borders, this table
assigns one single county to each zip code.
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What is the overlap between these tables? This question is quite similar to the
question about the overlap between zip codes in Orders and Zipcensus. The
way to determine the overlap is with the following UNION BY query:

SELECT inzc, inzco, COUNT(*) as numzips, MIN(zipcode), MAX(zipcode),

MIN(countyname), MAX(countyname)

FROM (SELECT zipcode, MAX(countyname) as countyname, SUM(inzc) as inzc,

SUM(inzco) as inzco

FROM ((SELECT zipcode, ‘’ as countyname, 1 as inzc, 0 as inzco

FROM zipcensus)

UNION ALL

(SELECT zipcode, countyname, 0 as inzc, 1 as inzco

FROM zipcounty)) z

GROUP BY zipcode) a

GROUP BY  inzc, inzco

This query is typical of queries that determine the overlap of two or more
tables, with the addition of the county name as well as the zip code. The
county name is for informational purposes, because discrepancies might occur
at the county level.

Table 4-12 shows that almost all zip codes in Zipcensus are also in Zip-
county; the exceptions being zip codes in Puerto Rico (which, technically
speaking, has “municipios” rather than “counties”). There are over ten thou-
sand zip codes in Zipcounty that are not in Zipcensus, because Zipcensus con-
sists of zip code tabulation areas maintained by the Census Bureau. They
define zip code tabulation areas for only a subset of zip codes that would be
expected to have a residential population.

Table 4-12: Overlap of Zip Codes in Zipcensus and Zipcounty

IN ZIP IN ZIP NUMBER MIN MAX MINIMUM MAXIMUM
CENSUS COUNTY OF ZIPS ZIP ZIP COUNTY COUNTY

1 0 77 00601 00772

1 1 31,961 00773 99950 Abbeville Ziebach 

0 1 10,131 00785 99928 Ziebach

Measuring Wealth

The typical attribute for wealth is HHMEDINCOME, the median household
income. Unfortunately, this is not available at the county level in the data. For-
tunately, a reasonable approximation is the average of the median incomes in
all zip codes in the county. The average of a median is an approximation, but
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it is good enough. The following query calculates the average median house-
hold income for each county:

SELECT zco.countyfips, zco.poname,

(CASE WHEN SUM(hh) = 0 THEN NULL

ELSE SUM(hhmedincome * hh) / SUM(hh) END)

FROM zipcensus zc JOIN zipcounty zco ON zc.zipcode = zco.zipcode

GROUP BY zco.countyfips, zco.poname

Notice that this query uses the weighted average (weighted by the number of
households), rather than just the average. The alternative formulation,
AVG(hhmedincome), would calculate a different value; each zip code would
have the same weight regardless of its population. 

This query takes into account the fact that counties might have zero house-
holds, an unusual situation. The only example in the data is Williamsburg, VA,
an independent city in Virginia (meaning it is its own county). Three of its five
zip codes are in neighboring counties. The only two zip codes assigned to
Williamsburg are for the College of William and Mary, which has “group hous-
ing” but no “households.” Such is the census data, accurate and detailed, and
sometimes surprising.

Distribution of Values of Wealth
The distribution of median household income for both zip codes and counties
is in Figure 4-13. This distribution is a histogram, with the values in thousand-
dollar increments. The vertical axis shows the proportion of zip codes or coun-
ties whose median household income falls into each range. Overall the
distribution looks like a normal distribution, although it is skewed a bit to the
left meaning that there are more very rich areas than very poor areas. One rea-
son for the skew is that the median household income is never negative, so it
cannot fall too low.

The peak for both zip codes and counties is in the range of $30,000–$31,000.
However, the peak for counties is higher than the peak for zip codes. And, the
curve for counties is narrower, with fewer very large values or very small values.
Does this tell us anything interesting about counties?

Actually not. We can think of counties as being samples of zip codes. As
explained in the previous chapter, the distribution of the average of a sample
is narrower than the original data, clustering more about the overall average.
Geographic hierarchies usually follow this pattern.

The data in Figure 4-13 was calculated in SQL and Excel. The SQL query
summarizes the counts by bin, which Excel then converts to ratios for the chart:

SELECT bin, SUM(numzips) as numzips, SUM(numcounties) as numcounties

FROM ((SELECT FLOOR(hhmedincome/1000)*1000 as bin, COUNT(*) as numzips,

0 as numcounties

FROM zipcensus zc
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WHERE hh > 0

GROUP BY FLOOR(hhmedincome/1000)*1000)

UNION ALL

(SELECT FLOOR(countymedian/1000)*1000 as bin, 0 as numzips,

COUNT(*) as numcounties

FROM (SELECT countyfips,

SUM(hhmedincome*hh*1.0) / SUM(hh) as countymedian

FROM zipcensus zc JOIN

zipcounty zco

ON zc.zipcode = zco.zipcode AND

hh > 0

GROUP BY countyfips) c

GROUP BY FLOOR(countymedian/1000)*1000)

) a 

GROUP BY bin

ORDER BY 1

This query creates a bin for median income by taking only the thousands com-
ponent of the number. So, an income of $31,948 is placed into the $31,000 bin.
The calculation for this is simple arithmetic that uses the FLOOR() function. The
query calculates this bin both at the zip code level and at the county level.

Figure 4-13: The distribution of median household income for counties is “narrower”
than for zip codes.

Which Zip Code Is Wealthiest Relative to Its County?
Local areas that are significantly different from their surrounding areas are
interesting: What is the wealthiest zip code relative to its county?
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Answering this question requires understanding what it really means. Does
it mean that the difference between the median incomes is the largest possible?
Does it mean that the ratio is as large as possible? Both of these are reasonable
interpretations. The second leads to the idea of indexing values between dif-
ferent geographic levels, which is a good idea.

TI P Dividing the value of a variable in one geographic level by the value in a
larger area is an example of indexing. This can find interesting patterns in the
data, such as the wealthiest zip code in a county.

The following query finds the ten zip codes with more than one thousand
households whose index relative to their county is the largest in the country:

SELECT TOP 10 zc.zipcode, zc.state, zc.countyname, zc.hhmedincome,

c.countymedian, zc.hhmedincome / c.countymedian, zc.hh, c.hh

FROM (SELECT zc.*, countyfips, countyname

FROM zipcensus zc JOIN

zipcounty zco

ON zc.zipcode = zco.zipcode) zc JOIN

(SELECT countyfips, SUM(hh) as hh,

SUM(hhmedincome*hh*1.0) / SUM(hh) as countymedian

FROM zipcensus zc JOIN

zipcounty zco

ON zc.zipcode = zco.zipcode AND

hh > 0

GROUP BY countyfips) c

ON zc.countyfips = c.countyfips

WHERE zc.hh > 1000

ORDER BY zc.hhmedincome / c.countymedian DESC

This query has two subqueries. The first appends the FIPS county code onto
each row in Zipcensus. The second calculates the median household income
for the county. These are joined together using the FIPS code. The ORDER BY
clause then supplies the intelligence behind the query, by ordering the result
by the ratio in descending order.

These wealthy zip codes (in Table 4-13) all seem to be in counties whose
income is a bit above average and whose population is quite large (they have
hundreds of thousands or millions of households). These are wealthy enclaves
in highly urban counties.

Table 4-13: Wealthiest Zip Codes Relative to Their Counties

ZIP MEDIAN INCOME HOUSEHOLDS
CODE COUNTY NAME ZIP COUNTY INDEX ZIP COUNTY

92067 San Diego, CA $196,298 $49,499 3.97 2,543 995,487

07078 Essex, NJ $185,466 $51,099 3.63 4,279 283,825
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Table 4-13  (continued)

ZIP MEDIAN INCOME HOUSEHOLDS
CODE COUNTY NAME ZIP COUNTY INDEX ZIP COUNTY

60022 Cook, IL $171,063 $47,998 3.56 2,955 1,965,876

33158 Miami-Dade, FL $118,410 $37,974 3.12 2,094 777,378

90077 Los Angeles, CA $141,527 $45,737 3.09 4,165 3,132,861

44040 Cuyahoga, OH $123,980 $41,485 2.99 1,071 574,086

19085 Delaware, PA $159,538 $55,292 2.89 1,902 224,026

38139 Shelby, TN $116,200 $42,586 2.73 4,656 341,743

76092 Tarrant, TX $130,655 $48,381 2.70 6,280 524,833

90272 Los Angeles, CA $122,877 $45,737 2.69 9,272 3,132,861

County with Highest Relative Order Penetration
Geographic hierarchies can also be used for customer-related information. For
instance: Which counties in each state have the highest order penetration relative to
the state?

Order penetration is orders per household. In addition to order penetration,
the query also calculates some other statistics about the counties and states:

■■ Estimated number of households;

■■ Estimated median income;

■■ Percent of households on public assistance;

■■ Percent of population with a college degree; and,

■■ Percent of housing units that are owned.

These are interesting demographics. The purpose is to compare the highest
penetration county to the state, to see if other factors might be correlated with
high penetration.

Table 4-14 shows the top ten counties whose order penetration is highest rel-
ative to their states. For the most part, these consist of small counties with a
smallish number of orders. However, the penetration by household is quite
high. Interestingly, the larger counties with high relative penetration are
wealthier than their states. However, some of the smaller counties are poorer. In
general, these counties do seem to be better educated and have fewer people on
public assistance.
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Table 4-14: Counties with Highest Order Penetration Relative to Their State

HOUSEHOLDS
COUNTY ON PUBLIC OWNER % WITH PEN

FIPS/ MEDIAN ASSIST- OCCU- COLLEGE IND-
STATE NUMBER INCOME ANCE PIED DEGREE ORDER EX

16013 7,754 $50,609 1.1% 68.9% 43.1% 0.46% 11.2

ID 469,521 $38,416 3.4% 72.7% 21.7% 0.04%

56039 7,523 $55,571 1.3% 55.8% 45.6% 0.45% 9.7

WY 193,787 $38,664 2.6% 70.1% 21.9% 0.05%

46027 4,988 $27,847 2.9% 54.9% 38.4% 0.20% 9.7

SD 290,246 $35,783 3.0% 68.4% 21.5% 0.02%

08097 5,788 $58,962 1.0% 56.6% 59.6% 1.02% 8.3

CO 1,659,224 $48,967 2.5% 67.3% 32.7% 0.12%

16081 2,065 $42,878 0.6% 74.6% 28.5% 0.34% 8.2

ID 469,521 $38,416 3.4% 72.7% 21.7% 0.04%

72061 34,673 $30,490 13.5% 76.7% 36.3% 0.07% 7.6

PR 1,261,816 $15,373 20.1% 72.9% 18.3% 0.01%

45013 45,089 $49,158 1.8% 74.4% 33.4% 0.40% 7.3

SC 1,534,207 $37,808 2.5% 72.4% 20.4% 0.05%

51610 5,831 $76,806 1.1% 71.6% 60.0% 1.06% 7.1

VA 2,700,238 $49,960 2.5% 68.2% 29.5% 0.15%

37135 46,973 $45,882 1.4% 56.0% 56.8% 0.51% 7.1

NC 3,133,265 $40,355 2.8% 69.6% 22.5% 0.07%

28071 13,454 $27,935 1.5% 59.2% 32.8% 0.13% 7.0

MS 1,047,140 $31,929 3.5% 72.4% 16.9% 0.02%

The query that finds these counties is:

SELECT TOP 10 c.*, s.*, c.orderpen / s.orderpen

FROM (SELECT zcounty.*, ocounty.numorders,

(CASE WHEN numhh > 0 THEN numorders*1.0/numhh ELSE 0

END) as orderpen

FROM (SELECT zco.countyfips, zco.state,

MIN(countyname) as countyname, COUNT(*) as numorders

FROM orders o JOIN zipcounty zco ON o.zipcode = zco.zipcode

GROUP BY countyfips, zco.state) ocounty JOIN

(SELECT zco.countyfips, zco.state, SUM(hh) as numhh,
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SUM(hhmedincome*hh)/SUM(hh) as hhmedincome,

SUM(hhpubassist*hh)/SUM(hh) as hhpubassist,

(SUM((popedubach+popedumast+popeduprofdoct)*popedu)/

SUM(popedu)) as popcollege,

SUM(hhuowner*hhunits)/SUM(hhunits) as hhuowner

FROM zipcensus zc JOIN

zipcounty zco

ON zc.zipcode = zco.zipcode

WHERE hh > 0

GROUP BY zco.countyfips, zco.state) zcounty

ON ocounty.countyfips = zcounty.countyfips) c JOIN

(SELECT zstate.*, ostate.numorders, numorders*1.0/numhh as orderpen

FROM (SELECT o.state, COUNT(*) as numorders

FROM orders o 

WHERE zipcode IN (SELECT zipcode FROM zipcensus WHERE hh > 0)

GROUP BY o.state) ostate JOIN

(SELECT zc.state, SUM(hh) as numhh,

SUM(hhmedincome*hh)/SUM(hh) as hhmedincome,

SUM(hhpubassist*hh)/SUM(hh) as hhpubassist,

(SUM((popedubach+popedumast+popeduprofdoct)*popedu)/

SUM(popedu)) as popcollege,

SUM(hhuowner*hhunits)/SUM(hhunits) as hhuowner

FROM zipcensus zc

WHERE hh > 0

GROUP BY zc.state) zstate

ON ostate.state = zstate.state) s 

ON s.state = c.state

ORDER BY c.orderpen / s.orderpen DESC

This is a complicated query built around four subqueries. The first two calcu-
late the number of orders and the number of households in each county, in
order to calculate the order penetration by county. The second does the same
thing for states. These are then combined to calculate the order penetration
index. The dataflow for this query in Figure 4-14 shows how these four sub-
queries are combined together.

The calculation of the demographic ratios at the county and state level 
follows the same methods seen earlier in the chapter. The percentages are
multi plied by the appropriate factors to get counts (number of households,
population, educated population). The counts are aggregated and then
divided by the sum of the factors.

Mapping in Excel

Maps are very useful when working with geographic data. This section dis-
cusses the issue of creating maps in Excel. The short answer is that if mapping
is important, Excel is not the right tool. However, the longer answer is that
there are some useful things to do before purchasing more expensive software.

Chapter 4 ■ Where Is It All Happening? Location, Location, Location 177

99513c04.qxd:WileyRed  8/27/07  12:07 PM  Page 177



Why Create Maps?
The purpose of mapping is to visualize trends and data, making it easier to
understand where things are and are not happening. The zip code maps seen
earlier in the chapter (for solar power or wealthy zip codes) contain tens of
thousands of zip codes in a format readily understandable by most people. A
map summarizes information at different levels — it is possible to see differ-
ences across regions, between urban and rural areas, and for particular geo-
graphic areas. And this is just from rudimentary zip code maps.

Figure 4-14: This dataflow calculates index of order penetration in a county to its state; this
is the ratio between the order penetration in the county to the order penetration in its state.
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Beyond this, there are several things that mapping software should do. Map-
ping software should be able to show different levels of geography. In the
United States, this means the ability to see the boundaries of states, counties,
and zip codes, at a minimum. In other parts of the world, this means the ability
to see different countries, regions in countries, and different linguistic areas.

Another important capability is being able to color and highlight different
geographic regions based on data, whether this is derived from business data
(the number of orders) or census data (population and wealth). Fancy map-
ping software allows you to include specific markers for specific types of data,
to use graduated colors, and to fill regions with textures. In Excel, only the first
of these is possible.

The maps should include data available for geographic areas. This espe-
cially includes census population counts, so it is possible to measure penetra-
tion. Other census variables, such as wealth and education, types of home
heating systems, and commuting times, are also useful. And this additional
data should not be particularly expensive, because it is available for free from
the census web site. It is also nice to see other features on maps, such as roads,
rivers, and lakes. These make it easier to identify specific locations, and are
readily available on web mapping tools.

This list is intended to be a bare-bones discussion of what is needed for data
visualization. Advanced mapping software has many other capabilities. For
instance, mapping software often has the ability to integrate into GPS (global
positioning services) systems to trace a route between different points, to incor-
porate satellite imagery, to overlay many different features, and other advanced
capabilities.

It Can’t Be Done
Once upon a time, Excel did include mapping capabilities similar to the chart-
ing capabilities. Excel was able to create maps and color and highlight states
and countries based on data attributes. This product was a trimmed-down
version of a product from Mapinfo (www.mapinfo.com). However, Microsoft
removed this functionality in Excel 2002, separating out the mapping tool into
a separate product called MapPoint. MapPoint is one of several products on
the market; others include products from Mapinfo and ESRI’s ArcView.

Because the mapping product is separate, Excel cannot be readily used for
creating and manipulating maps without purchasing additional products.
This chapter has shown basic maps for data visualization, and often these are
sufficient for analytic purposes, although prettier maps are often better for pre-
sentations. For data visualization, the needs are often more basic than the more
advanced geographic manipulations provided by special-purpose software. 
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Mapping on the Web
There are various map sites on the web, such as Yahoo!, Google, MapQuest,
MapBlaster, and Microsoft Live. These web sites are probably familiar to most
readers for finding specific addresses and directions between addresses. They
also include nifty capabilities, such as satellite images and road networks and
are rapidly including other features, such as local businesses on the maps.

Perhaps less familiar is the fact that these web sites have application pro-
gramming interfaces (APIs), which make it possible to use the maps for other
purposes. A good example is www.wikimapia.org, which shows the ability to
annotate features on maps is built using Google Maps. Wikimapia incorpo-
rates Google Maps using an API, which can also be called from other web
applications and from Excel.

The upside to interfacing with online maps is the ability to create cool
graphics that can even be updated in real time. The downside to using then is
that they require programming, which often distracts from data analysis.
These systems are designed to make maps for web sites, rather than for visu-
alizing data. It is possible to use them for data visualization, but that is not
what they are designed for.

WARN I NG Having to use programming to visualize data (such as using an
API to web mapping software) often distracts from data analysis. It is all too
easy for analysis efforts to become transformed into programming projects.

State Boundaries on Scatter Plots of Zip Codes
Scatter plots of zip codes make functional maps, and they have the ability to
annotate specific points on them. One of the features that would make them more
useful is the ability to see boundaries between states. This section discusses two
methods for doing this. Both methods highlight powerful features of Excel.

Plotting State Boundaries

The boundaries between states are defined by geographic positions — longitude
and latitude. Excel scatter plots have the ability to connect the points in the scat-
ter plot. For instance, Figure 4-15 shows the boundary of the state of Pennsylva-
nia, where the boundary really connects a handful of points. Some parts of the
boundary have very few points (because the boundary is a line). Some parts of
the boundary have many points, usually because the boundary follows natural
features such as rivers. The Pennsylvania border does have an unusual feature.
The boundary between Pennsylvania and Delaware is actually defined as a semi-
circle, the only such circular-arc state border in the country. However, in this map,
the arc is approximated by line segments.
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Figure 4-15: The outline for Pennsylvania consists of a set of points connected by lines.

The points defining the outline of the states are defined by their latitude and
longitude. For instance, Colorado is a particularly simple state, because it is
shaped like a rectangle. Table 4-15 shows the boundary data for Colorado; the
first and last points on the boundary are the same, so there is a complete loop.
To create the map of Colorado, these points are plotted as a scatter plot, with
lines connecting the points, and no markers shown at each point. These
options are on the “Patterns” tab of the “Format Data Series” dialog box.

Table 4-15: Latitude and Longitude of Points Defining Colorado State Border

STATE LONGITUDE LATITUDE

CO -107.9 41.0

CO -102.0 41.0

CO -102.0 37.0

CO -109.0 37.0

CO -109.0 41.0

CO -107.9 41.0

Adding more states requires getting the latitude and longitude, and making
sure that extraneous lines do not appear. For instance, Figure 4-16 shows what
happens when the outline of Wyoming is added to the Colorado outline. An
extraneous line appears. Excel connects the points in the scatter plot without
picking up the pen, so an extra line segment appears where Colorado ends and
Wyoming begins. Fortunately, Excel makes it easy to eliminate this extraneous
segment, merely by including empty cells between the two boundaries. This
makes it possible to plot discrete entities on a scatter plot, without having a
separate series for each one. Figure 4-9 used this technique to include state
boundaries on the maps.
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Figure 4-16: The outline for Colorado and Wyoming; drawn using the scatter plot, has an
extraneous line.

TI P To make a particular line segment disappear from a scatter plot, simply
insert a blank line in the data between the two points. The scatter plot skips
the lines in the chart.  

The boundary data was manually modified from detailed outlines of the
states. It consists of several thousand points rounded to the nearest tenth of a
degree. This scale captures the zigs and zags of the state boundaries to within
ten miles or so, which is quite sufficient for a map of the country. However, the
boundaries are not accurate at the finest levels.

Pictures of State Boundaries

An alternative method of showing state boundaries is to use a real map as the
background for the scatter plot. The first challenge is finding an appropriate
map. Plotting latitudes and longitudes as straight lines on graph paper is not
the recommended way of showing maps in the real world, because such maps
distort distances and areas. Unfortunately, this is how most maps appear on
the web. An exception is the national atlas at www.nationalatlas.com, which
has curved lines for latitude and longitude.

The maps on web sites cannot generally be copied as convenient image files.
Instead, capture the screen image (using <print screen>), paste it into a pro-
gram such as PowerPoint, and crop the image to the appropriate size. Power-
Point then allows you to save just the image as a picture file (right-click the
image and choose “Save as”).

The second challenge is setting the scale for the map. This is a process of trial
and error, made easier by lining up the state boundaries on both maps.

Figure 4-17 shows an example using a map from Wikimapia that mimics the
data from Figure 4-9. The map is copied into the chart by right-clicking the chart
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and choosing “Format Plot Area.” On the right side is an option for “Fill Effects,”
which brings up the “Fill Effects” dialog box. Under the “Picture” tab, there is
the option to select a picture, which in this case is a map copied from the web. Of
course, this works for any picture, not just a map.

The advantage of a picture is that that you can include any features available
in the map. One disadvantage is that you cannot rescale the map to focus in on
particular areas.

TI P The background of a chart can be any picture that you want. Simply insert
it through the “Picture” tab on the “Fill Effects” dialog box brought up through
the “Format Plot Area” option.

Figure 4-17: This example shows data points plotted on top of a map (from Wikimapia).
The challenge in doing this is aligning the latitudes and longitudes so the points are
properly placed.

Lessons Learned

This chapter discusses one of the most important characteristics of cus-
tomers — where they live. Geography is a complicated topic; this chapter
shows how to use geographic data in SQL and Excel.
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Using geography starts with geocoding addresses to locate them in the
world. Geocoding translates points into latitudes and longitudes, and identi-
fies census blocks, and tracks, and counties, and other geographic entities.
Using the scatter plot mechanism in Excel, the latitudes and longitudes can
even be charted, in a way that resembles a map.

One of the advantages of using geography is that data from the Census
Bureau makes it possible to know about customers’ neighborhoods. The cen-
sus provides demographic and other information about regions in the country.
Fortunately, one level of the census geography is called the zip code tabulation
area (ZCTA) and these match most of the zip codes in databases. Information
such as the population of the area, the median income, the type of heating, the
level of education — and much more — is available from the Census Bureau,
for free.

Any given location is in multiple geographies. A location lies within a zip
code, within a county, within a state, within the country. This is a hierarchy of
locations. Comparing information at different levels of the hierarchy can be
quite informative. One method is to create an index of the wealthiest zip code
in each state, or the highest penetration county in each state. Such questions
use geographic hierarchies.

No discussion of geography would be complete without some discussion of
mapping. Unfortunately, the simple answer is that Excel does not support
maps, so use other software. For simply locating a point, there are resources on
the web. For fancy maps, there are more sophisticated mapping packages.

However, rudimentary mapping is quite useful and often sufficient for data
analysis. For this purpose, Excel can be a useful visualization tool, because it can
use latitude and longitude to display locations and boundaries. By using back-
ground maps, it is even possible to include many other features in the maps.

The next chapter steps away from geography and moves to the other critical
component for understanding customers: time.
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Along with geography, time is a critical dimension describing customers and
business. This chapter introduces dates and times as tools for understanding
customers. This is a broad topic. The next two chapters extend these ideas by
introducing survival analysis, the branch of statistics also known as time-to-
event analysis.

This chapter approaches time from several different vantage points. There is
the perspective of what is actually stored in the columns representing dates
and times, the years, months, days, hours, and minutes themselves. There is
the perspective of when things happen, along with ways to visualize changes
over time and year-over-year variation. Another perspective is duration, the
difference between two dates, and even how durations change over time.

The two datasets used for examples — purchases and subscribers — have
date stamps accurate to the day, rather than time stamps accurate to the
minute, second, or fraction of a second. This is not an accident. Typically for
business purposes, the date component is the most important part, so this
chapter focuses on whole dates. The ideas can readily be extended from dates
to times with hours, minutes, and seconds.

Times and dates are complex data types, comprised of six different compo-
nents and an optional seventh. Years, months, days, hours, minutes, and sec-
onds are the six. In addition, time zone information may or may not be present.
Fortunately, databases handle dates and times consistently, with functions
extracting components and operating on them. Unfortunately, each database
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has its own set of functions and peculiarities. The analyses presented in this
chapter do not rely on any one particular database’s methods for doing things;
instead, the analyses offer an approach that works broadly on many systems.
The syntax is the syntax for SQL Server. Appendix A provides equivalent syn-
tax for other databases.

The chapter starts with an overview of date and time data types in SQL and
basic types of questions to ask about such data. It continues by looking at other
columns and how their values change over time, with tips on how to do year-
over-year comparisons. The difference between two dates represents duration;
durations tie together events for each customer over a span of time. Analyzing
data over time introduces new questions, so the chapter includes forays into
questions suggested by the time-based analysis.

The chapter finishes with two useful examples. The first is determining 
the number of customers active at a given point in time. The second relies on
simple animations in Excel to visualize changes in durations over time. After
all, animating charts incorporates the time dimension directly into the presen-
tation of the results. And, such animations can be quite powerful, persuasive,
and timely.

Dates and Times in Databases

The place to start is the timekeeping system, which measures the passage of time.
For times of the day, the system is rather standardized, with twenty-four hour
days divided into sixty minutes each and each minute divided into sixty seconds.
The big issue is the time zone, and even that has international standards.

For dates, the Gregorian calendar is the calendar prevalent in the modern
world. February follows January, school starts in August or September, and
pumpkins are ripe at the end of October (in much of the Northern Hemisphere
at least). Leap years occur just about every four years by adding an extra day
to the miniature winter month of February. This calendar has been somewhat
standard in Europe for several centuries. But it is not the only calendar around.

Over the course of millennia, humans have developed thousands of calen-
dars based on the monthly cycles of the moon, the yearly cycles of the sun,
cycles of the planet Venus (courtesy of the Mayans), logic, mere expediency,
and the frequency of electrons on cesium atoms. Even in today’s rational
world with instant international communications and where most people use
the Gregorian calendar, there are some irregularities. Some Christian holidays
float around a bit from year to year, and Orthodox Christian holidays vary
from other branches of the religion. Jewish holidays jump around by several
weeks from one year to the next, while Muslim holidays cycle through the sea-
sons, because the Islamic year is shorter than the solar year. Chinese New Year
is a month later than the Gregorian New Year.
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Even rational businesses invent their own calendars. Many companies
observe fiscal years that start on days other than the first of January, and some
use a 5-4-4 system as their fiscal calendar. The 5-4-4 system describes the num-
ber of weeks in a month, regardless of whether the days actually fall in the cal-
endar month. All of these are examples of calendar systems, whose differences
strive to meet different needs.

Given the proliferation of calendars, perhaps it shouldn’t be surprising that
databases handle and manage dates and times in different ways. Each data-
base stores dates in its own internal format. What is the earliest date supported
by the database? How much storage space does a date column require? How
accurate is a time stamp? The answers are specific to the database implemen-
tation. However, databases do all work within the same framework, the famil-
iar Gregorian calendar, with its yearly cycle of twelve months. The next few
sections discuss some of the particulars of using these data types.

Some Fundamentals of Dates and Times in Databases
In databases, dates and times have their own data types. The ANSI standard
types are DATETIME and INTERVAL, depending on whether the value is absolute
or a duration. Each of these can also have a specified precision, typically in
days, seconds, or fractions of a second. The ANSI standard provides a good
context for understanding the data types, but every database handles them
differently. The aside “Storing Dates and Times in Databases” discusses differ-
ent ways that date and time values are physically stored.

This section discusses various aspects of dates and times that are fundamental
to the data types. These include the topics of extracting components, measuring
intervals, and time zones. In addition, this section introduces the Calendar table,
which can be used to describe days and is included on the companion web site.

Extracting Components of Dates and Times

There are six important components of date and time values: year, month, day
of month, hour, minute, and second. For understanding customers, year and
month are typically the most important components. The month captures sea-
sonality in customer behavior, and the year makes it possible to look at changes
in customers over longer periods of time.

Most databases and Excel support functions to extract components from
dates, where the function name is the same as the date part: YEAR(), MONTH(),
DAY(), HOUR(), MINUTE(), and SECOND(). Actually, only the first three are com-
mon to all databases (Excel supports all six). These functions return numbers,
rather than a special date-time value or string.
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STORING DATES AND TIMES IN DATABASES

Date and time values are generally presented in human-readable format. For
instance, some dispute whether the new millennium started on “2000-01-01”
or on “2001-01-01,” but we can agree on what these dates mean. Incidentally,
this format for representing dates conforms to the international standard
called ISO 8601 (http://www.iso.org/iso/en/prods-services/
popstds/datesandtime.html) and is used throughout this book.
Fortunately, most databases understand date constants in this format.

Under the hood, databases store dates and times in many different ways,
almost all of which look like meaningless strings of bits. One common way is 
to store a date as the number of days since a specific reference date, such as
1899-12-31. In this scheme, the new millennium started 36,526 days after the
reference date. Or was that 36,892 days? To the human eye, both numbers are
incomprehensible as dates. Excel happens to use this mechanism, and the
software knows how to convert between the internal format and readable
dates, especially for users familiar with setting “Number” formats on cells.

One way to store time is as fractions of a day, so noon on the first day of the
year 2000 is represented as 36,526.5. Microsoft Excel also uses this format,
representing dates and times as days and fractional days since 1899-12-31.

An alternative method for both dates and times is to store the number of
seconds since the reference date. Using the same reference day as Excel, noon
on the first day of 2000 would be conveniently represented by the number
3,155,889,600. Well, what’s convenient for software makes no sense to people.

Another approach eschews the reference date, storing values as they are in
the Gregorian calendar. That is, the year, month, day, and so on are stored
separately, typically each as half-byte or one-byte numbers. In the business
world, a date two thousand years ago is safely before the data that we work
with. Even so, as more information is stored in databases, there are some uses
for dates in ancient times, and some databases do support them.

SQL Server has two data types for dates and times. The more accurate one,
DATETIME, can represent dates from the year 1753 through the year 9999. The less
accurate SMALLDATETIME supports dates from 1900 through 2079-06-06. In both
cases, the internal format consists of two components: the date is the number of
days since a reference date and the time is the number of milliseconds or minutes
since midnight. Durations are stored using the same data types. Other databases
store dates and times in entirely different ways.

The variety of internal coding systems is a testament to the creativity of
software designers. More important than the internal coding system is the
information derived from dates and times and that information gets used.
Different databases offer similar functionality with the caveat that the syntax
may vary from product to product. Appendix A shows different syntax for some
databases for the constructs used throughout this chapter and the book.
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Converting to Standard Formats

The ISO (International Standards Organization) standard form for dates is
“YYYY-MM-DD,” where each component is prepended by zeros if necessary. So,
the first day of 2000 is “2000-01-01” rather than “2000-1-1.” There are two good
reasons for including the zeros. First, all dates have the same length as strings.
The second reason is that the alphabetical ordering is the same as the time order-
ing. Alphabetically, the string “2001-02-01” follows “2001-01-31,” just as Febru-
ary 1st follows January 31st. However, alphabetically the string “2001-1-31”
would be followed by “2001-10-01” rather than by “2001-2-01,” even though
October does not immediately follow January.

The simplest way to convert a value in Excel to a standard date is
TEXT(NOW(), “YYYY-MM-DD”). The function NOW() returns the current date and
time on the computer, as the number of days and partial days since 1899-12-31.

Unfortunately, the syntax for similar conversions in SQL depends on the
database. One way to get around the peculiarities of each database and still get
a common format is to convert the date to a number that looks like a date:

SELECT YEAR(orderdate)*10000+MONTH(orderdate)*100+DAY(orderdate)

FROM orders

The results are numbers like 20040101, which is recognizable as a date when
written without commas. In Excel, such a number can even be given the cus-
tom number format of “0000-00-00” to make it look even more like a date.

This convert-to-a-number method can be used for any combination of date
parts, such as year with month, month with day, or hour with minute. For
instance, the following query returns the number of orders and average order
size in dollars for each calendar day of the year:

SELECT MONTH(orderdate)*100+DAY(orderdate) as monthday,

COUNT(*) as numorders, AVG(totalprice) as avgtotalprice

FROM orders

GROUP BY MONTH(orderdate)*100+DAY(orderdate)

ORDER BY 1

Figure 5-1 shows the result as a line chart for each day in the year, with the
number of orders on the left axis and the average dollars on the right axis. The
average order size does not vary much during the year, although it appears a
bit higher before August than after. On the other hand, the chart shows the
expected seasonality in the number of orders, with more orders appearing in
December than in any other month. The peak in early December suggests a
lead time for the products and shipping, with customers ordering earlier to
ensure delivery by the holiday. This curve suggests that reducing the lead
times might increase impulse sales in the two or three weeks before Christmas.
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Figure 5-1: This chart uses a line chart to show the number of orders and average order
size by calendar day.

The challenge in making this chart is the scale on the horizontal axis. It is
tempting to make a scatter plot, but such a chart looks quite awkward, because
the “date” values are really numbers. There is a big gap between the values;
0131 and 0201. These would be 70 units apart on a scatter plot, even though the
corresponding dates are one day apart.

TI P Dates or times on the horizontal axis suggest using a line chart or column
chart, rather than a scatter plot. A scatter plot treats the values as numbers,
whereas the line and column charts understand date components.

The fix is to convert the numbers back into dates in Excel, using:

=DATE(2000, FLOOR(<datenum>/100, 1), MOD(<datenum>, 100))

This formula extracts the month and day portions from the number, and puts
them into a date with the year 2000. The year is arbitrary, because the chart
does not use it. The line chart does recognize dates on the horizontal axis, so
the “Number format” can be set to “Mmm” and the axis labels placed at con-
venient intervals, such as one month apart.

The right-hand axis (secondary axis) also uses an Excel trick. Notice that the
numbers line up on the decimal point, so all the “0”s are neatly stacked. This
occurs because there are spaces between the “$” and the digits for numbers
under $100. The format for this is “$??0”.

Intervals (Durations)

The difference between two dates or two times is a duration. ANSI SQL repre-
sents durations using the INTERVAL data type with a specified precision up to
any date or time part. Most databases, however, use the same data types for
durations as for dates and times.
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Logically, there are some differences between durations and dates. For
instance, durations can be negative (four days ago rather than four days in the
future). They can also take values larger than would be expected for a date or
time value. A difference between two times, for instance, might be measured
in hours and there might be more than twenty-four hours between them. Also,
durations at the level of hours might measure differences in fractions of an
hour rather than hours, minutes, and seconds.

For the purposes of analyzing customer data, these distinctions are not
important. Most analysis is at the level of dates, and durations measured in
days are sufficient. Durations in a single unit, such as days, can simply be mea-
sured as numbers.

Time Zones

Dates and times in the real world occur in a particular time zone. ANSI SQL
offers full support of time zones within the date and time values themselves,
so values in the same column on different rows can be in different time zones.
For some types of data, this is quite useful. For instance, when java scripts
return time and date information on web site visitors’ machines, the results
may be in any time zone. However, in most databases, time zone information,
if present at all, is stored in a separate column.

In practice, dates and times rarely need time zone information. Most time
stamp values come from operational systems, so all values are from the same
time zone anyway, typically the location of the operational system or the
company headquarters. It is worth remembering, though, that an online pur-
chase made at midnight might really be a lunch time order from a customer
in Singapore.

Calendar Table

The companion web site includes a table called Calendar that describes 
dates from Jan 1, 1950 to Dec 31, 2050. The table includes columns such as 
the following:

■■ Date

■■ Year

■■ Month as both a string and abbreviation

■■ Day of the week

■■ Number of days since the beginning of the year

■■ Holiday names for various holidays

■■ Holiday categories for various categories
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This table is intended to be an example of what a calendar table might contain.
Throughout the chapter, various queries that use features of dates, such as day
of the week or month, can be accomplished either using SQL functions or by
joining to the Calendar table. The purpose of including the Calendar table is
because it is useful, but not absolutely necessary, for querying purposes. How-
ever, within a single business, a Calendar table can play a more important role,
by maintaining important information about the business such as when the fis-
cal year ends, important holidays, dates of marketing campaigns, and so on.
The source of most of the holidays and categories comes from an editor called
emacs, which supports a command called “list-holidays”. Emacs is distributed
by the Free Software Foundation through the GNU project (http://www.gnu
.org/software/emacs).

Starting to Investigate Dates

This section covers some basics when looking at date columns. There are sev-
eral such columns in the companion datasets. The Subscription table contains
the start date and stop date of subscriptions. The Orders table contains the
order date, and the related Orderline table contains the billing date and ship-
ping date for each line item in the order. Throughout this chapter, all these
dates are used in examples. This section starts by looking at the date values
themselves, and continues from there.

Verifying that Dates Have No Times
When the result of a query contains a date-time value, the results sometimes
show only the date components, and not the time components. After all, the
date part is usually more interesting; and, leaving out the time reduces 
the width needed for output. This means that non-zero time values are often
not visible, which can be misleading. For instance, two dates might look equal,
with each looking like, say, 2004-01-01. In a comparison, the two dates might
not be equal because one is for noon and the other for midnight. Also, when
aggregating date columns, a separate row is created for every unique time
value — something that can result in unexpectedly voluminous results if
every date has an associated time.

Verifying that date columns have only dates is a good idea: Does this date col-
umn have any unexpected time values? The solution is to look at the hour, minute,
and second components of the date. When any of these are not zero, the date
is categorized as “MIXED”; otherwise the date is “PURE”. The following
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query counts the number of mixed and pure values in SHIPDATE in the
Orderline table:

SELECT (CASE WHEN DATEPART(hh, shipdate) = 0 AND

DATEPART(mi, shipdate) = 0 AND

DATEPART(ss, shipdate) = 0

THEN ‘PURE’ ELSE ‘MIXED’ END) as datetype,

COUNT(*), MIN(orderlineid), MAX(orderlineid)

FROM orderline ol

GROUP BY (CASE WHEN DATEPART(hh, shipdate) = 0 AND

DATEPART(mi, shipdate) = 0 AND

DATEPART(ss, shipdate) = 0

THEN ‘PURE’ ELSE ‘MIXED’ END)

This query returns only one row, indicating that all the values in the SHIP-
DATE column are pure dates. If any were mixed, the ORDERLINEIDs could
be investigated further. In fact, all the date columns in the companion database
tables are pure. If, instead, some dates were mixed, we would want to elimi-
nate the time values before using them in queries designed for dates.

Comparing Counts by Date
Often, just looking at the number of things that happen on a particular date is
useful. The following SQL query counts the number of order lines shipped on
a given day:

SELECT shipdate, COUNT(*)

FROM orderline

GROUP BY shipdate

ORDER BY 1

This is a basic histogram query for the shipping date, which was discussed in
Chapter 2. A similar query generates the histogram for the billing date. The
next sections look at counting more than one date column in a single query,
and counting different things, such as customers rather than order lines.

Orderlines Shipped and Billed

A follow-on question is: How many orderlines shipped each day and how many
billed each day? The ship date and bill date are both columns in the Orderline
table. At first, this might seem to require two queries. Although a possible
solution, that method is messy, because the results then have to be combined
in Excel.

Chapter 5 ■ It’s a Matter of Time 193

99513c05.qxd:WileyRed  8/27/07  12:34 PM  Page 193



A better approach is to get the results in a single query, which might suggest
a self-join, such as:

SELECT shipdate, numship, numbill

FROM (SELECT shipdate, COUNT(*) as numship

FROM orderline

GROUP BY shipdate) s LEFT OUTER JOIN

(SELECT billdate, COUNT(*) as numbill

FROM orderline

GROUP BY billdate) b

ON s.shipdate = b.billdate

ORDER BY 1

This query is incorrect, though. Some dates might have bills but no shipments;
if so, these dates are lost in the join operation. The opposite problem, dates
with shipments but no bills, is handled by the LEFT OUTER JOIN. One solution
is to replace the LEFT OUTER JOIN with a FULL OUTER JOIN. This keeps rows in
both tables; however, the FULL OUTER JOIN works only because both sub-
queries are summarized by date.

TI P LEFT and RIGHT OUTER JOIN keeps rows from one table but not both.
When you need rows from both tables, the right solution is probably UNION ALL
or FULL OUTER JOIN.

Another solution is to use the UNION ALL operator, which brings together all
the rows from two tables:

SELECT thedate, SUM(isship) as numships, SUM(isbill) as numbills

FROM ((SELECT shipdate as thedate, 1 as isship, 0 as isbill

FROM orderline

) UNION ALL

(SELECT billdate as thedate, 0 as isship, 1 as isbill

FROM orderline)) a

GROUP BY thedate

ORDER BY 1

The first subquery chooses the shipping date, setting the ISSHIP flag to one and
the ISBILL flag to zero. The second chooses the billing date, setting the flags 
in the reverse way. The aggregation then counts the number of shipments and
bills on each date. If nothing is shipped on a particular date and something 
is billed, the date appears with the value of NUMSHIPS set to zero. If nothing is
shipped or billed on a particular date, that date does not appear in the output.

To include all dates between the first and last, we would need a source of
dates when nothing happens. Including the Calendar table as an additional
subquery would accomplish this; the subquery would have both ISSHIP and
ISBILL set to zero.

By the way, this is the type of question where it makes a difference whether
the dates have a time component. With time components, two order lines
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shipped or billed on the same date, but at different times, would appear as two
rows in the output rather than one.

Figure 5-2 shows the resulting chart for just the year 2015 as a line chart
(because the horizontal axis is a date). This chart is difficult to read, because the
number shipped and number billed track each other so closely. In fact, there is
a one-day lag between the two, which makes patterns very difficult to see.

Figure 5-2: The number of items in an order and the number billed so closely track each
other that the chart is difficult to read.

One way to see how closely correlated two curves are is to use the CORREL()
function in Excel to calculate the correlation coefficient, a value between minus
one and one, with zero being totally uncorrelated, minus one negatively corre-
lated, and one positively correlated. The correlation coefficient for the two series
is 0.46, which is high, but not that high. On the other hand, the correlation coeffi-
cient between NUMSHIPS lagged by one day and NUMBILLS is 0.95, which says
that the value of SHIPDATE is highly correlated with BILLDATE minus one.

Customers Shipped and Billed

Perhaps more interesting than the number of order lines shipped each day is
the question: How many customers were sent shipments and bills on each day? For
this query, a customer might have an order with multiple shipping and billing
dates. Such customers would be counted multiple times, once for each date.

The approach to this query is similar to the previous query. However, the
subqueries in the UNION ALL statement are aggregated prior to the UNION ALL
operation, and the aggregations count the number of distinct customers:

SELECT thedate, SUM(numship) as numships, SUM(numbill) as numbill,

SUM(numcustship) as numcustship, SUM(numcustbill) as numcustbill
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FROM ((SELECT shipdate as thedate, COUNT(*) as numship, 0 as numbill, 

COUNT(DISTINCT customerid) as numcustship,

0 as numcustbill

FROM orderline ol JOIN orders o ON ol.orderid = o.orderid

GROUP BY shipdate

) UNION ALL

(SELECT billdate as thedate, 0 as numship, COUNT(*) as numbill,

0 as numcustship,

COUNT(DISTINCT customerid) as numcustbill

FROM orderline ol JOIN orders o ON ol.orderid = o.orderid

GROUP BY billdate)) a

GROUP BY thedate

ORDER BY 1

The results for this query look essentially the same as the results for the previ-
ous query, because for most customers, there is only one order with one ship
date and bill date.

Number of Different Bill and Ship Dates per Order

That last statement is worth verifying: How many different order and ship dates
are there for a given order? This question is not about time sequencing, but it is
interesting nonetheless:

SELECT numbill, numship, COUNT(*) as numorders, MIN(orderid), MAX(orderid)

FROM (SELECT orderid, COUNT(DISTINCT billdate) as numbill,

COUNT(DISTINCT shipdate) as numship

FROM orderline

GROUP BY orderid) a

GROUP BY numbill, numship

ORDER BY 1, 2

This query uses COUNT(DISTINCT) in the subquery to get the number of bill
dates and ship dates for each order. These are then summarized for all orders.

The results in Table 5-1 confirm that almost all orders have a single value
for order date and a single value for ship date. This makes sense, because
most orders have only one order line. The table also shows that when there
are multiple dates, there are typically the same number of bill dates and ship
dates. The policy on billing is that customers only get billed when the items
are shipped. In other words, every date that something is shipped results in
a bill. There are 61 exceptions. In actual practice, it might be worth investi-
gating further to determine whether there is an occasional violation of 
this policy.
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Table 5-1: Number of Orders Having b Bill Dates and s Ship Dates

# BILL DATES # SHIP DATES # ORDERS % OF ORDERS

1 1 181,637 94.1%

1 2 8 0.0%

2 1 35 0.0%

2 2 10,142 5.3%

2 3 1 0.0%

3 2 10 0.0%

3 3 999 0.5%

3 4 2 0.0%

4 3 3 0.0%

4 4 111 0.1%

5 4 1 0.0%

5 5 23 0.0%

6 4 1 0.0%

6 6 9 0.0%

17 17 1 0.0%

Counts of Orders and Order Sizes
Business changes over time, and understanding these changes is important for
managing the business. Two typical questions are: How many customers place
orders in each month? How does an average customer’s monthly order size change over
time? The first question is unambiguous, and answered by the following query:

SELECT YEAR(orderdate) as year, MONTH(orderdate) as month,

COUNT(DISTINCT customerid) as numcustomers

FROM orders o

GROUP BY YEAR(orderdate), MONTH(orderdate)

ORDER BY 1

The second question is ambiguous. How many “items” as measured by the
number of units in each customer’s purchases? How many distinct products,
as measured by distinct product IDs in each customer’s order? How has the
average amount spent per customer order changed? The next three subsec-
tions address each of these questions.
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Items as Measured by Number of Units

Determining the number of units is easily answered using the Orders table
and is a simple modification to the customer query. The SELECT statement
needs to include the following additional variables:

SELECT SUM(numunits) as numunits,

SUM(numunits) / COUNT(DISTINCT customerid) as unitspercust

This query combines all orders from a single customer during a month, rather
than looking at each order individually. So, if a customer places two orders in
the same month, and each has three units, the query returns an average of six
units for that customer, rather than three. The original question is unclear on
how to treat customers who have multiple orders during the period.

If instead we wanted the customer to count as having three units, the query
would look like:

SELECT SUM(numunits) as numunits,

SUM(numunits) / COUNT(*) as unitspercustorder

This takes all the units and divides them by the number of orders, rather  than
the number of customers. There is a subtle distinction between counting the
average units per order and the average per customer. Both are equally easy to
calculate, but they result in different numbers.

Items as Measured by Distinct Products

In Chapter 2, we saw that some orders contain the same product on multiple
order lines. With this in mind, another way to approach the original question
might be by calculating two values. The first is the average number of products
per order in a month. The second is the average number of products per cus-
tomer per month. These quantities can be calculated by first aggregating the
order lines at the order level and then aggregating again by year and month:

SELECT YEAR(orderdate) as year, MONTH(orderdate) as month,

COUNT(*) as numorders, COUNT(DISTINCT customerid) as numcusts,

SUM(prodsperord) as sumprodsperorder,

SUM(prodsperord)*1.0/COUNT(*) as avgperorder,

SUM(prodsperord)*1.0/COUNT(DISTINCT customerid) as avgpercust

FROM (SELECT o.orderid, customerid, orderdate,

COUNT(DISTINCT productid) as prodsperord

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid

GROUP BY o.orderid, customerid, orderdate ) a

GROUP BY YEAR(orderdate), MONTH(orderdate)

ORDER BY 1, 2
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One notable feature in this query is the multiplication by 1.0. This ensures that
the division operation is done on floating-point numbers rather than integers,
so three divided by two is 1.5 rather than 1.

It turns out that the average products per order and per customer are pretty
much the same on a monthly basis. Figure 5-3 shows the results of the query,
with the number of customers plotted on the left axis and the average prod-
ucts per order plotted on the right. This chart shows peaks in the average
products in an order. Most months have a bit over one product per order, but
October 2014 and May 2015 peak at twice that value.

Figure 5-3: The size of orders as measured by average number of products per order
changes from month to month.

Such unexpected peaks suggest further analysis: Is there anything different
about the products being ordered in different months? One way to answer this ques-
tion is to look at information about the most popular product in each month.
The new question is: What is the product group of the most popular product during
each month?

To find the most popular product, the frequencies of all products in each
month are compared to the maximum frequency for that month, as shown by
the dataflow diagram in Figure 5-4 and by the following query:

SELECT prodmon.yr, prodmon.mon, prodmon.cnt, p.productgroupname

FROM (SELECT YEAR(orderdate) as yr, MONTH(orderdate) as mon,

productid, COUNT(*) as cnt

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid

GROUP BY YEAR(orderdate), MONTH(orderdate), productid

) prodmon JOIN

(SELECT yr, mon, MAX(cnt) as maxcnt

FROM (SELECT YEAR(orderdate) as yr, MONTH(orderdate) as mon,

productid, COUNT(*) as cnt

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid

GROUP BY YEAR(orderdate), MONTH(orderdate), productid) c
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GROUP BY yr, mon

) prodmax

ON prodmon.yr = prodmax.yr AND prodmon.mon = prodmax.mon AND

prodmon.cnt = prodmax.maxcnt JOIN

product p

ON prodmon.productid = p.productid

ORDER BY 1, 2

The first subquery for Prodmon calculates the frequency of each product during
each month. The second subquery for Prodmax calculates the maximum fre-
quency in each month, where the first subquery is repeated as a sub-subquery.
These are joined together to get the most frequent product id for each month.
The final join to the product table looks up the name of the product group for
this product.

Figure 5-5 shows the frequency and product group of the most frequent
product for each month. In October 2014 the FREEBIE product group appears
for the first time, and the high peaks in November and December are for
FREEBIE products. Presumably, there was a marketing offer during this time
giving customers a free product in many orders. This also explains why the
average order size increases by about one product during this time. It looks
like a similar offer was tried again six months later, but to lesser effect.

Figure 5-4: This dataflow diagram shows the processing for finding the most popular
product in each month and returning its product group name.
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product 
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Figure 5-5: The most popular product group varies from month to month.

The chart in Figure 5-5 is a stacked column chart. The original data is in a
tabular format, with columns for year, month, the product category, and the
frequency. In Excel, an additional column is added for each product; the value
in the cells is the frequency for the product group that matches the column and
zero otherwise. When plotted as a stacked column chart, the groups with zero
counts disappear, so only the most popular is shown. Figure 5-6 shows a
screen shot of the Excel formulas that accomplish this. 

TI P Stacked column charts can be used to show one value for each category —
such as information about the most popular product for each month.

Figure 5-6: This Excel screen shot shows the formulas used to pivot the product group
data for the groups ARTWORK and APPAREL for the stacked column chart in the previous
figure. Formulas for other groups are similar.

Size as Measured by Dollars

Back to measuring the order size. Perhaps the most natural measurement is
dollars. Because the Orders table contains the TOTALPRICE column, it is easy
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to calculate the average dollars per order or the average per customer on a
monthly basis:

SELECT YEAR(orderdate) as year, MONTH(orderdate) as month,

COUNT(*) as numorders, COUNT(DISTINCT customerid) as numcust,

SUM(totalprice) as totspend, 

SUM(totalprice)*1.0/COUNT(*) as avgordersize,

SUM(totalprice)*1.0/COUNT(DISTINCT customerid) as avgcustorder

FROM orders o

GROUP BY YEAR(orderdate), MONTH(orderdate)

ORDER BY 1, 2

Figure 5-7 shows a “cell” chart of the results. The order size tends to increase
over time, although there were some months with large average order sizes
early on.

Figure 5-7: This bar chart is shown in Excel cells rather than as a chart. This is a good
approach when there are too many rows to fit easily into a chart.

The results use a clever mechanism for creating bar charts directly in spread-
sheet cells, rather than in a separate chart. Such a mechanism is useful for
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showing summaries next to a row of data. The idea is credited to the folks at
Juice Analytics through their blog at http://www.juiceanalytics.com/
weblog/?p=236.

The idea is quite simple. The bar chart consists of repeated strings of verti-
cal bars, where the bars are formatted to be in the Ariel 8-point font (another
option Webdings font at about 4-points for a solid bar). The specific formula is
“=REPT(“|”, <cellvalue>)”. The function REPT() creates a string by repeat-
ing a character the number of times specified in the second argument. Because
only the integer portion of the count is used, fractions are not represented in
the length of the bars.

Days of the Week
Many business events occur on weekly cycles, with different days of the week
(DOWs) having different characteristics. Monday might be a busy time for
starts and stops, because of pent-up demand over the weekend. Business oper-
ations can determine day of week effects as well. Customers are usually iden-
tified as late payers (and forced to stop, for instance) during the billing
processing, which may be run on particular days of the month or on particular
days of the week. This section looks at various ways of analyzing days of the
week. Later in the chapter we’ll look at how to count the number of times a
given day occurs between two dates.

Billing Date by Day of the Week

How many order lines are billed on each day of the week? This seems like an easy
question, but it has a twist: there is no standard way to determine the DOW in
SQL. One way around this is to do the summaries in Excel. Histograms for
billing dates were calculated earlier. In Excel, the following steps summarize
by day of the week:

■■ Determine the day of the week for each date, using the TEXT() function.
(TEXT(<date>, “Ddd”) returns the three-letter abbreviation.

■■ Summarize the data, using SUMIF() or pivot tables.

Table 5-2 shows that Tuesday is the most common day for billing and Mon-
day the least common. Calculating these results is also possible in SQL. The
simplest method is to use an extension to get the day of the week, such as this
version using SQL Server syntax:

SELECT billdow, COUNT(*) as numbills

FROM (SELECT o.*, DATENAME(dw, billdate) as billdow FROM orderline o) o

GROUP BY billdow

ORDER BY (CASE WHEN billdow = ‘Monday’ THEN 1

WHEN billdow = ‘Tuesday’ THEN 2

WHEN billdow = ‘Wednesday’ THEN 3

(continued)
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WHEN billdow = ‘Thursday’ THEN 4

WHEN billdow = ‘Friday’ THEN 5

WHEN billdow = ‘Saturday’ THEN 6

WHEN billdow = ‘Sunday’ THEN 7 END)

The most interesting part of the SQL statement is the ORDER BY clause. Order-
ing the days of the week alphabetically would result in: Friday, Monday, Sat-
urday, Sunday, Thursday, Tuesday, Wednesday — a nonsensical ordering. SQL
does not understand the natural ordering to the names. The solution is to use
the CASE statement in the ORDER BY clause to assign the days of the week num-
bers that can be sorted correctly.

TI P Using a CASE statement in an ORDER BY clause allows you to order
things, such as days of the week, the way you want to see them.

Table 5-2: Number of Units Billed by Day of the Week

DAY OF WEEK NUMBER OF BILLS

Monday 17,999

Tuesday 61,019

Wednesday 61,136

Thursday 54,954

Friday 49,735

Saturday 32,933

Sunday 8,241

Changes in Day of the Week by Year

A natural extension is looking at changes over time: Has the proportion of bills by
day of the week changed over the years? This can be answered by manipulating the
day-by-day data in Excel. It is also possible to answer the question directly
using SQL. The following query outputs a table with rows for years and
columns for days of the week:

SELECT YEAR(billdate) as theyear,

AVG(CASE WHEN dow = ‘Monday’ THEN 1.0 ELSE 0 END) as Monday,

. . .

AVG(CASE WHEN dow = ‘Sunday’ THEN 1.0 ELSE 0 END) as Sunday

FROM (SELECT ol.*, DATENAME(dw, billdate) as dow FROM orderline ol) ol

GROUP BY YEAR(billdate)

ORDER BY 1
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Table 5-3 shows the results. Monday and Saturday stand out as having the
largest variance from one year to the next. It suggests that something has
changed from year to year, such as operations changing to prefer one day over
another. Or, perhaps the date recorded as the billing date is changing due to
systems issues, and the underlying operations remain the same. The results
only show that something is changing; they do not explain why.

Table 5-3: Proportion of Order Lines Billed on Each Day of the Week, by Year

YEAR MON TUE WED THU FRI SAT SUN

2009 0.1% 21.1% 22.0% 15.2% 25.5% 14.1% 2.1%

2010 1.4% 27.5% 17.1% 22.0% 17.5% 13.1% 1.5%

2011 11.2% 21.9% 25.9% 18.4% 13.6% 5.0% 4.1%

2012 4.8% 22.9% 19.3% 18.5% 17.2% 14.7% 2.6%

2013 1.4% 20.2% 19.3% 16.3% 20.8% 17.3% 4.7%

2014 1.5% 18.6% 22.5% 21.0% 18.5% 15.5% 2.4%

2015 16.1% 22.8% 19.7% 19.8% 14.2% 4.0% 3.3%

2016 4.7% 19.5% 24.7% 18.4% 19.2% 13.1% 0.3%

Comparison of Days of the Week for Two Dates

The STARTDATE and STOPDATE columns in the Subs table contain the start
and stop dates of customers of a mobile telephone company. When there are
two dates that describe such customer behaviors, a natural question is: What is
the relationship between the days of the week when customers start and the days of the
week when customers stop? The following SQL query answers this question:

SELECT startdow,

AVG(CASE WHEN stopdow = ‘Monday’ THEN 1.0 ELSE 0 END) as Mon,

. . . 

AVG(CASE WHEN stopdow = ‘Sunday’ THEN 1.0 ELSE 0 END) as Sun

FROM (SELECT s.*, DATENAME(dw, start_date) as startdow,

DATENAME(dw, stop_date) as stopdow

FROM subs s) s

WHERE startdow IS NOT NULL AND stopdow IS NOT NULL

GROUP BY startdow

ORDER BY (CASE WHEN startdow = ‘Monday’ THEN 1

. . . 

WHEN startdow = ‘Sunday’ THEN 7 END)
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The results in Table 5-4 show very little correlation between the start dates and
stop dates of customers. Each row in the table is for all customers who start on
a particular day of the week, broken out by the day of the week of the stops.
More customers are likely to stop on a Thursday than any other day, regardless
of the day they started. And fewer customers are likely to stop on a Wednes-
day, regardless of the day they started.

Table 5-4: Proportion of Stops by Day of Week Based on Day of Week of Starts

START DAY STOP DAY OF WEEK
OF WEEK MON TUE WED THU FRI SAT SUN

Monday 13.7% 11.0% 5.2% 22.4% 18.7% 15.0% 13.9%

Tuesday 12.9% 10.7% 7.6% 22.9% 18.2% 14.5% 13.2%

Wednesday 12.6% 9.9% 7.4% 23.9% 18.6% 14.7% 13.0%

Thursday 13.5% 9.5% 4.4% 21.5% 20.4% 16.1% 14.4%

Friday 13.9% 9.6% 4.2% 21.3% 18.6% 16.9% 15.5%

Saturday 14.7% 9.8% 4.4% 21.5% 18.4% 15.2% 16.0%

Sunday 15.4% 10.3% 4.6% 21.9% 18.5% 15.0% 14.3%

How Long between Two Dates?

The previous section looked at two dates and some relationships between
them. Perhaps the most natural relationship is the duration between them.
This section looks at differences between dates in different time units: days,
months, years, and by the number of specific days of the week. Surprisingly,
durations at each of these levels is interesting, because the different levels
reveal different types of information.

Duration in Days
The BILLDATE and SHIPDATE columns provide a good place to start with
investigating duration, particularly in conjunction with the ORDERDATE col-
umn in Orders. Two natural questions are: How long after the order is placed are
items shipped? How long after the order is placed are items billed?

These questions are about durations. In most dialects of SQL, simply sub-
tracting one date from the other calculates the duration between them. This
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also works in Excel, but Microsoft SQL uses the DATEDIFF() function instead.
The following answers the first question about shipping dates:

SELECT DATEDIFF(dd, o.orderdate, ol.shipdate) as days, COUNT(*) as numol

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid

GROUP BY DATEDIFF(dd, o.orderdate, ol.shipdate)

ORDER BY 1

Notice that this query is actually counting order lines, which makes sense
because a single order has multiple ship dates.

The results are shown in Figure 5-8. In a handful of cases the ship date is
before the order date. Perhaps this is miraculous evidence of customer insight
and service — sending customers what they want even before the orders are
placed. Or, perhaps the results are preposterous, suggesting a problem in the
data collection for the twenty-eight orders where this happens. At the other
extreme, the delay from ordering to shipping for a handful of orders is mea-
sured in hundreds of days, a very long lead time indeed.

Figure 5-8: The delay from ordering to shipping is shown here, both as a histogram and
a cumulative proportion.

The cumulative proportion in the chart shows that about three quarters of
order lines are fulfilled within a week. This fulfillment time is an important
measure for the business. However, an order should be considered fulfilled
only when the last item has been shipped, not the first. Calculating the time to
fulfill the entire order requires an additional aggregation:

SELECT DATEDIFF(dd, orderdate, fulfilldate) as days, COUNT(*) as numorders

FROM (SELECT o.orderid, o.orderdate, MAX(ol.shipdate) as fulfilldate

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid
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GROUP BY o.orderid, o.orderdate) o

GROUP BY DATEDIFF(dd, orderdate, fulfilldate)

ORDER BY 1

This query summarizes the orders in the subquery to get the fulfillment date.
It aggregates by both ORDERID and ORDERDATE. Strictly speaking, only
ORDERID is necessary because there is only one date per order. However,
including ORDERDATE in the GROUP BY is simpler than including
MIN(ORDERDATE) as ORDERDATE.

Table 5-5 shows the cumulative fulfillment by days after the order for the
first ten days. One column is by order (that is, when the last item is fulfilled)
and the other is by item. Although 73% of items are shipped within a week,
70% of orders have all their items shipped within a week.

Table 5-5: Days to Fulfill Entire Order

DAYS COUNT CUMULATIVE PROPORTION

0 10,326 5.4%

1 42,351 27.3%

2 22,513 39.0%

3 17,267 47.9%

4 14,081 55.2%

5 11,115 61.0%

6 9,294 65.8%

7 8,085 70.0%

8 5,658 72.9%

9 4,163 75.1%

10 3,373 76.8%

Duration in Weeks
Duration in weeks is calculated directly from days. The number of weeks is the
number of days divided by seven:

SELECT FLOOR(DATEDIFF(dd, orderdate, fulfilldate)/7) as weeks, . . .

. . .

GROUP BY FLOOR(DATEDIFF(dd, orderdate, fulfilldate)/7)

Notice that this query uses the FLOOR() function to eliminate any fractional
part. One advantage of using weeks is when data is relatively sparse, because
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a week brings together more instances than a day. Another advantage is when
there is a natural weekly cycle to the data. For instance, if orders were not
shipped or billed on weekends, then that would introduce a weekly cycle.
Summarizing by weeks removes the extraneous cycle within a week, making
longer-term patterns more visible.

Duration in Months
Measuring the number of months between two dates is more challenging than
measuring the number of day or weeks. The problem is that two dates might dif-
fer by 30 days and be one month apart (say, 15 April and 15 May) or might be
zero months apart (say, 1 Jan and 31 Jan). A good approximation is to divide the
difference in days by 30.4, the average number of days in a month. Another
approach is to do an exact calculation, based on the following rules:

■■ The duration in months between two dates in the same month is zero.
So, the duration between 2000-01-01 and 2000-01-31 is zero months.

■■ The duration in months between a date in one month and a date in the
next month depends on the day of the month. The duration is zero when
the day in the second month is less than the day in the first month. So, the
duration between 2000-01-01 and 2000-02-01 is one month. The duration
between 2000-01-31 and 2000-02-01 is zero months.

The following query does the duration calculation, using the start dates and
stop dates in the subscription table:

SELECT ((YEAR(s.stop_date)*12+MONTH(s.stop_date)) - 

(YEAR(s.start_date)*12+MONTH(s.start_date)) -

(CASE WHEN DAY(s.stop_date) < DAY(s.start_date)

THEN 1 ELSE 0 END)

) as tenuremonths, s.*

FROM subs s

WHERE s.stop_date IS NOT NULL

The calculation uses the idea of calculating the number of months since the
year zero and then taking the difference. The number of months since year
zero is the year times twelve plus the month number. One adjustment is
needed. This adjustment takes care of the situation when the start date is later
in the month than the stop date. The extra month has not gone by, so the dif-
ference has over-counted by one.

An alternative is to use built-in functions, if they are available. In Microsoft
SQL, the expression DATEDIFF(m, start_date, stop_date) calculates the
number of months between two dates.
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How Many Mondays?
Normally, durations are measured in units of time, such as the days, weeks,
and months between two dates. Sometimes, though, understanding mile-
stones between two dates, such as the number of birthdays or the number of
school days, is important.

This section goes into detail on one particular example, finding the number of
times that a specific day of the week occurs between two dates. This is motivated
by a specific business problem. In addition, this section illustrates taking a busi-
ness problem and some observations on how to solve it, converting the observa-
tions into rules, and implementing the rules in SQL to address the problem.

A Business Problem about Days of the Week

This example originated at a newspaper company studying its home delivery
customers. The newspaper customer database typically contains the start and
stop dates of each customer’s subscription, similar to the information in the
Subs table. In the newspaper industry, though, not all days of the week are cre-
ated equal. In particular, Sunday papers are more voluminous and more
expensive, filled with more advertising, and their circulation is even counted
differently by the organization that audits newspaper circulation, the aptly
named Audit Bureau of Circulation.

This newspaper was interested in knowing: How many Sunday copies did any
given home delivery customer receive? This question readily extends to the num-
ber of copies received on any day of the week, not just Sunday. And more gen-
erally, for any two dates, the same techniques can count the number of
Sundays and Mondays and Tuesdays and so on between them. This section
shows how to do this calculation in SQL using the subscription data. Why SQL
and not Excel? The answer is that there are many start dates, and many stop
dates, and many, many combinations of the two. The data simply does not fit
into a worksheet, so SQL is needed to do the heavy lifting.

Outline of a Solution

The approach relies on several observations. The first is that complete weeks
are easy, so customers whose start and stop dates differ by a multiple of seven
days have equal numbers of Sundays and Mondays and Tuesdays and so on
between the dates. And, that number is the number of weeks between the
dates. For any two dates, we can subtract complete weeks from the later one
until there are zero to six days left over. The problem is half solved.

When complete weeks are subtracted out, the problem reduces to the fol-
lowing. Given a start date and a period of zero to six days, how often does each day of
the week occur during this period? Periods longer than six days have been taken
care of by subtracting out complete weeks.
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Table 5-6 is a lookup table that answers this question for Wednesdays. The
first row says that if the start date is Sunday, there have to be at least four days
left over in order to have a Wednesday in the period. Notice that the first col-
umn is all zeros, which occurs when the difference between the dates is a
whole number of weeks. In this case, all the days are accounted for in the first
part of the calculation.

Table 5-6: Extra Wednesday Lookup Table, Given Start Day of Week and Days Left Over

START DAY DAYS LEFT OVER
OF WEEK 0 1 2 3 4 5 6

Sunday (1) NO NO NO NO YES YES YES

Monday (2) NO NO NO YES YES YES YES

Tuesday (3) NO NO YES YES YES YES YES

Wednesday (4) NO YES YES YES YES YES YES

Thursday (5) NO NO NO NO NO NO NO

Friday (6) NO NO NO NO NO NO YES

Saturday (7) NO NO NO NO NO YES YES

Unfortunately, there is a separate table for each day of the week. Can we deter-
mine this information without a plethora of lookup tables? There is a way, and
although it is a bit cumbersome arithmetically it provides a nice illustration of
observing rules and implementing them in SQL. This method rests on two addi-
tional rules, which in turn need two variables. The first is LEFTOVER, the num-
ber of days left over after all the complete weeks have been counted. The second
is the day of the week as a number, which for convention we are taking to start on
Sunday as one through Saturday as seven (this is the default convention for the
Excel function WEEKDAY()). With this information, the following rules tell us
whether a Wednesday, whose number is four, is included in the leftover days:

■■ If the start day of the week falls on or before Wednesday, then Wednes-
day is included when the start day of the week number plus the left-
over days is greater than five. For example, if someone starts on a
Sunday (value one), then leftover days needs to be at least four.

■■ If the start day of the week is after Wednesday, then Wednesday is
included when the start day of the week number plus the leftover days
is greater than eleven. For instance, if someone starts on a Saturday
(value seven), then leftover days needs to be at least five.
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These generalize to the following rules, where DOW is the day we are look-
ing for:

■■ If the start day of the week is on or before DOW, then DOW is included
when the start day of the week number plus the leftover days is greater
than the DOW number.

■■ If the start day of the week is after DOW, then DOW is included when
the start day of the week number plus the leftover days is greater than
seven plus the DOW number.

The next section builds the rules in SQL.

Solving It in SQL

To implement this in SQL, three columns need to be defined. WEEKSBE-
TWEEN is the number of complete weeks between the two dates; this is cal-
culated by taking the duration in days, dividing by seven, and ignoring the
remainder. LEFTOVER is the days left over after all the weeks have been
counted. DOWNUM is the day of week number determined using a CASE
statement on the day of week name. These columns are defined using
nested subqueries:

SELECT s.*, (weeksbetween +

(CASE WHEN (downum <= 1 AND downum + leftover > 1) OR

(downum > 1 AND downum + leftover > 7+1) 

THEN 1 ELSE 0 END)) as Sundays,

(weeksbetween +

(CASE WHEN (downum <= 2 AND downum + leftover > 2) OR

(downum > 2 AND downum + leftover > 7+2)

THEN 1 ELSE 0 END)) as Mondays

FROM (SELECT daysbetween, FLOOR(daysbetween/7) as weeksbetween,

daysbetween - 7*FLOOR(daysbetween/7) as leftover,

(CASE WHEN startdow = ‘Monday’ THEN 1

. . .

WHEN startdow = ‘Sunday’ THEN 7 END) downum 

FROM (SELECT s.*, DATENAME(dw, start_date) as startdow,

DATEDIFF(dd, stop_date, start_date

) as daysbetween

FROM subs s

WHERE s.stop_date IS NOT NULL

) s

) s

The outermost query calculates the number of Sundays and Mondays between
the start date and stop date using the two rules. Other days of the week follow
the same logic as these counts.
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Using a Calendar Table Instead

An alternative method would be to use the Calendar table, if one is available.
So the following query expresses what needs to be done:

SELECT s.customerid,

SUM(CASE WHEN c.dow = ‘Mon’ THEN 1 ELSE 0 END)as Monday

FROM subs s JOIN

calendar c

ON c.date BETWEEN s.start_date AND s.stop_date - 1

WHERE s.stop_date IS NOT NULL

GROUP BY s.customerid

This query has many advantages in terms of readability and understandabil-
ity. The only downside is performance. The join operation creates an interme-
diate table with one row for every calendar date between the start date and
stop date, potentially multiplying the number of rows by hundreds or thou-
sands. This query has very poor performance.

If counting weekdays is important, there is a more efficient method both in
terms of representation and performance. The Calendar table has seven addi-
tional columns, which count the number of each day of the week since some
reference date. So, MONDAYS is the number of Mondays since the reference
date. The following query uses these columns:

SELECT s.*, (cstop.mondays - cstart.mondays) as mondays

FROM subs s JOIN calendar cstart ON cstart.date = s.start_date JOIN

calendar cstop ON cstop.date = s.stop_date

WHERE s.stop_date IS NOT NULL

This method joins the Calendar table twice to the Subs table to look up the
MONDAYS value for both the start and stop dates. The number of Mondays
between them is just the difference between these values.

Year-over-Year Comparisons

The previous year usually provides the best comparison for what is happening
the following year. This section talks about such comparisons, with particular
emphasis on one of the big challenges. This year’s data is usually not com-
plete, so how can we make a valid comparison?

Comparisons by Day
The place to start is with day-by-day comparisons from one year to the next.
Here is a method where much of the work is done in Excel:

1. Query the database and aggregate by date.
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2. Load the data into Excel, with all the dates in one column.

3. Pivot the data, so there are 366 rows (for each day in the year) and a
separate column for each year.

This is actually more work than necessary. An easier way is to use the MONTH(),
DAY(), and YEAR() functions in SQL to create the resulting table directly, as in the
following example using starts from the subscription database:

SELECT MONTH(start_date) as mon, DAY(start_date) as dom,

SUM(CASE WHEN startyear = 2004 THEN 1 ELSE 0 END) as n2004,

SUM(CASE WHEN startyear = 2005 THEN 1 ELSE 0 END) as n2005,

SUM(CASE WHEN startyear = 2006 THEN 1 ELSE 0 END) as n2006

FROM (SELECT s.*, YEAR(start_date) startyear FROM subs s) s

WHERE startyear in (2004, 2005, 2006)

GROUP BY MONTH(start_date), DAY(start_date)

ORDER BY 1, 2

Figure 5-9 shows the results as a line chart with three series. There is a
weekly cycle of peaks and valleys for all three years. The chart illustrates that
starts in 2006 are lower than in the other years during most months.

Figure 5-9: This line chart shows the pattern of starts by day throughout the year for
three years.

The chart is a line chart so the horizontal axis can be a date. The date is cal-
culated in Excel as a new column, using the DATE() function on the month and
day values in each row. In the chart, the horizontal axis is this date column,
whose “Number” format is set to “Mmm” to display only the month. The scale
is set to show tick marks every month.

Adding a Moving Average Trend Line

A pattern of starts by within weeks (by weekday) can interfere with seeing
larger trends. One way to fix this is by adding a trend line with a seven-day
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moving average. Figure 5-9 also shows the trend line along with the original
data. The seven-day moving average eliminates the weekly cycle.

To add the trend line, left-click a series to select it. Then right-click and
choose the “Add Trendline” option. In the dialog box, “Moving Average” is
the option on the lower right, with the width of the moving average in the
“Period” box. Change the default value to seven to eliminate weekly cycles,
and then click “OK” to finish.

Comparisons by Week

An alternative way of eliminating the bumpiness is to aggregate the data at the
weekly level rather than at the daily level. This is a little bit tricky, because SQL
does not have a function that returns the week number of the year, so we have
to calculate it by calculating the number of days since the beginning of the year
and dividing by seven:

SELECT (CASE WHEN startyear = 2004

THEN FLOOR(DATEDIFF(dd, ‘2004-01-01’, start_date)/7)

WHEN startyear = 2005

THEN FLOOR(DATEDIFF(dd, ‘2005-01-01’, start_date)/7)

WHEN startyear = 2006

THEN FLOOR(DATEDIFF(dd, ‘2006-01-01’, start_date)/7)

END) as weekofyear,

SUM(CASE WHEN startyear = 2004 THEN 1 ELSE 0 END) as n2004,

SUM(CASE WHEN startyear = 2005 THEN 1 ELSE 0 END) as n2005,

SUM(CASE WHEN startyear = 2006 THEN 1 ELSE 0 END) as n2006

FROM (SELECT s.*, YEAR(start_date) as startyear FROM subs s) s

WHERE startyear in (2004, 2005, 2006)

GROUP BY (CASE WHEN startyear = 2004

THEN FLOOR(DATEDIFF(dd, ‘2004-01-01’, start_date)/7)

WHEN startyear = 2005

THEN FLOOR(DATEDIFF(dd, ‘2005-01-01’, start_date)/7)

WHEN startyear = 2006

THEN FLOOR(DATEDIFF(dd, ‘2006-01-01’, start_date)/7)

END)

ORDER BY 1

The SQL statement explicitly lists each year when calculating WEEKOFYEAR;
being explicit has the advantage of being more understandable.

An alternative method is perhaps more cryptic, but is preferable because the
years do not all need to be specified:

FLOOR(DATEDIFF(dd, CAST(REPLACE(‘<YEAR>-01-01’, ‘<YEAR>’, startyear)

as DATETIME), start_date)/7) as weekofyear

This formulation follows the same logic as the previous one. Here, though,
the first day of the year is calculated on the fly, by constructing a string form
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of the date which is then converted to a DATETIME. In some dialects of SQL, the
CAST()is unnecessary, because the SQL engine recognizes date arithmetic and
does the conversion automatically.

Creating a chart from this data follows a similar line of reasoning as for
comparison by days. The idea is to add a new column with a date from some
specific year. Instead of using the DATE() function, though, the date is created
by adding 7*WEEKOFYEAR to a base date, such as 2000-01-01.

Of course, Excel can also handle the transformation from daily data to
weekly data, using the same method of subtracting the first day of the year,
dividing by seven, and then summing the results using SUMIF().

Comparisons by Month
A year-over-year comparison by month can follow the same structure as the com-
parison by day or week. The following SQL shows the summaries by month:

SELECT MONTH(start_date) as month,

SUM(CASE WHEN startyear = 2004 THEN 1 ELSE 0 END) as n2004,

SUM(CASE WHEN startyear = 2005 THEN 1 ELSE 0 END) as n2005,

SUM(CASE WHEN startyear = 2006 THEN 1 ELSE 0 END) as n2006

FROM (SELECT s.*, YEAR(start_date) as startyear FROM subs s) s

WHERE startyear IN (2004, 2005, 2006)

GROUP BY MONTH(start_date)

ORDER BY 1

Monthly data is often better represented by column charts with the different
years side-by-side, as shown in Figure 5-10.

Figure 5-10: Column charts are useful for showing monthly data, year over year, such as
this example showing subscription starts.
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The next example examines TOTALPRICE in the Orders table. This differs
from the examples so far for two reasons. First, the results are not just counts
but dollars. Second, the last day of data has a date of September 20th, although
there is missing data after September 7th. The incomplete September data poses
a challenge. The following SQL query extracts the information by month:

SELECT MONTH(orderdate) as month,

SUM(CASE WHEN ordyear = 2014 THEN totalprice END) as r2014,

SUM(CASE WHEN ordyear = 2015 THEN totalprice END) as r2015,

SUM(CASE WHEN ordyear = 2016 THEN totalprice END) as r2016

FROM (SELECT o.*, YEAR(orderdate) as ordyear FROM orders o) o

WHERE orderdate <= ‘2016-09-07’

GROUP BY MONTH(orderdate)

ORDER BY 1

Table 5-7 shows the results, which suggest that sales have dropped precipi-
tously in the month of September. This is misleading, of course, because only
the first few days of September are included for the third year. There are two
approaches to getting valid comparison information. The first is to look at
month-to-date (MTD) comparisons for previous years. The second is to extrap-
olate the values to the end of the month.

Table 5-7: Revenue by Month for Orders

MONTH 2014 2015 2016

1 $198,081.37 $201,640.63 $187,814.13

2 $125,088.95 $191,589.28 $142,516.49

3 $171,355.72 $215,484.26 $251,609.27

4 $188,072.17 $140,299.76 $193,443.75

5 $239,294.02 $188,226.96 $247,425.25

6 $250,800.68 $226,271.71 $272,784.77

7 $206,480.10 $170,183.03 $250,807.38

8 $160,693.87 $157,961.71 $164,388.50

9 $234,277.87 $139,244.44 $26,951.14

10 $312,175.19 $170,824.58

11 $394,579.03 $409,834.57

12 $639,011.54 $466,486.34
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Month-to-Date Comparison

The month-to-date comparison is shown in the upper chart in Figure 5-11. The
bars for September in 2014 and 2015 have overlapping columns, with the
shorter ones in September being the month-to-date values and the taller ones
being the total revenue. These month-to-date numbers are the appropriate
level of comparison for September.

Figure 5-11: The upper chart shows month-to-date comparisons using overlapping
column charts. The lower chart shows the end-of-month estimate using Y-error bars.

How are these overlapping columns created? Unfortunately, Excel does not
have an option for column charts that are both stacked and side-by-side, but
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we can improvise by having two sets of three series. The first three are plotted
on the primary axis and contain the full month revenue numbers. The second
set is plotted on the secondary axis and contains only the month-to-date rev-
enue numbers for September. Both groups need to contains the same number
of columns, to ensure that the column widths are the same, and the columns
overlap completely. The data for this chart is calculated by adding the follow-
ing three columns to the previous SQL statement:

SUM(CASE WHEN ordyear = 2014 AND ordmon = 9 AND orderdate <= ‘2014-09-07’

THEN totalprice END) as rev2014mtd,

SUM(CASE WHEN ordyear = 2015 AND ordmon = 9 AND orderdate <= ‘2015-09-07’

THEN totalprice END) as rev2015mtd,

SUM(CASE WHEN ordyear = 2016 AND ordmon = 9 AND orderdate <= ‘2016-09-07’

THEN totalprice END) as rev2016mtd

The subquery also needs to define ORDMON.
These additional columns calculate the month-to-date numbers for Septem-

ber, returning NULL for all other months. Although the last column is redun-
dant (because it contains the same data as the corresponding full month
column), having it simplifies the charting procedure, by providing the third
series on the secondary axis.

Creating the chart starts by pasting the results in Excel. The horizontal axis
uses the month name; although we could type in the month abbreviations, an
alternative method is to use dates: create a date column by copying the for-
mula “DATE(2000, <monthnum>, 1)” down a column, use that column as the
horizontal axis, and then format it with just the month name by setting its
“Number” format to “Mmm”.

Next, a column chart is created with the following columns:

■■ The new date column goes on the horizontal axis.

■■ The three full revenue columns are data columns, for the first three
series on the primary axis.

■■ The three month-to-date-revenue columns are data columns, for the
second three series for the secondary axis.

Now the chart needs to be customized. First, the three month-to-date columns
need to be switched to the secondary axis. To do this, click each series, go to the
“Axis” tab, and choose “Secondary axis.”

The final step is cleaning up the secondary axis:

■■ The month-to-date numbers need to be on the same scale as on the
other axis. Click the secondary vertical axis and make the maximum
value the same as the maximum value on the primary axis.

■■ The secondary axis labels and tick marks need to be removed, by clicking
them and hitting <delete>.
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Finally, the month-to-date series should be colored similarly so they can 
be seen.

TI P If you make a mistake in Excel, just hit <control>-Z to undo it. You can
always experiment and try new things, and undo the ones that don’t look right.

Extrapolation by Days in Month

The lower chart in Figure 5-11 shows a different approach. Here, the compari-
son is to the estimated value for the end of the month, rather than to the past
month-to-date values. The simplest end-of-month estimate is a linear trend,
calculated by multiplying the current value for the month times the number of
days in the month and dividing by the number of days that have data. For
instance, for the September data, multiply the $26,951.14 by 30 and divide by
7, to get $115,504.89.

The chart shows this difference using Y-error bars. The length of the bar is
the difference from the end-of-month estimate and the current value; that 
is $88,553.75 = $115,504.89 – $26,951.14. Starting with the column chart that has
three series for each year, adding the Y-error bar has the following steps:

1. Add a column to the table in Excel where all the cells are blank except
for the one for September. This one gets the difference value.

2. Add the error bars by double-clicking the series for 2016 to bring up the
“Format Data Series” dialog box. On the “Y-Error Bars” tab, choose
“Plus” (the second option) and click by “Custom,” the bottom option.
Set the “+” series to refer to the difference column.

3. Format the error bar by double-clicking it.

Calculating the difference column in Excel is feasible. However, doing it in
SQL is instructive because it shows the power of manipulating dates in the
database. Unfortunately, SQL lacks a simple way to calculate the number of
days in the month. The solution starts with the following two rules:

■■ If the month number is 12 (December), then the number of days is 31.

■■ Otherwise, it is the difference between the first day of the current
month and the first day of the next month.

The dates for the first date of the current month and the first date of the next
month are calculated using the CAST() and REPLACE() trick that we saw earlier. 

Combined into a query, this looks like:

SELECT mon,

SUM(CASE WHEN ordyear = 2014 THEN totalprice END) as r2014,

SUM(CASE WHEN ordyear = 2015 THEN totalprice END) as r2015,
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SUM(CASE WHEN ordyear = 2016 THEN totalprice END) as r2016,

(SUM(CASE WHEN ordyear = 2016 AND mon = 9 THEN totalprice END)*

((MAX(daysinmonth)*1.0/MAX(CASE WHEN ordyear= 2016 AND mon = 9 

THEN DAY(orderdate) END)) - 1)

) as IncrementToMonthEnd

FROM (SELECT o.*, DATENAME(dw, orderdate) as dow,

(CASE WHEN mon = 12 THEN 31

ELSE DATEDIFF(dd, 

CAST(REPLACE(REPLACE(‘<Y>-<M>-01’,

‘<Y>’, ordyear),

‘<M>’, mon) as DATETIME),

CAST(REPLACE(REPLACE(‘<Y>-<M>-01’,

‘<Y>’, ordyear),

‘<M>’, mon + 1) as DATETIME))

END) as daysinmonth

FROM (SELECT o.*, YEAR(orderdate) as ordyear,

MONTH(orderdate) as mon

FROM orders o) o

) o

WHERE orderdate <= ‘2016-09-07’

GROUP BY mon

ORDER BY 1

The query is not pretty, but it does the job of calculating the linear trend to the
end of the month. The subquery calculates the number of days in the month
(some databases have simpler methods of doing this). The column INCRE-
MENTTOMONTHEND is then calculated by taking the total for the month so
far, multiplying by one less than the days in the month divided by the maxi-
mum day seen in the month. The “one less” is because we want the increment
over the current value, rather than the month-end estimate itself.

Estimation Based on Day of Week

There may be more accurate methods to estimate the end-of-month value than
linear extrapolation. If there is a weekly cycle, a method that takes into account
days of the week should do a better job. In the previous instance, there are
seven days of data for September 2016. If weekdays have one set of start
behavior and weekends another set, how could we use this information to
extrapolate the $26,952.14 to the end of the September? Notice that this esti-
mation is only possible after at least one weekday and at least one weekend
day has passed, unless we borrow information from previous months.

There are two parts to this calculation. The first is calculating the average
weekday and the average weekend contribution for September. The second is
calculating the number of weekdays and number of weekend days during the
month. We’ll do the first calculation in SQL and the second calculation in
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Excel. The following additional two columns contain the averages for week-
days and weekends in September 2016:

(SUM(CASE WHEN ordyear = 2016 AND mon = 9 AND

dow NOT IN (‘Saturday’, ‘Sunday’)

THEN totalprice END) /

COUNT(DISTINCT (CASE WHEN ordyear = 2016 AND mon = 9 AND

dow NOT IN (‘Saturday’, ‘Sunday’)

THEN orderdate END)) ) as weekdayavg,

(SUM(CASE WHEN ordyear = 2016 AND mon = 9 AND

dow IN (‘Saturday’, ‘Sunday’) THEN totalprice END) /

COUNT(DISTINCT (CASE WHEN ordyear = 2016 AND mon = 9 AND

dow IN (‘Saturday’, ‘Sunday’)

THEN orderdate END)) )  as weekendavg

Notice that the average calculation for weekdays takes the sum of all the orders
on weekdays and divides by the number of distinct days when orders were
placed. This gives the average total order volume on weekdays. By contrast, the
AVG() function would calculate something different, the average order size.

Without a calendar table, it is rather complex to determine the number of
weekdays and weekend days in a given month using SQL. Excel has the
advantage of being able to define a lookup table, such as the one in Table 5-8.
This table has the number of weekend days in a month, given the start date
and number of days in the month.

Table 5-8: Weekdays and Weekend Days by Start of Month and Length of Month

MONTH START WEEKDAYS WEEKEND DAYS
DAY OF WEEK 28 29 30 31 28 29 30 31

Monday 20 21 22 23 8 8 8 8

Tuesday 20 21 22 23 8 8 8 8

Wednesday 20 21 22 23 8 8 8 8

Thursday 20 21 22 22 8 8 8 9

Friday 20 21 21 21 8 8 9 10

Saturday 20 20 20 21 8 9 10 10

Sunday 20 20 21 22 8 9 9 9

The following Excel formula calculates the number of days in a month:

days in month = DATE(<year>, <mon>+1, 1) – DATE(<year>, <mon>, 1)
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This works in Excel even for December because Excel interprets month 13 as
January of the following year. The day of the week when the month starts is
calculated using:

startdow = TEXT(DATE(<year>, <mon>, 1), “Dddd”)

Using this information, the number of weekdays can be looked up in the
preceding table using the following formula:

VLOOKUP(<startdow>, <table>, <daysinmonth>-28+2, 0)

Figure 5-12 shows a screen shot of Excel with these formulas. Taking weekdays
and weekends into account, the end-of-month estimate is $109,196.45, which is
only slightly less than the $115,504.89 linear estimate.

Figure 5-12: This screen shot of Excel shows the calculation of the number of days in 
the month, the number of weekdays, and the number of weekend days, which can then
be used to estimate the end-of-month average taking into account the day of the week.

Estimation Based on Previous Year

Another way to estimate the end of the month value uses the ratio of the pre-
vious year month-to-date and previous year month total. Applying this ratio
to the current month gives an estimate of the end-of-month value. This calcu-
lation has the advantage of taking into account holidays, because the same
month period the year before probably had the same holidays. Of course, this
doesn’t work well for floating holidays such as Easter and Rosh Hashanah.
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For instance, in the previous year, the monthly total was $139,244.44. The
total for the first seven days during that month was $41,886.47, which is about
30.1% of the total. The current month to date is $26,951.14. This is 30.1% of
$89,594.48. The estimate for the entire month calculated using this approach is
considerably smaller than using the linear trend.

Counting Active Customers by Day

Calculating the number of active customers as of the database cut-off date is
easy, by simply counting those whose status code indicates that they are
active. This section extends this simple counting mechanism to historical time
periods, by progressing from counting the active customers on any given day
in the past, to counting active customers on all days, and finally, to breaking
customers into tenure groups and counting the sizes of those groups on any
given day.

How Many Customers on a Given Day?
On a given day in the past, the customers who are active have two charac-
teristics:

■■ They started on or before the given day.

■■ They stopped after the given day.

For instance, the following query answers the question: How many subscrip-
tions customers were active on Valentine’s Day in 2005?

SELECT COUNT(*)

FROM subs

WHERE start_date <= ‘2005-02-14’ AND

(stop_date > ‘2005-02-14’ OR stop_date IS NULL)

The WHERE clause implements the logic that selects the right group of 
customers.

The query returns the value of 2,387,765. By adding GROUP BY clauses, this
number can be broken out by features such as market, channel, rate plan, or
any column that describes customers when they started.

The data in the Subs table does not contain any accounts that stopped prior
to 2004-01-01. Because these accounts are missing, it is not possible to get accu-
rate counts prior to this date.

How Many Customers Every Day?
Calculating the number of active customers on one day only provides infor-
mation about one day. A more useful question is: How many customers were
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active on any given day in the past? For the subscriptions data, this question has
to be tempered, because it is only possible to get an accurate count since 2004-
01-01, because of the missing stops prior to that date.

The answer to this question relies on an observation: the number of cus-
tomers who are active on a given day is the number who started on or before
that day minus the customers who stopped on or before that day. The preced-
ing question simplifies into two other questions: How many customers started as
of a given day? How many customers stopped as of a given day?

These questions are readily answered with the combination of SQL and
Excel. The mechanism is to count the number of starts and stops on each day
using SQL. Excel is then used to accumulate the numbers up to any given date,
and then to subtract the cumulative number of stops from the cumulative
number of starts. The following SQL finds all the starts by day, grouping all the
pre-2004 starts into one bucket:

SELECT thedate, SUM(nstarts) as nstarts, SUM(nstops) as nstops

FROM ((SELECT (CASE WHEN start_date >= ‘2003-12-31’ THEN start_date

ELSE ‘2003-12-31’ END) as thedate,

COUNT(*) as nstarts, 0 as nstops

FROM subs

WHERE start_date IS NOT NULL

GROUP BY (CASE WHEN start_date >= ‘2003-12-31’ THEN start_date

ELSE ‘2003-12-31’ END) )

UNION ALL

(SELECT (CASE WHEN stop_date >= ‘2003-12-31’

THEN stop_date ELSE ‘2003-12-31’ END) as thedate,

0 as nstarts, COUNT(*) as nstops

FROM subs

WHERE start_date IS NOT NULL AND stop_date IS NOT NULL

GROUP BY (CASE WHEN stop_date >= ‘2003-12-31’

THEN stop_date ELSE ‘2003-12-31’ END) )

) a

GROUP BY thedate

ORDER BY 1

The query works by separately counting starts and stops, combining the
results using UNION ALL, and then reporting the start and stop numbers for
each date. Starts and stops prior to 2004 are placed in the 2003-12-31 bucket.
The query uses UNION ALL rather than a JOIN because there may be dates that
have no starts and there may be dates that have no stops.

The Subs table has 181 records where the START_DATE is set to NULL. With
no start date, these rows could either be excluded (the choice here) or the start
date replaced with some reasonable value (if one is known). Notice that both
subqueries have the restriction on start date not being NULL, even though one
subquery counts starts and the other stops. Both subqueries need to include
the same group of customers. Because the second subquery counts stops, it has
an additional restriction that customers have stopped.
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Excel then does the cumulative sums of the starts and stops, as shown in
Figure 5-13. The difference between the cumulative starts and the cumulative
stops is the number of active customers on each day since the beginning 
of 2004.

Figure 5-13: This Excel screen shot shows a worksheet that calculates the number of
customers on each day.

How Many Customers of Different Types?
The overall number of customers on any given day can be broken out by cus-
tomer attributes. The following query is a modification of the previous query
for the breakdown by market:

SELECT thedate, SUM(numstarts) as numstarts,

SUM(CASE WHEN market = ‘Smallville’ THEN numstarts ELSE 0 

END) as smstarts,

. . .

SUM(numstops) as numstops,

SUM(CASE WHEN market = ‘Smallville’ THEN numstops ELSE 0 

END) as smstops,

. . .

FROM ((SELECT (CASE WHEN start_date >= ‘2003-12-31’ THEN start_date

ELSE ‘2003-12-31’ END) as thedate,

market, COUNT(*) as numstarts, 0 as numstops

FROM subs

WHERE start_date IS NOT NULL

GROUP BY (CASE WHEN start_date >= ‘2003-12-31’ THEN start_date

ELSE ‘2003-12-31’ END), market )

UNION ALL

(SELECT (CASE WHEN stop_date >= ‘2003-12-31’

THEN stop_date ELSE ‘2003-12-31’ END) as thedate,

market, 0 as numstarts, COUNT(*) as numstops
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FROM subs

WHERE start_date IS NOT NULL AND stop_date IS NOT NULL

GROUP BY (CASE WHEN stop_date >= ‘2003-12-31’

THEN stop_date ELSE ‘2003-12-31’ END), market )

) a

GROUP BY thedate

ORDER BY 1

Each subquery aggregates by date and also market. In addition, the outer query
sums the starts and stops separately for each market. The data is handled the
same way in Excel, with the starts and stops being accumulated, and the differ-
ence between them being the number active in each market on any given day.

Figure 5-14 shows the results of the query. The results show that Gotham is
always the largest market and Smallville the smallest. It appears, though, that
Smallville is catching up to Gotham. In addition, there also seems to be an
increase in all three markets at the end of 2005, and a decrease in 2006. The
decrease for Gotham is larger than for the other two markets. Interestingly,
there are no Smallville stops until Oct 26, 2004. Apparently, the different mar-
kets have different cut-off dates.

Figure 5-14: This chart shows the number of active customers by day in each market.

How Many Customers by Tenure Segment?
A tenure segment specifies how long customers have been active. For instance,
customers might be divided into three such segments: the first-year segment,
consisting of those who have been around less than one year; the second-year
segment, consisting of those who have been around between one and two
years; and the long-term segment.

This section extends the counting of active customers over time to active
customers by tenure segment. Of course, the definition of the groups of inter-
est can vary, because there is nothing sacrosanct about milestones at one and
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two years. The specific question is: On any given date, how many subscribers have
been around for one year, for two years, and for more than two years?

The answer to this question relies on a few observations about the relation-
ship between the size of a tenure segment on the day and the size on the day
before. This logic uses a mathematical technique called induction.

The number of customers in the first-year segment on a particular date con-
sists of:

■■ All the customers in the first-year segment the day before,

■■ Minus the first-year segment customers who graduated (by passing the
one year milestone) on that date,

■■ Minus the first-year segment customers who stopped on that date,

■■ Plus new customers who started on that date.

The number of customers in the second-year segment consists of:

■■ All the second-year segment customers who were around the day
before,

■■ Minus the second-year segment customers who graduated (by passing
the two year milestone),

■■ Minus the second-year segment customers who stopped on that date,

■■ Plus customers who graduated from the first-year segment on that date.

Finally, the number of customers in the long-term segment is determined by:

■■ All the long-term segment customers who were around the day before,

■■ Minus the long-term segment customers who stopped,

■■ Plus customers who graduated from the second-year segment.

These rules suggest the information that is needed to keep track of the seg-
ments on a day-by-day basis. The first is the number of customers who enter
each segment on each day. For the first-year segment, this is the number of cus-
tomers who start. For the second-year segment, it is the customers who pass
their 365-day milestone. For the long-term customers, it is the customers who
pass their 730-day milestone. Also needed is the number of customers within
each segment who stop.

Figure 5-15 shows the dataflow processing for this calculation. The first
three subqueries calculate the number of customers that enter each segment
at a given unit of time. The last row calculates the segment when customers
stop. These are then combined using UNION ALL and then summarized 
for output.
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Figure 5-15: The dataflow processing shows how to calculate the number of customers
that enter and leave each tenure segment.

The following SQL corresponds to this dataflow:

SELECT thedate, SUM(numstarts) as numstarts, SUM(year1) as enters1, 

SUM(year2) as enters2, SUM(year0stops) as stops0,

SUM(year1stops) as stops1, SUM(year2plstops) as stops2pl

FROM ((SELECT (CASE WHEN start_date >= ‘2003-12-31’ THEN start_date

ELSE ‘2003-12-31’ END) as thedate,

COUNT(*) as numstarts, 0 as YEAR1, 0 as YEAR2,

0 as year0stops, 0 as year1stops, 0 as year2plstops

FROM subs

WHERE start_date IS NOT NULL

GROUP BY (CASE WHEN start_date >= ‘2003-12-31’ THEN start_date

ELSE ‘2003-12-31’ END))

UNION ALL

(SELECT (CASE WHEN start_date >= ‘2002-12-31’

THEN DATEADD(day, 365, start_date)

ELSE ‘2003-12-31‘ END) as thedate,

0 as numstarts, COUNT(*) as YEAR1, 0 as YEAR2,

0 as year0stops, 0 as year1stops, 0 as year2plstops

FROM subs

WHERE start_date IS NOT NULL AND tenure >= 365

GROUP BY (CASE WHEN start_date >= ‘2002-12-31’
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THEN DATEADD(day, 365, start_date)

ELSE ‘2003-12-31’ END))

UNION ALL

(SELECT (CASE WHEN start_date >= ‘2001-12-31’

THEN DATEADD(day, 365*2, start_date)

ELSE ‘2003-12-31’ END) as thedate,

0 as numstarts, 0 as year1, COUNT(*) as year2,

0 as year0stops, 0 as year1stops, 0 as year2plstops

FROM subs

WHERE start_date IS NOT NULL AND tenure >= 365*2

GROUP BY (CASE WHEN start_date >= ‘2001-12-31’

THEN DATEADD(day, 365*2, start_date)

ELSE ‘2003-12-31’ END))

UNION ALL

(SELECT (CASE WHEN stop_date >= ‘2003-12-31’ THEN stop_date

ELSE ‘2003-12-31’ END) as thedate,

0 as numstarts,  0 as YEAR0, 0 as YEAR1,

SUM(CASE WHEN tenure < 365 THEN 1 ELSE 0 END

) as year0stops,

SUM(CASE WHEN tenure BETWEEN 365 AND 365*2 – 1

THEN 1 ELSE 0 END) as year1stops,

SUM(CASE WHEN tenure >= 365*2 THEN 1 ELSE 0 END

) as year2plstops

FROM subs

WHERE start_date IS NOT NULL AND stop_date IS NOT NULL

GROUP BY (CASE WHEN stop_date >= ‘2003-12-31’

THEN stop_date ELSE ‘2003-12-31’ END) )

) a

GROUP BY thedate

ORDER BY 1

This query follows the same logic as the dataflow. The first three subqueries
calculate the number of customers who enter each segment. Separate sub-
queries are needed because the entry dates are different. A customer who
starts on 2005-04-01 enters the first-year segment on that date. The same cus-
tomer enters the second-year segment on 2006-04-01, one year later. Each of
these subqueries selects the appropriate group using the WHERE clause and the
TENURE column. For the first segment, there is no restriction. For the second,
the tenure is at least one year. For the third, the tenure is at least two years.

The fourth subquery handles the stops for all three segments. Because the
stop date does not change, only one subquery is needed for the three calcula-
tions. The Excel calculation then follows the rules described at the beginning
of this section.

Figure 5-16 shows the three segments of customers using stacked area
charts. This chart makes it possible to see the total number of customers as well
as the breakdown between the different tenure segments over time.
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Figure 5-16: This chart shows the number of active customers broken out by one-year
tenure segments.

Simple Chart Animation in Excel

This section goes back to the purchases dataset to investigate the delay
between the date when an order is placed and when the last item is shipped,
the fulfillment date. Investigating the fulfillment date gets rather complicated,
because other features (such as the size of the order) undoubtedly have an
effect on the delay. Visualizing the results is challenging, because there are two
time dimensions, the duration and order date.

This example provides an opportunity to show rudimentary chart anima-
tion in Excel, using a Visual Basic macro. This is the only place in the book that
uses macros, because even without them SQL and Excel are quite powerful for
data analysis and visualization. However, the macro is quite simple and easy
to implement.

Order Date to Ship Date
What is the delay between the order date and the fulfillment date? The following
SQL query answers this question, breaking out the delay by number of units in
the order:

SELECT DATEDIFF(dd, orderdate, fulfilldate) as delay, COUNT(*) as cnt,

SUM(CASE WHEN numunits = 1 THEN 1 ELSE 0 END) as un1,

. . .

SUM(CASE WHEN numunits = 5 THEN 1 ELSE 0 END) as un5,

SUM(CASE WHEN numunits >= 6 THEN 1 ELSE 0 END) as un6pl

FROM orders o JOIN

(SELECT orderid, MAX(shipdate) as fulfilldate

FROM orderline

GROUP BY orderid) ol
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ON o.orderid = ol.orderid

WHERE orderdate <= fulfilldate

GROUP BY DATEDIFF(dd, orderdate, fulfilldate)

ORDER BY 1

This query summarizes Orderline to get the last shipment date. As a reminder,
the number of units is different from the number of distinct items. If a cus-
tomer orders ten copies of the same book, that is one item but ten units.

There are a handful of anomalies in the data, such as the twenty-two orders
that completely shipped before the order was placed. There is obviously some
reason for this, such as a mistake in the order date. For this discussion, these
few extraneous cases are not of interest, so a WHERE clause eliminates them. It
should also be noted that pending orders are not in the database, which is evi-
dent because all rows in Orderline have valid SHIPDATEs.

Figure 5-17 shows the cumulative proportion of orders shipped for different
numbers of units. For all groups, over half the orders have been completely
fulfilled within a week. The most common orders have one unit, and over 70%
of these are fulfilled within one week.

Figure 5-17: The delay from order to fulfillment depends on order size.

As the curves stretch out into longer and longer delays, orders with more
units do take longer to fulfill. At 50 days, about 98% of the smaller orders have
been fulfilled, compared to 94% of the large orders. Looking at it the other way,
fewer than 2% of the smaller orders have such a long delay, whereas about 6%
of the larger orders do.

Although it is difficult to see on the chart, something interesting happens in
the first few days. Of all the groups, orders with six or more units actually
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have the largest proportion shipping on the day the order is placed. This
means that the curve for the largest orders crosses all the other curves. Curves
that cross like this are often interesting. Is something going on?

TI P Curves that intersect are often a sign that something interesting is
happening, suggesting ideas for further investigation.

To investigate this, let’s ask the question: What is the relationship between the
number of units in an order and the number of distinct products? The hypothesis is
that larger orders are actually more likely to have only one product, so they
can ship efficiently. Of course, orders with only one unit have only one prod-
uct, so these don’t count for the comparison. The following SQL calculates the
proportion of orders having one product among the orders with a given num-
ber of units:

SELECT numunits, COUNT(*),

AVG(CASE WHEN numprods = 1 THEN 1.0 ELSE 0 END) as prop1prod

FROM (SELECT orderid, SUM(numunits) as numunits,

COUNT(DISTINCT productid) as numprods

FROM orderline ol

GROUP BY orderid) a

WHERE numunits > 1

GROUP BY numunits

ORDER BY 1

The subquery counts the number of units and the number of distinct products in
each order. Notice that the number of units is calculated from Orderline by sum-
ming the NUMUNITS column. An alternative would be to use the NUMUNITS
column in Orders, but that would require joining the tables together.

Figure 5-18 shows a bubble plot of the results. The horizontal axis is the
number of units in the order. The vertical is the proportion of the orders that
consists of only one product. The size of each bubble is the log of the number
of orders (calculated in Excel using the LOG() function). Larger bubbles
account for even more orders than the bubbles suggest because the bubble size
is based on the log.

The first and largest bubble is missing, because all orders with only one unit
have only one product. For larger orders, the proportion of one-product orders
starts off fairly low. For orders with two units, it is 21.8%; for three, 13.9%.
However, the proportion then starts increasing. For orders with six or more
units, almost one third (32.1%) have only one product. These one-product
orders are the ones that ship quickly, often on the same day they are placed.
The orders with more products take longer to fulfill.
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Figure 5-18: This bubble chart shows that as the number of units increases in an order,
more orders have only one product.

Order Date to Ship Date by Year
The previous section showed the overall situation with delays in shipping
orders. The question now includes changes over time: Does the delay between the
order date and fulfillment date change from year to year? To calculate the delay for
any given year, extend the WHERE clause in the delay query, restricting the
results to a particular year; something like “AND YEAR(ORDERDATE) = 2014”.

This section proposes another solution where the data for all years is
brought into Excel. Then, a subset of the data is placed into another group of
cells, a “one-year” table, which in turn is used for generating a chart. This
makes it possible to flip between the years, simply by changing the contents of
one cell in the spreadsheet.

Querying the Data

The query to fetch the results simply adds YEAR(ORDERDATE) as an aggregation
on the query that calculates the delays:

SELECT YEAR(orderdate) as yr,

DATEDIFF(dd, orderdate, fulfilldate) as delay,

COUNT(*) as cnt,

SUM(CASE WHEN numunits = 1 THEN 1 ELSE 0 END) as un1,

. . .

SUM(CASE WHEN numunits = 5 THEN 1 ELSE 0 END) as un5,

SUM(CASE WHEN numunits >= 6 THEN 1 ELSE 0 END) as un6pl

FROM orders o JOIN

(SELECT orderid, MAX(shipdate) as fulfilldate

FROM orderline

GROUP BY orderid) ol
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ON o.orderid = ol.orderid AND o.orderdate <= ol. fulfilldate

GROUP BY  YEAR(orderdate), DATEDIFF(dd, orderdate, fulfilldate)

ORDER BY 1, 2

These results pose a challenge for charting. There are almost one thousand
rows. The data could be plotted on a single chart, but it is not clear how to
make the chart intelligible. There are already several different curves for the
number of units, leaving year and delay on the horizontal axis. A separate
graph for each year, such as shown already in Figure 5-16, would be much 
easier to interpret.

Creating the One-Year Excel Table

The one-year table is a group of cells that contains the delay information for a
single year. It has the same columns and rows as the original data, except for
the year column because the year is in a special cell, which we’ll call the year-
cell. The data in the table is keyed off of this cell, so when the value is updated,
the table is updated for that year.

One column in the one-year table is the delay. This starts at zero and is incre-
mented by one until it reaches some large number (the maximum delay in the
data is 625). The one-year table finds the appropriate value in the overall data
using the year in the year-cell and the delay on the row. There are three steps
needed to make this work.

First, a lookup key is added to the query results to facilitate finding the
appropriate row in the original data by the combination of year and delay. This
additional column consists of the year and delay concatenated together to 
create a unique identifier:

<key> = <year>&“:”&<delay>

The first value, for instance, is “2009:1” — a colon is used to separate the 
two values.

The second step is to find the offset into the table by matching each row in
the one-year table to this column. The Excel function MATCH()looks up the
value in its first argument in a list and returns the offset where the value is
found in the list. If the value is not found, it returns NA() (when the third argu-
ment is FALSE):

<offset> = MATCH(<year cell>&“:”&<delay>, <key column>, FALSE)

The third step is to get the right data for each cell in the one-year table by using
the OFFSET() function to skip down <offset>-1 rows from the top of each col-
umn. Figure 5-19 shows a screen shot of Excel with the formulas for the 
“1 Unit” column.

The one-year table is now keyed off of the year-cell. Changing the value in
that cell causes the table to be updated.
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Figure 5-19: These Excel formulas show the formulas for constructing the intermediate
table for one year of data for the “1 Unit” column.

Creating and Customizing the Chart

Figure 5-20 shows the resulting chart for one year. Notice that this chart has a
title that incorporates the year. This is accomplished by pointing the title box
to a cell that has a formula for the title, using the following steps:

1. Place the desired title text in a cell, which can be a formula: =”Days
from Order to Fulfillment by Units for “&<year-cell>.

2. Add an arbitrary title to the chart by right-clicking inside the chart,
choosing “Chart Option,” going to the “Titles” tab, and inserting some
text in the “Chart Title” box. Then exit the dialog box.

3. Click once on the chart title to select the text. Then type “=” and point
to the cell with the title. Voila! The cell contents become the chart title.

Figure 5-20: This chart shows the delay information for one year.
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SIMPLE ANIMATION USING EXCEL MACROS

Excel macros are a very powerful component of Excel. They provide the
capability to customize Excel using the power of a full programming language,
Visual Basic. Because the focus of this book is on analyzing data, macros are
generally outside the scope. However, one is so useful, simple, and impressive
that it is worth including. The one is the animation macro.

The text describes the ability to create a chart whose contents are
determined by the value in the year-cell. Animating the chart just requires
automatically incrementing the year cell, starting at one value, ending at
another, and waiting for a small number of seconds in between. To set this up,
we’ll put the start value, the end value, and the time increment in the three
cells adjacent to the year cell, so they look something like:

YEAR START END SECONDS

2009 2009 2016 1

The macro automatically increments the year-cell. First, create a macro by
going to the Tools ➪ Macro ➪ Macros menu. In the “Macro Name” box, type in
a name, such as “animate,” and then click the “Create” menu button. This
brings up the Visual Basic editor. The following macro code then creates the
macro (the template that automatically appears consists of the first and last
lines of this code):

Sub animate()

Dim startval As Integer, endval As Integer

startval = ActiveCell.Offset(0, 1).Value

endval = ActiveCell.Offset(0, 2).Value

For i = startval To endval

ActiveCell.Value = i

Application.Wait(Now() + 

TimeValue(ActiveCell.Offset(0, 3).Text))

Next i

End Sub

When the code appears, leave the Visual Basic editor by going to the “File”
menu and choosing “Close and Return to Microsoft Excel” (or use the key
<alt>Q). This adds the macro into the current Excel file. The macro gets saved
with the workbook. 

To use the macro, place the cursor on the year-cell, go to the Tools ➪ Macro ➪
Macros dialog box, and choose “Run.” It is also possible to assign the macro to a
keystroke through the “Options” on the dialog box.

This example uses animation to walk through time values, which changes
both the chart and the corresponding table. The more impressive demonstration
is to just watch the chart. Animation can be used to walk through other values,
such as products, number of units, and so on.
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With this mechanism, the chart title and chart contents both update when the
value in the year-cell changes. The aside “Simple Animation Using Excel Macros”
discusses how to take this one step further with a rudimentary animation.

Lessons Learned

Time is important for understanding the universe and time is important for
data analysis. In databases, times and dates are stored with six components:
years, months, days, hours, minutes, and seconds. In addition, dates can
also have a time zone attached. The structure is complicated, but within one
database, times and dates tend to be from one time zone and at the same
level of precision.

As with other data types, dates and times need to be validated. The most
important validations are checking the range of values and verifying that
dates have no extraneous time component.

Analyzing dates starts with the values and the counts themselves. Looking
at counts and aggregations over time is valuable, whether the number of cus-
tomers, or the order size, or the amount spent. Seasonal patterns appear in the
data, further showing what customers are really doing. Many businesses have
weekly cycles. For instance, stops may be higher on weekdays than on week-
ends. Comparisons at the day level show these differences. Trend lines or
weekly summaries remove them, highlighting longer-term patterns instead.

Individual time values are interesting, more so are durations between two
values. Duration can be measured in many different ways, such as days
between two dates or months between two dates. One challenge is determin-
ing the number of a particular day of the week, such as Mondays, between two
dates. However, even this is possible with SQL and Excel.

This chapter presents two important applications involving dates. The first
is calculating the number of customers active on a particular date, which is
simply the number who started as of that date minus the number who
stopped before that date. This can be broken out by different groups, includ-
ing tenure groups.

The last example looks at changes over time in a duration value — the delay
from when a customer places an order to when the order is fulfilled. With two
time dimensions, the best way to visualize this is through a simple Excel 
animation, which requires just a dab of macro programming.

The next chapter continues the exploration of time through survival analy-
sis, the part of statistics that deals with time-to-event problems.
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How long will a lightbulb last? What factors influence a cancer patient’s
prognosis? What is the mean time to failure (MTTF) of a disk drive? These
questions may seem to have little relationship to each other, but they do have
one thing in common. They are all questions that can be answered using sur-
vival analysis, because they involve time-to-event estimations. And, if we
think about customers instead of lightbulbs, patients, and disk drives, they
readily translate into important questions about customers, their tenures,
and their value.

The scientific and industrial origins of survival analysis explain the termi-
nology. Its emphasis on “failure” and “risk,” “mortality” and “recidivism”
may explain why, once upon a time, survival analysis did not readily catch on
in the business and marketing world. That time has passed, and survival
analysis is recognized as a powerful set of analytic techniques for understand-
ing customers. And, the combination of SQL and Excel is sufficiently powerful
to apply many of these techniques to large customer databases.

Survival analysis estimates how long it takes for a particular event to hap-
pen. A customer starts; when will that customer stop? By assuming that the
future will be similar to the past (the homogeneity assumption), the wealth of
data about historical customer behavior can help us understand what will
happen and when.

How Long Will Customers Last?
Survival Analysis to Understand

Customers and Their Value

C H A P T E R

6
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For customers that have a well-defined beginning and end, the most important
time-to-event question is when the customers will stop. These are subscription
relationships. Examples abound:

■■ Customers get a mortgage, and are customers until they pay the mort-
gage off (or default).

■■ Customers get a credit card, and are customers until they stop using the
card (or stop paying).

■■ Customers get a telephone, and are customers until they cancel the
phone service (or stop paying).

■■ Customers subscribe to a magazine, and are customers until they cancel
the delivery (or stop paying).

This chapter focuses on these types of relationships. Chapter 8 looks at time-
to-event problems in other areas, such as retailing relationships where cus-
tomers return, but there is no explicit end to the relationship.

Survival analysis is a broad, multifaceted subject. This chapter is intended
as an introduction to the important concepts and their application to customer
data using SQL and Excel. It starts with a bit of history. The history is not only
interesting but also puts the topics in a good context for understanding time-
to-event analysis. Examples are then provided to give a qualitative feel for
how survival analysis provides information, because this type of analysis is a
powerful way of gaining insight into customer behavior, both qualitatively
and quantitatively.

Of course, survival analysis is more than history and description. The quan-
titative sections describe how to do the calculations, starting with the hazard,
moving to survival, and then extracting useful measures from the survival
probabilities. The final example is using survival analysis to estimate customer
value, or at least estimate future revenue. The next chapter picks up where this
one leaves off, covering some more advanced topics in survival analysis.

Background on Survival Analysis

The origins of survival analysis can be traced back to a paper published in 1693
by Edmund Halley, as described in the aside “An Early History of Survival
Analysis.” The techniques were developed further in the late 19th and 20th cen-
turies, particularly for applications in social sciences, industrial process con-
trol, and medical research. These applications necessarily used a small amount
of data, because all data had to be collected by hand. A typical medical study,
for instance, has dozens or hundreds of participants, rather than the multi-
tudes of customers whose information is stored in today’s databases.
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AN EARLY HISTORY OF SURVIVAL ANALYSIS

Survival analysis predates what we call statistics by about two centuries. Much
of what we call statistics was invented in the 19th and 20th centuries; however,
the origins of survival analysis go back to the 17th century, specifically to a
paper presented in 1693 to the Royal Society in London. This paper, published
in the Royal Society’s Philosophical Transactions, was “An Estimate of the
Degrees of the Mortality of Mankind, drawn from curious Tables of the Births
and Funerals at the City of Breslaw, with an Attempt to ascertain the Price of
Annuities.” It is available online at http://www.pierre-marteau.com/
editions/1693-mortality.html.

The paper’s author, Edmund Halley, is now famous for quite another reason.
In 1758, sixteen years after his death, a comet he predicted to return did indeed
return. And Halley’s comet has continued to return every 76 or so years.

In the paper, Halley presents the basic calculations for survival analysis 
using mortality data collected from Breslau (now called by its Polish name
Wroclaw, located in southeastern Poland). These techniques are still used today.
And, in other ways, the paper is quite modern.

For one thing, technological innovations in computing enabled Halley’s
analysis. No, not the calculator or electronic computer. Logarithms and the slide
rule were invented earlier in the 1600s. These innovations made it possible to
do lots of multiplications and divisions much more efficiently than ever.

Halley was also responding to the availability of data. The “curious tables of
births and funerals” refers to the fact that Breslau was keeping track of births
and deaths at the time. Why Breslau and not some other city? The reason is
unknown. Perhaps Breslau was keeping accurate records of births and deaths
in response to the counter-reformation. Mandating records strengthened the
Catholic churches that gathered these vital statistics, helping to ensure that
everyone was born and died a Catholic.

And what was the application of the new techniques, calculated using the
new technology, on the newly available data? Financial calculations for life
insurance. This is surely an application we can relate to today. In fact, this
particular method of calculating survival values is now called the life table
method, because actuaries in life insurance companies have been using the
same techniques for about 200 years.

Some things do change, however, such as his opinion that “four of six
[women] should bring a Child every year” and “Celibacy ought to be discouraged
. . . by extraordinary Taxing and Military Service.” The paper also includes what
is, perhaps, the earliest reference to infant morality rates. At the time, Breslau
had a rate of 281 infant deaths per 1000 births. By comparison, the country with
the worst infant mortality in the modern world, Angola, had an estimated rate of
185 per 1000 in 2006, and Poland had improved to a very respectable 7 per
1000. Some things do fortunately change for the better.
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This section shows some examples of survival analysis without strictly 
defining terms such as hazard probabilities and survival. The purpose is to 
present ideas and show how survival analysis can be used qualitatively, for
explaining what is happening. The examples start with life expectancy, then an
explanation of survival in the medical realm, and finally ending with an example
of hazard probabilities and how they shed light on customer behavior.

Life Expectancy
Life expectancy is a natural application of survival analysis, because it answers
the question how long people will survive. Figure 6-1 shows life expectancy
curves for the U.S. population broken out by gender and race (http://
www.cdc.gov/nchs/data/nvsr/nvsr54/nvsr54_14.pdf), as calculated by the
U.S. Census Bureau in 2003. For instance, the curves show that only 90% of
black males survive to about 45 years old. By comparison, 90% of white
women survive to their early sixties. About 3% of females — whether black or
white — are expected to survive to age 100. On the other hand, only about half
as many males are expected to survive to that age. 

Figure 6-1: Life expectancy curves are an example of survival curves.

Life expectancy curves are examples of survival curves. One property is that
they always start at 100% and decline toward 0%. They also provide informa-
tion, such as the fact that almost everyone survives to age 50 or so. After that,
the curves decline more sharply, because as people age, their risk of dying
increases. Even at age 50, it is apparent that the different groups behave differ-
ently, with black men having noticeably lower survival than the other groups.

The point where half the population survives differs for the four groups:

■■ For black males, half survive to about age 73.5;

■■ For white males, half survive to about age 79;
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■■ For black females, half survive to about age 80.5; and,

■■ For white females, half survive to about age 84.

This age, where half survive, is called the median age, and it is a useful measure
for comparing different groups.

Medical Research
Purportedly, one of the ten most cited scientific papers of all time is a classic
paper on survival analysis published in 1972. This paper, by Sir David Cox —
the “Sir” was added because of his renown as a statistician — was called
“Regression Models and Life Tables (with Discussion).” It introduced a tech-
nique, now called Cox proportional hazards regression, which provides a way
of measuring the effects of various factors on survival.

As an example, consider what happens to prisoners after they are released
from prison. Longitudinal studies follow groups of prisoners over time to deter-
mine what happens to them. These studies are for research into recidivism, a
fancy word used to describe prisoners who return to their criminal behavior.
Some prisoners return to a life of crime. Others are rehabilitated. Others are
lost to follow-up for some reason.

What factors affect the ultimate outcome? Is it the length of time they were in
prison? Is it the crime that they committed? Is it their gender, previous criminal
history, availability of counseling after release? Data from longitudinal studies
is analyzed to understand which factors are most important in determining
who goes back to prison, and who doesn’t. And the analysis that researchers
use is often based on the techniques invented by Sir David Cox back in 1972
(and so the paper describing the study often cites the original paper).

These ideas have been applied in many different areas, from the effect of
smoking and diabetes on longevity to the factors that affect the length of time
people remain unemployed, from the factors that affect the length of business
cycles to the impact of a drug such as Vioxx on cardiovascular disease. Deter-
mining which factors affect survival — for better or worse — is quite useful.

Examples of Hazards
Survival is the probability that someone survives to a given point in time. A
related concept, the hazard, is the probability that someone succumbs to a
risk at a given point in time. Figure 6-2 shows two examples of hazard proba-
bility curves. 

The top chart in Figure 6-2 is the overall risk of dying, based on the 2003 data
for the U.S. population. This chart shows the risk at yearly intervals, and
reveals interesting facts. During the first year, the hazard is relatively large.
The infant mortality rate, as this number is called, is about 0.7% (which is many
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times less than in Angola in 2006 or Breslau in the 1680s). After the first year,
the risk of dying falls considerably, rising a bit as teens learn how to drive, and
then more as people age. The shape of this curve, where it starts a bit high,
falls, and then increases again is called the “bathtub-shaped” hazard. The
name comes from the shape of the curve, which follows the contours of a bath-
tub. Imagine the drain on the left side.

Figure 6-2: These are two examples of hazard probabilities: the top chart is mortality and
the bottom chart is stopped subscriptions.

The bottom chart in Figure 6-2 shows the more complicated hazard proba-
bilities for the risk of customers stopping a subscription a certain number of
days after they start. This chart also has several features. First, the hazard at
tenure 0 is quite high because many customers are recorded as starting but are
not able to start — perhaps their credit cards didn’t go through, or their
addresses were incorrect, or they immediately changed their mind. There are
another two peaks between 60 and 90 days out. These peaks correspond to
customers not paying and to customers stopping after the end of the initial
promotional period.
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The hazard curve also has a bumpiness, with an evident weekly pattern and
also peaks about every thirty days. The explanation is the billing period: cus-
tomers are more likely to stop shortly after receiving a bill. Finally, the long-
term trend in the hazard probabilities is downwards, indicating that as
customers stay longer, their chance of leaving decreases. This long-term down-
ward trend is a good measure of loyalty; it shows that as customers stay
around longer, they are less likely to leave.

TI P The long-term trend in the hazard probabilities is a good measure of
loyalty, because it shows what happens as customers become more familiar
with you.

The Hazard Calculation

The rest of this chapter explores and explains various calculations used in sur-
vival analysis, with particular emphasis on using SQL and Excel to do them.
The examples in the rest of the chapter use the subscription dataset, which
consists of customers of a mobile phone company in three markets.

The hazard calculation is the foundation of survival analysis. It is tempting
to say that calculating hazards is easy, but estimating unbiased hazards is
hard. The hazards, in turn, lead to survival probabilities, and these, in turn, to
informative charts and useful measures. The survival calculations use data,
particularly the start date, stop date, and stop type columns. This section first
explores these columns and then goes into the calculation of the hazard itself.

Data Investigation
Survival analysis fundamentally relies on two pieces of information about each
customer, the stop flag (whether the customer is stopped or active) and the tenure
(how long the customer was active). Often, these columns must be derived from
other columns in the database. In the Subs table, for instance, the tenure is
already calculated but the stop flag must be derived from other columns.

Because this information is so important, a good place to start is with data
exploration.  This is true even when the fields are precalculated, because the
definitions in the data may not match exactly the definitions that we need.

Stop Flag

The stop flag specifies which customers are active and which are stopped, as
of the cutoff date. What happens to customers after the cutoff date is
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unknown. The STOP_TYPE column contains the stop reasons. What values does
this column take on? A simple aggregation query answers this question: 

SELECT stop_type, COUNT(*), MIN(customer_id), MAX(customer_id)

FROM subs

GROUP BY stop_type

Table 6-1 shows three stop types that are expected, and NULL which indicates
that customers area still active. The query includes the minimum and maxi-
mum customer ID, which is useful for finding rows that contain each value.

The stop types have the following meanings:

■■ NULL means that the customer is still active.

■■ “I” stands for “involuntary” and means the company initiated the stop,
usually due to nonpayment on bills.

■■ “V” stands for “voluntary” and means the customer initiated the stop.

■■ “M” stands for “migration” and means the customer switched to
another product.

A customer is active when the stop type is NULL. Otherwise, the customer has
stopped. This rule is expressed in SQL as:

SELECT (CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END) as isstop

The inverse of the stop flag is the active flag, which is simply one minus the
stop flag. In statistics, survival analysis often focuses on the active flag rather
than the stop flag, calling it the censor flag. The two are related in a simple
manner, and either can be used for the calculations.

The stop type originally stored in the data took on dozens of different 
values, indicating the myriad of particular reasons why someone might stop
(“bad service,” “no service at home,” “billing dispute,” and so on). These spe-
cific reasons were then mapped into the voluntary and involuntary categories
in the STOP_TYPE column.

Table 6-1: Stop Types in the Subscription Data

MINIMUM MAXIMUM
STOP_TYPE COUNT CUSTOMERID CUSTOMERID

NULL 2,390,959 2 115985522

I 790,457 217 115960366

M 15,508 9460 115908229

V 1,871,111 52 115962722
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Tenure

The tenure is the length of time between a customer’s start date and stop date.
Usually, the tenure needs to be calculated, using differences between the dates.
The subscription table, though, already has tenure defined. Using the
Microsoft SQL function for subtracting dates, the definition is: 

SELECT DATEDIFF(day, start_date,

(CASE WHEN stop_type IS NOT NULL THEN ‘2006-12-28‘

ELSE stop_date END)) as tenure

This expression follows the logic that a customer’s tenure is known when the
customer has already stopped. However, if the customer has not stopped, 
the tenure is as of the cutoff date (in a working database, this might be the cur-
rent date or the most recent load date).

WARN I NG A stop date can be the first day a customer is no longer active. 
Or, it can be the last day a customer is active — the particular definition depends
on the database. The tenure calculation is slightly different for these two cases.
In the first case, the tenure is the difference between the start and stop dates. In
the second, it is one more than the difference.

In order to have unbiased calculations for the hazard and survival probabil-
ities, the start and stop dates need to be accurate. There are many things that
can affect the accuracy of dates, particularly older dates:

■■ Customer records for stopped customers fail to be loaded into 
the database.

■■ The start date gets replaced with another date, such as the date the
account was loaded into the database.

■■ The stop date gets overwritten with dates that occur after the stop date,
such as the date an unpaid account was written off.

■■ The start date gets overwritten with another date, such as the date the
customer switched to another product.

Investigating dates is definitely important. The place to start is with a his-
togram of the starts and stops over time. The following query produces a 
histogram by year:

SELECT YEAR(thedate) as year, SUM(isstart) as starts, SUM(isstop) as stops

FROM ((SELECT start_date as thedate, 1 as isstart, 0 as isstop

FROM subs s)

UNION ALL

(SELECT stop_date, 0 as isstart, 1 as isstop

FROM subs s)

) s

GROUP BY YEAR(thedate)

ORDER BY 1
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The results from this query are in Table 6-2. Notice that there are over two
million customers that have NULL stop dates; these customers are still active.
The first two rows of the table also show that there are 182 customers with
questionable start dates — either NULL or in 1958. The data for these cus-
tomers is invalid. There should be no customers that predate the invention of
wireless phones. Because there are so few, the best thing to do is just filter
them out.

Table 6-2: Start and Stop Date by Year

YEAR STARTS STOPS

<NULL> 181 2,390,959

1958 1 0

1988 70 0

1989 213 0

1990 596 0

1991 1,011 0

1992 2,288 0

1993 3,890 0

1994 7,371 0

1995 11,638 0

1996 22,320 0

1997 42,462 0

1998 66,701 0

1999 102,617 0

2000 146,975 0

2001 250,471 0

2002 482,291 0

2003 865,219 0

2004 1,112,707 793,138

2005 1,292,819 874,845

2006 656,194 1,009,093
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A very important feature of the data is that there are no stops prior to 2004.
Was this because superior business practices during that time resulted in no
stops? Probably not. Was this because the company forgot to record stops in
the database? Probably not. The most likely reason is that the data was loaded
in 2004, and only active customers were loaded. This data is an example of left
truncation, because rows have been filtered out based on the stop date. The
next chapter explains how to handle left truncation.

In order to get unbiased estimates of the hazard and survival probabilities,
the start and stop dates need to come from the same time period. For now, the
solution is to filter the data, removing any starts that happened prior to 2004.
In addition, one customer has a negative tenure. Throughout this chapter, the
expression “WHERE start_date >= ‘2004-01-01’ AND tenure >= 0” is part of
most of the queries on the subscription table.

Hazard Probability
The hazard probability at tenure t is the ratio between two numbers: the num-
ber of customers who succumb to the risk divided by everyone who could
have succumbed to the risk. The denominator is called the population at risk at
tenure t. The hazard probability is always between 0% and 100%. It is never
negative, because the population at risk and the population that succumb to
the risk are counts and neither is ever negative. It is not greater than 100%,
because the population at risk always includes at least everyone who suc-
cumbs to the risk. The calculation is easy; for any given tenure, we simply
divide two numbers. Getting the right numbers is the challenge. 

As a simple example, consider 100 customers who start on January 1st and
are still active on January 31st. If two of these customers stop on February 1st,
then the 31-day hazard is 2%. There are 100 customers in the population at risk
and two who succumb. The ratio is 2%.

The 31-day hazard remains the same regardless of how many customers
actually start on January 1st, so long as all but 100 stop during the month of Jan-
uary. The customers who stop in January are not at risk on day 31, because
they are no longer active. These stopped-too-early customers do not affect the
31-day hazard.

The following SQL query calculates the hazard at tenure 100 in the sub-
scription table:

SELECT 100 as TENURE, COUNT(*) as popatrisk,

SUM(CASE WHEN tenure = 100 AND stop_type IS NOT NULL

THEN 1 ELSE 0 END) as succumbtorisk,

AVG(CASE WHEN tenure = 100 AND stop_type IS NOT NULL

THEN 1.0 ELSE 0 END) as h_100

FROM subs

WHERE start_date >= ‘2004-01-01’ AND tenure >= 100
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The population at risk consists of all customers whose tenure is greater than
or equal to 100. Of the 2,589,423 customers at risk, 2,199 of them stopped at
tenure 100. This gives a 100-day hazard of 0.085%. Notice that this calcula-
tion considers only customers since 2004, because of the left truncation issue
in the data.

Visualizing Customers: Time versus Tenure
Figure 6-3 shows two pictures of the same group of customers. In each picture,
one customer is represented by a line, with a vertical bar indicating where a
customer starts and a circle indicating the stop date or current date (for active
customers). An open circle means that the customer is still active, suggesting
an open account. A filled circle means the customer has stopped, suggesting a
closed account. 

Figure 6-3: This is a picture of customers on the calendar time and tenure timelines.

Customer 8

Customer 7

Customer 6

Customer 5

Customer 4

Customer 3

Customer 2

Customer 1

Calendar Time cutoff date

Customer 8

Customer 7

Customer 6

Customer 5

Customer 4

Customer 3

Customer 2

Customer 1

Tenure

250 Chapter 6 ■ How Long Will Customers Last?

99513c06.qxd:WileyRed  8/27/07  4:23 PM  Page 250



The two charts show the same customers from two different perspectives.
The top one shows the customers based on when they start and stop in calen-
dar time. All customers that are active are active until the cutoff date. The bot-
tom shows the same customers on the tenure timeline. The customers have
been shifted to the left, so they all start at the same time, tenure zero. On the
calendar time, all the active customers were aligned on the right, because they
are all active on the cutoff date. On the tenure chart, the active customers are
interspersed at all tenures. Some long tenure customers are no longer active,
and some are active. Some short tenure customers are active, some are not. The
aside, “Visualizing Survival Customers Using Excel” explains how these
charts were made using Excel charts.

The calendar time frame and tenure time both show customers and their
tenures. Survival analysis focuses on the tenure time frame, because tenure
generally has the greater effect on customer retention. After all, the fact that
customers can only stop after they have started puts a condition on the
tenure, but not on the calendar time. Also, a myriad of events happen on 
the tenure time frame, such as monthly bills, contract renewals, and the end
of the initial promotion.

However, the calendar time frame is also important. The calendar time frame
has seasonality and other things that affect all customers at the same time. 
One of the challenges in survival analysis is incorporating all the available
information from these two time frames.

Censoring
Figure 6-3, the visualization of customers in the two time frames, also hints at
one of the most important concepts in survival analysis. The tenure of cus-
tomers who have stopped is known, because these customers have both a start
date and a stop date. However, customers who are still active have an
unknown tenure. Of course, their tenure is at least as long as they have been
around, but the ultimate value is unknown. Any given active customer could
stop tomorrow, or ten years from now. 

Tenure is an example of censored data values. In Figure 6-3, censored cus-
tomers are represented by empty circles on the right end. In this diagram, cen-
soring is synonymous with being active, although this is not always the case.
Censoring can have other causes, as we will see in the later in this chapter and
in the next chapter.

Censored data values are central to survival analysis. There are three differ-
ent types of censoring.

The type just described is, strictly speaking, right censoring. This occurs
when the tenure is known to be greater than some value T. Right censoring is
the most common type of censoring.
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VISUALIZING SURVIVAL CUSTOMERS USING EXCEL

The charts in Figure 6-3 were created using Excel. Each chart includes two
series plotted using a scatter plot. One series is for all customers. This series
has the tail, which is really an X-error bar. The other series fills in some of the
circles for the active customers.

The following data was used for the empty circles on the top chart:

NAME ID Y-VALUE X START X-END LENGTH

Ann 8 7.5 12 14 2

Bob 7 6.5 6 13 7

Cora 6 5.5 6 13 7

Diane 5 4.5 3 3 0

Emma 4 3.5 3 14 11

Fred 3 2.5 5 10 5

Gus 2 1.5 6 7 1

Hal 1 0.5 9 14 5

The Y-Value is the vertical position of the line. The reason for starting at 0.5 and
incrementing by 1 is purely aesthetic. These values control the spacing of the
lines on the chart and the distance from the customers to the top and bottom of
the chart. This can also be done by adjusting the Y-axis, but the fraction 0.5
makes it work without such meddling.

The points are plotted using the X-END values rather than the X-START
values. The symbol is a circle, with a size of 10 pts and a white background 
(if no background color is set, the gridline shows through). To set the symbol,
right-click the series, choose “Format Data Series,” and go to the “Patterns” tab.
The appropriate selections are on the right.

The tail is added by going to the “X error bars” tab and clicking the “Minus”
option. The length is in the “Length” column. This is set by clicking “Custom”
and putting in the appropriate series reference by the “-” sign.

The labels on the lines are data labels. Add these by going to the “Data
Labels” tab and clicking next to “Y-Value.” When the values appear, select one
value by left-clicking, then right-click and choose “Format Data Labels.” There is
not a great deal of flexibility on the placement of data labels, so we have to
improvise. On the “Alignment” tab, set the “Label position” to “Left,” so the text
goes to the left of the circle. On the “Font” tab, set the “Effects” to “Superscript”
so the text is above the line. And, on the “Number” tab, click “Customer” and
type in ‘“Customer”0’ (include the double quotes, but not the single quotes).
This gives the “Customer X” label. The font is 12-pt Arial. Alternatively, the 
XY-Labeler introduced in Chapter 4 can be used to label the lines with actual
customer names.
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VISUALIZING SURVIVAL CUSTOMERS USING EXCEL (CONTINUED)

Add the filled circles using another data series, setting the options on
“Patterns” to fill in the circle. Copy the data for the three customers who are
active (customers 1, 4, and 8) and add the series. The X-error bar and data
labels do not need to be set in this case.

The final step is to add the vertical gridlines and to remove two axes (by
clicking on each of them and typing <delete>).

Voila! The end result is a chart that depicts customers using Excel charting —
certainly an unexpected application for charting.

Left censoring is the opposite of right censoring. This occurs when the tenure is
known to be less than some value T. Left censoring is not very common, but it can
occur when we have forgotten the start date of a customer but we know it was
after some date. Another example occurs when the data is a current snapshot of
a group of customers, where there is a stop flag but not a stop date. So, a row in
the data specifies that a customer has stopped. It also has the start date and the
snapshot date. All we know is the customer stopped before the snapshot date.

Interval censoring is the combination of left censoring and right censoring. It is
basically the left censoring case when customers are still active, so they are right
censored in addition to being left censored. Interval censoring can also occur
when data is being collected at long intervals. For instance, researchers studying
prisoners after they are released may check in on the prisoners every year. If a
prisoner drops out of the study, the tenure is known only to the nearest year.

In customer databases, the start date is usually known. As an example of a sit-
uation where the start date is not known, consider the question of how long
patients survive after cancer appears. The only date that is known is the diagno-
sis date of the cancer, not when the cancer first appeared. The age of the cancer
is right censored because the start date is not known, but is known to be before
the diagnosis date.  Ironically, one result of relying on the detection date is that
better cancer detection can result in better five-year survival after diagnosis,
even for the same treatment. The cancer is simply diagnosed earlier so the
patient survives longer after the diagnosis.

Left censoring and interval censoring are unusual in customer databases.
The typical situation with customer databases is that the start date is known,
and active customers are right censored.

Survival and Retention

Hazard probabilities measure the probability that someone succumbs to a risk
at a given time. Survival is the probability that someone has not succumbed to
the risk up to that time. In other words, survival accumulates information
about hazards.
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Point Estimate for Survival
Survival at time t is the proportion of customers who are active at tenure t. For
a given tenure, the survival question is: What proportion of customers survived to
at least tenure t? This question is easy to answer in SQL for any given tenure:

SELECT 100 as tenure, COUNT(*) as popatrisk,

SUM(CASE WHEN tenure < 100 AND stop_type IS NOT NULL

THEN 1 ELSE 0 END) as succumbtorisk,

AVG(CASE WHEN tenure >= 100 OR stop_type IS NULL

THEN 1.0 ELSE 0 END) as s_100

FROM subs

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0 AND

start_date <= DATEADD(dd, -100, ‘2006-12-28’)

This calculation is similar to the point estimate for the hazard. The population
at risk is everyone who started more than 100 days before the cutoff date,
because these are the only customers in the data who could have survived to
100 days. The ones who survived are those who are either still active or whose
tenure is greater than 100 days. The survival is the ratio of those who survived
to the population at risk.

Calculating Survival for All Tenures
The customers who survive to tenure t are those customers that have not yet
succumbed to the risk of stopping. Mathematically, the survival at tenure t is
the product of one minus the hazards for all tenures less than t. One minus the
hazard is the probability that someone did not succumb to the risk at that point
in time. It could also be called the incremental survival, because it corresponds
to the survival from tenure t to tenure t+1. Overall survival at tenure t, then, is
the product of the incremental survivals up to t.

This type of cumulative product is, alas, not readily supported in standard
SQL. Fortunately, the combination of SQL and Excel makes the calculation
easy. The first step is to calculate the hazards for all tenures, then to calculate
the incremental survival, and then the cumulative product.

The calculation of the hazard probability uses two items of information:

■■ Population that succumbed to the risk: the number of customers who
stopped at exactly tenure t.

■■ Population at risk: the number of customers whose tenure is greater
than or equal to t.

The population at risk at tenure t is an example of a cumulative sum, because
it is the sum of all customers whose tenure is greater than or equal to t. Excel is
the tool of choice for the calculation.
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The calculation requires two values for all tenures: the number of cus-
tomers whose tenure is exactly t and the number of customers that stopped at
exactly tenure t:

SELECT tenure, COUNT(*) as popt,

SUM(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END) as stopt

FROM subs

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0

GROUP BY tenure

ORDER BY 1

When the results are copied into Excel, one column has TENURE, one col-
umn POPT, and the third STOPT. Assume that the results are copied, with
the data starting at cell C29. What is the population at risk at a given tenure?
The population at risk is the sum of the POPT values (in column D) for that
tenure and higher. 

To do the calculation without typing in a separate formula for all 1,093 rows,
use a formula that changes when it is copied down the column. Such a formula
for cell F29 is “=SUM($D29:$D$1121)”. This formula has the range
“$D29:$D$1121”, so the sum starts at D29 and continues through D1121. The pre-
fix “$” holds that portion of the cell reference constant. Copying the formula
down (by highlighting the region and typing <control>-D) modifies the first cell
reference in the range. Cell F30 gets the formula “=SUM($D30:$D1121)”, and so
on to “=SUM($D1121:$D1121)”.

The hazard is then the ratio between the stops and the population at risk,
which for cell G29 is “=E29/F29”. Figure 6-4 shows an Excel spreadsheet with
these formulas.

Figure 6-4: These formulas in an Excel spreadsheet calculate hazards and survival.
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The next step is to calculate the survival as the cumulative product of one
minus the hazards. The following formula in cell H29 is the survival formula:
“=IF($C29=0, 1, H28*(1-G28))”. The “if” part of the formula takes care of the
case when the tenure is zero and the survival is 100%. Each subsequent sur-
vival value is the previous survival value multiplied by one minus the previ-
ous hazard. This type of formula, where the formulas in a column of cells refer
to the values calculated in previous rows in the same column is called a recur-
sive formula. When this formula is copied down the column, the formula calcu-
lates the survival value for all tenures. The resulting survival curve is shown
in Figure 6-5.

Figure 6-5: This is the survival curve for the subscription data.

In this case, all tenure values appear in the table (there are no gaps in the tenure
column). However, this is not necessarily true. When this happens, it means that
no stopped or active customers have exactly that particular tenure. The hazard is
zero for the missing tenure, and the survival is the same as the previous survival.
This does not cause any problems with the calculation. It does, however, make
scatter plots preferable for survival curves rather than line charts. When values
are skipped, the scatter plot does a better job labeling the X-axis.

Calculating Survival in SQL
Having the hazard and survival probabilities in SQL tables, rather than in
Excel, is sometimes convenient. One approach is to do the calculations in Excel,
save the results out as text files, and re-import them into SQL. However, it is
possible to do the calculations directly in SQL in a multi-step approach:

1. Create the survival table with the appropriate columns.

2. Load the survival table with STOPT and POPT.

3. Calculate the cumulative population and ENDTENURE.
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4. Calculate the hazard and NUMDAYS.

5. Calculate SURVIVAL.

6. Fix ENDTENURE and NUMDAYS in last row.

This processing requires using SQL data manipulation language (DML),
which includes INSERT and UPDATE. The syntax for these expressions varies
more between databases than the syntax for the SELECT. Also, when doing the
processing, some steps are easier and much more efficient using database
extensions, particularly those that allow cumulative sums. However, in this
section, the calculations are shown using self-joins, an alternative approach
supported by standard SQL.

Step 1. Create the Survival Table

The following SQL creates the survival table:

CREATE TABLE survival (

tenure       INT,

popt         INT,

stopt        INT,

cumpopt      INT,

hazard       FLOAT,

survival     FLOAT,

endtenure    INT,

numdays      INT

)

Most of these columns are similar to the Excel version. The purpose of
ENDTENURE and NUMDAYS is to take care of the situation where tenures are
skipped because there are no active or stopped customers with exactly that
tenure. The survival for a skipped tenure value is the same as the survival for the
previous tenure. The idea is that we can look up survival values using the expres-
sion: “WHERE tenure BETWEEN survival.tenure AND survival.endtenure” and
this works for skipped tenures as well as other tenures.

Step 2: Load POPT and STOPT

Loading the table with the base information uses the insert statement:

INSERT INTO survival

SELECT tenure,

COUNT(*) as popt, 

SUM(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END

) as stopt,

NULL as cumpopt, NULL as hazard, NULL as survival,

NULL as endtenure, NULL as numdays

(continued)
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FROM subs

WHERE start_date >= ‘2004-01-01’ AND

tenure >= 0

GROUP BY tenure

This is the same basic query used that prepares the data for the Excel calcula-
tion. Here, an INSERT statement is wrapped around the query to add rows into
the survival table.

Step 3: Calculate Cumulative Population

The next step is to calculate the cumulative population and ENDTENURE. The
self-join query that calculates these columns is:

SELECT s1.tenure, SUM(s2.popt) as cumpopt,

MIN(CASE WHEN s2.tenure > s1.tenure THEN s2.TENURE-1 END

) as endtenure

FROM survival s1 LEFT OUTER JOIN

survival s2

ON s1.tenure <= s2.tenure

GROUP BY s1.tenure

The challenge is expressing this as an update statement. This is a challenge
because this query is updating the same table that’s generating the values. One
solution that works for all databases is to place the results of the query in a tem-
porary table and do the update from there. Another is to use syntax specific to
a particular database. The following is the statement in Microsoft SQL:

UPDATE survival

SET survival.cumpopt = ssum.cumpopt,

survival.endtenure = ssum.endtenure

FROM (SELECT s1.tenure, SUM(s2.popt) as cumpopt,

MIN(CASE WHEN s2.tenure > s1.tenure THEN s2.TENURE-1 END

) as endtenure

FROM survival s1 LEFT OUTER JOIN

survival s2

ON s1.tenure <= s2.tenure

GROUP BY s1.tenure) ssum

WHERE survival.tenure = ssum.tenure

Notice that this query uses a subquery with a self-join within the update state-
ment. Some databases have extensions that make it possible to calculate the
cumulative sum more directly. For instance, Oracle’s implementation of win-
dow functions (which they call analytic functions) support the syntax
SUM(popt) OVER (ORDER BY tenure ROWS UNBOUNDED PRECEDING) to do the
calculation without a self-join.
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Step 4: Calculate the Hazard

The next step is to calculate the hazard probability and NUMDAYS:

UPDATE survival

SET survival.hazard = stopt*1.0 / cumpopt,

survival.numdays = endtenure – tenure + 1

Step 5: Calculate the Survival

The survival calculation is another accumulation, but this time a product
instead of a sum. What we are trying to do is to add survival as a column using
logic such as the following:

SELECT s1.tenure, COALESCE(PRODUCT(1-s2.hazard), 1) as survival

FROM survival s1 LEFT OUTER JOIN

survival s2

ON s1.tenure > s2.tenure

GROUP BY s1.tenure

The COALESCE() statement takes care of the case when the tenure is zero. In this
case, there are no hazards, so the result would be NULL. COALESCE() returns the
first non-NULL argument.

Unfortunately, SQL does not support PRODUCT() as an aggregation func-
tion. So, we have to go back to high school algebra, and remember how 
to use logarithms: raising e to the power of the sum of the logarithms of 
numbers is the same as multiplying the numbers together. So, PRODUCT() is
calculated as:

SELECT EXP(SUM(LOG(1-s2.hazard))

This expression sums the logs of the incremental survivals and then undoes
the log, a roundabout way to do the multiplication.

One way to express the update in Microsoft SQL is using a correlated 
subquery:

UPDATE survival

SET survival =

(CASE WHEN tenure = 0 THEN 1

ELSE (SELECT EXP(SUM(LOG(1-hazard)))

FROM survival s2

WHERE s2.tenure < survival.tenure

)

END)
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This differs from the method used in Excel. In this query, survival is calculated
as the products of all the previous incremental survivals, rather than using a
recursive calculation. The reason is that rows can be updated in any order.
There is no guarantee that tenure zero be updated before tenure one. If tenure
one is updated first, it would get the value of NULL using a recursive approach
because survival at tenure zero is NULL before it is updated. Doing the full
product calculates the correct value.

Step 6: Fix ENDTENURE and NUMDAYS in Last Row

The last row of the table has a NULL value for ENDTENURE. The following
code fixes this:

UPDATE survival

SET endtenure = tenure+100000-1, numdays = 100000

WHERE endtenure IS NULL

Extending the final survival for a long time makes it possible to look up sur-
vival values in the table, even for tenures that go beyond the range of data.
Extrapolating beyond the range of data is not recommended, but it is some-
times necessary.

Generalizing the SQL

Doing the survival calculations in SQL rather than Excel has an advantage,
because Excel’s limit on the number of rows limits the number of tenures. This
is particularly important when including grouping parameters, such as mar-
ket and rate plan and channel, in the query. The combination of all these
exceeds the capacity of Excel.

Modifying the preceding queries to support such groups is not difficult.
First, the groups need to be included in the survival table, and Step 2 needs to
be modified to have the GROUP BY clause. Then, the queries in Steps 3 and 5
need to be modified so the tenure comparison only occurs within the same
group. For a single group, the syntax would look like:

WHERE survival.tenure <= s2.tenure AND

survival.group1 = s2.group1)

This structure readily generalizes to any number of columns used to define the
groups. However, as the number of groups grows, the size of each group
decreases, meaning that there is less data for the survival calculation.

A Simple Customer Retention Calculation
Survival is one method of understanding how long customers stay around.
Customer retention is an alternative approach. The purpose in presenting it
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here is to better understand survival by comparing it to another sensible mea-
sure. A typical customer retention question is: Of customers who started xxx days
ago, how many are still active? This question can be answered directly in SQL:

SELECT DATEDIFF(day, start_date, ‘2006-12-28’) as days_ago,

COUNT(*) as numstarts,

SUM(CASE WHEN stop_type IS NULL THEN 1 ELSE 0 END

) as numactives,

AVG(CASE WHEN stop_type IS NULL THEN 1.0 ELSE 0 END

) retention

FROM subs

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0

GROUP BY DATEDIFF(day, start_date, ‘2006-12-28’)

ORDER BY 1

This query counts the customers who started on a certain day, calculating the
proportion that are still active.

The result has three columns of data. The first column is the number of days
ago that customers started, relative to the cutoff date of the data. Other time
units, such as weeks or months, might be more appropriate. The second col-
umn is the number of starts that occurred on that day. And the third column
specifies how many of those customers are currently active. Figure 6-6 shows
a plot of the results as a retention curve, which is the proportion of customers
who are active as of the cutoff date.

Figure 6-6: This is an example of a retention curve for the subscription data.

Like the survival curve, the retention curve always starts at 100%, because
customers who just started are still active. Second, it generally declines. How-
ever, this decline can be jagged, with the curve going up in some places rather
than down. For instance, of customers who started 90 days ago, 80.1% are still
active on the cutoff date. Of customers who started 324 days ago, 80.4% are
still active. Looked at in another way, this says that 19.9% of customers
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stopped in the first 90 days. But, only 19.6% of customers stopped in the first
324 days. Intuitively, this does not make sense. It is almost as if customers were
reincarnating between the two days. In practice it probably means that partic-
ularly good customers were acquired 324 days ago and particularly bad cus-
tomers were acquired 90 days ago. Jaggedness in retention is counterintuitive,
because fewer older customers ought to be around than newer customers.

Comparison between Retention and Survival
Figure 6-7 shows retention and survival on the same chart. This chart com-
bines the curves in Figures 6-5 and 6-6. 

Figure 6-7: Retention and survival plots are shown for the same dataset.

Both curves start at 100% and decline. However, the survival curve has no
jaggedness because it is always flat or declining. Mathematically, this property is
called monotonically non-increasing, and it is always true for survival curves. Sur-
vival curves are smooth; they do not exhibit the jaggedness of retention curves.

One way of eliminating the jaggedness on retention curves is to smooth the
curve using moving averages. The problem is that this smoothes away useful
information. Also, the points no longer have a clear meaning, because they are
averages of several different times, each of which has a different group of
starts. A much better solution is to calculate the corresponding survival curve.

Simple Example of Hazard and Survival
This section explores the simplest example of survival, the constant hazard, in
order to better understand the concepts underlying survival. Although such
simplicity does not occur with customers, it does readily apply to a very differ-
ent domain, radioactivity. A radioactive isotope is one that decays at a constant
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rate; by emitting subatomic particles, it transmutes into other elements. The rate
of decay is usually described in terms of the half-life. For instance, the most com-
mon isotope of uranium, U-238, has a half-life of about 4.5 billion years, mean-
ing that half the U-238 in a sample decays in this time. On the other hand,
another isotope called U-239 has a half-life of about 23 minutes. The longer the
half-life, the slower the rate of decay, and the more stable the element.

There are several reasons for using radioactivity as an example. Because the
decay rates are constant (at least according to modern theories of the physics),
radioactivity provides simple examples outside the realm of human behavior.
Also, constant hazards are a good baseline for understanding more complex
hazards. We can always ask what constant survival rate would have resulted
in the survival observed at a given tenure.

Constant hazards are also a good tool for understanding a phenomenon
called unobserved heterogeneity. This phenomenon is quite important in the
world of survival analysis. However, as its name suggests, it is not observed
directly, making it a bit challenging to recognize and understand.

Constant Hazard

A constant hazard is exactly what its name suggests, a constant. Excel can
handle all the calculations for a constant hazard. Assuming a constant haz-
ard, the half-life and hazard probability are interchangeable. If cell A1 con-
tains the half-life, then the following formula in cell B1 translates this into a
hazard probability:

=1-0.5^(1/A1)

Conversely, if B2 contains the hazard probability, then the following formula in
cell C1 calculates the half-life:

-1/LOG(1-B1, 2)

Consider two radioactive isotopes of radium, RA-223 and RA-224. The first
has a half-life of 11.43 days and the second a half-life of 3.63 days, which cor-
respond respectively to daily hazard (decay) probabilities of 5.9% and 17.4%.
This means that after one day, about 95.1% of RA-223 remains, 
and about 82.6% of RA-224 remains. Figure 6-8 shows the survival curves for
these two elements.

The shape of the survival curve follows an exponential curve, which is
always the case when the hazard is constant. These survival curves show that
within a few weeks, almost all the RA-224 has disappeared. On the other hand,
some of the RA-223 remains, because it decays more slowly.
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Figure 6-8: Survival curves for RA-223 and RA-224 show the proportion of the elements
remaining after a given number of days.

What Happens to a Mixture

Assume that a sample of radium contains 100 grams of RA-223 and 100 grams of
RA-224. How does this mixture behave? Table 6-3 shows the amount of each iso-
tope that remains after a given amount of time. (The actual mass of the sample
remains pretty close to 200 grams, because the radium just changes into other
elements, primarily radon, and very little mass is lost in the process.)

Table 6-3: Amount of Radium Left, Assuming 100 Grams of RA-223 and RA-224 at Beginning

DAYS RA-223 (GRAMS) RA-224 (GRAMS) TOTAL (GRAMS) RA-223 %

0 100.0 100.0 200.0 50.0%

1 94.1 82.6 176.7 53.3%

2 88.6 68.3 156.8 56.5%

3 83.4 56.4 139.8 59.7%

4 78.5 46.6 125.1 62.7%

5 73.8 38.5 112.3 65.7%

6 69.5 31.8 101.3 68.6%

7 65.4 26.3 91.7 71.3%

8 61.6 21.7 83.3 73.9%

9 57.9 17.9 75.9 76.4%

10 54.5 14.8 69.3 78.6%
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The amount of radium remaining is the sum of the amount of RA-223 and
RA-224. The proportion of the original radium remaining is this sum divided
by 200 grams, a formula remarkably similar to taking the average of the sur-
vival curves. Actually, it is the weighted average times the original sample size
in grams. Because the original sample started out with the same amount of the
two isotopes, the weights are equal.

Given this proportion, what are the hazard probabilities that correspond to
the overall radium mixture? One guess would be the average of the two haz-
ard probabilities, or a constant hazard of about 11.6%. Although inspired, this
guess is wrong. A mixture of two things with different constant hazards does
not have a constant hazard.

The hazard can be calculated from the survival values. The hazard at a given
time t is the proportion of the population at risk that stops before time t+1 (or
decays in the case of radioactivity). The hazard is one minus the ratio of the
survival at t+1 divided by the survival at t.

Figure 6-9 shows the resulting hazards, along with the constant hazards for
the two isotopes. The hazard of the mixture is not constant at all. In fact, it
starts at the average value and declines to be more like RA-223’s hazard as the
mixture of radium becomes more and more RA-223. The RA-224 has decayed
into something else. The proportion of the sample that is RA-223 increases
over time, which is also shown in Table 6-3.

Figure 6-9: The hazard probabilities corresponding to a mixture of Radium 223 and
Radium 224 are not constant, even though the two components have constant hazards.

The purpose of this example is to show what happens when a population
consists of groups that behave differently. If we are given a sample of radium
and measure the hazard probabilities and they follow the pattern in Fig-
ure 6-9, we might assume that the hazards are not constant. In fact, what is
happening is that there are two groups with constant hazards mixed together.
This phenomenon is called unobserved heterogeneity. Unobserved heterogene-
ity means that there are things that affect the survival that are not being taken
into account.
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The same phenomenon applies to customers. If there are two ways of acquir-
ing customers, one that attracts lots of short-term customers (“bad”) and one
that attracts some long-term customers (“good”), which is better in the long
term? Say 1,000 “bad” customers and 100 “good” customers start at the same
time. After a year, 20 “bad” customers might remain compared to 60 “good”
customers. Even though “good” customers were acquired at a rate one-tenth
that of the bad customers, after a year, three times as many remain.

Constant Hazard Corresponding to Survival

For each point on a survival curve, there is a constant hazard that would pro-
duce that survival value at that tenure. To calculate the corresponding con-
stant hazard, assume that cell A1 contains the number of days and cell B1
contains the survival proportion at that day. The following formula in cell C1
calculates the corresponding daily hazard probability:

=1-B1^(1/A1)

For different tenures, this value changes, because in the real world, hazards are
not constant. The “effective constant” hazard formally is fitting an exponential
survival function to each point on the survival curve.

The comparison of this “effective constant” hazard to the actual hazard can
be interesting, as shown in Figure 6-10 for the subscriber data. In a sense, the
constant hazard is spreading the hazard risk equally over all tenures, so it pro-
vides an expected value for the hazard. So, when the actual hazard is less than
the constant one, customers are leaving more slowly at that particular tenure
than the long-term average would suggest. Similarly, when the average haz-
ard is greater than the constant one, customers are leaving more quickly.

Figure 6-10: Comparison of the effective constant hazard to the actual hazard for the
subscription data.
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A survival curve (or retention plot) paints a pretty picture. Survival is not
only for creating pretty pictures. It can also be used to measure different
groups of customers, as discussed in the next section.

Comparing Different Groups of Customers

Survival analysis facilitates comparing different groups of customers. This sec-
tion walks through an example on the subscriber data using things that are
known about customers when they start. These things are called time-zero
covariates, because they are known at the start time (tenure 0). The next chap-
ter investigates approaches for working with time-dependent covariates,
things that happen during customers’ lifetimes.

Summarizing the Markets
The subscriber data contains three different markets, Gotham, Metropolis, and
Smallville. A good way to start the analysis is by looking at the proportion of
customers in each market who are active as of the cutoff date. Table 6-4 shows
some information about the markets, such as the total number of customers,
the average tenure of customers in the market, and the proportion of cus-
tomers who are active. This table was generated by the following SQL query:

SELECT market, COUNT(*) as customers, AVG(tenure) as avg_tenure,

SUM(CASE WHEN stop_type IS NULL THEN 1 ELSE 0 END) as actives,

AVG(CASE WHEN stop_type IS NULL THEN 1.0 ELSE 0 END

) as actives_rate

FROM subs

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0

GROUP BY market

There are two pieces of evidence in this table that suggest that Gotham is the
worst market and Smallville the best, in terms of customer retention. First, 
the average tenure of customers in Gotham is about 81 days shorter than the
average tenure of customers in Smallville. Second, of all the customers that
ever started in Gotham since 2004, only about 46% are still active. For Small-
ville, the proportion is close to 70%.

Table 6-4: Comparison of Customers and Active Customers by Market

AVERAGE
MARKET CUSTOMERS TENURE ACTIVES PROPORTION ACTIVE

Gotham 1,499,396 383.5 685,176 45.7%

Metropolis 995,572 415.3 519,709 52.2%

Smallville 566,751 464.3 390,414 68.9%
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Combined, these two pieces of evidence are quite convincing that Smallville
is inhabited by better customers. However, care must be taken when interpret-
ing such evidence. For instance, imagine that there is another town, Shangri-
La, where customers start and they never stop. We would expect Shangri-La to
have a very high average tenure. However, what if our company only man-
aged to break into the market three months ago? In that case, everyone would
have started in the last three months and the average tenure would probably
be about 45 days, much less than the other markets. Stratifying survival curves
is a better way to compare markets.

Stratifying by Market
To calculate survival for one market, a WHERE clause can be used:

SELECT tenure, COUNT(*) as popt,

SUM(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END) as stopt

FROM subs

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0 AND

market = ‘Gotham’

GROUP BY tenure

ORDER BY 1

However, it is cumbersome to do this for each market.
A better approach is to pivot the data so the columns contain the informa-

tion about each market. The desired results would have the tenure, then the
population for each market (in three columns), and then the number of stops
in each market (in three more columns). The SQL to do this is:

SELECT tenure,

SUM(CASE WHEN market = ‘Gotham’ THEN 1 ELSE 0 END) as popg,

SUM(CASE WHEN market = ‘Metropolis’ THEN 1 ELSE 0 END) as popm,

SUM(CASE WHEN market = ‘Smallville’ THEN 1 ELSE 0 END) as pops,

SUM(CASE WHEN stop_type IS NOT NULL AND market = ‘Gotham’

THEN 1 ELSE 0 END) as stopg,

SUM(CASE WHEN stop_type IS NOT NULL AND market = ‘Metropolis’

THEN 1 ELSE 0 END) as stopm,

SUM(CASE WHEN stop_type IS NOT NULL AND market = ‘Smallville’

THEN 1 ELSE 0 END) as stops

FROM subs

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0

GROUP BY tenure

ORDER BY 1

WARN I NG Don’t use the “LIKE” function when a direct comparison suffices,
because “LIKE” is typically much less efficient. For instance, use “market =
‘Gotham’” rather than “market LIKE ‘G%‘”.
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An alternative way to write the SQL is using indicator variables. That is, to create
a separate variable for each market that takes on the values of 0 or 1. The perfor-
mance of the two queries should be quite similar. The version with the indicator
variables has the advantage that each comparison is defined only once, which
reduces the possibility of error (such as misspelling the market name):

SELECT tenure,

SUM(isg) as popg, SUM(ism) as popm, SUM(iss) as pops,

SUM(isg*isstopped) as stopg, SUM(ism*isstopped) as stopm,

SUM(iss*isstopped) as stopg

FROM (SELECT s.*,

(CASE WHEN market = ‘Gotham’ THEN 1 ELSE 0 END) as isg,

(CASE WHEN market = ‘Metropolis’ THEN 1 ELSE 0 END) as ism,

(CASE WHEN market = ‘Smallville’ THEN 1 ELSE 0 END) as iss,

(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END

) as isstopped

FROM subs s) s

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0

GROUP BY tenure

ORDER BY 1

Figure 6-11 shows the first few rows of the resulting table (the columns for
Metropolis and Smallville are hidden). It also shows the formulas used for the
calculation. Notice that the columns are in groups, with the population
columns coming first and then the stop columns. This is on purpose, so the
hazard and survival formulas can be entered once and then copied to adjacent
cells — to the right as well as downward. Copying formulas is surely easier
than typing them over and over.

These formulas have some minor differences from the earlier survival 
calculations:

■■ The formula for cumulative population is POPT plus the cumulative
population at the next tenure.

■■ The hazard calculation takes into account the possibility that the popu-
lation is 0. In this case, it returns the value #NA, because #NA works best
in charts.

■■ The survival calculation refers to the tenure column with a column-
fixed reference $C1117, instead of C1117. This makes it easier to copy
the formula across multiple columns.

■■ The column headers include the population in parentheses.

The resulting survival curves are in Figure 6-12. Notice that the legend has the
population in parentheses after the market name. The population was
appended onto the market name for just this reason.

These curves confirm the earlier observation that survival in Gotham seems
worse than survival in the other two markets. All three markets show the drop
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in survival at one year, which corresponds to the contract expiration date. At
450 days — safely after the contract expiration — only 50.1% of Gotham’s cus-
tomers remain, compared to 59.2% for Metropolis and 74.8% for Smallville.

Figure 6-11: These screen shots show the data and Excel formulas for calculating survival
by market (only Gotham is shown; the columns for Metropolis and Smallville are hidden).

TI P In Excel, it is possible to label a single point on a series. To do so, click
the series to select it. Then click again to select the point. Then right click and
choose “Format Data Point.” Under the “Data Labels” tab, choose the Y Value.
You can then double-click the text to format it. A good idea is to make the text
the same color as the series itself.

Survival Ratio
The ratio between survival curves is a good way of comparing different
groups, because it captures long-term trends in survival. This ratio is simply
dividing the survival for one market by the survival for another. Let’s use the
best survival as the standard, which is Smallville. Figure 6-13 shows the ratio
of survival for the three markets to customers in Smallville. Smallville’s sur-
vival ratio is uninteresting, because it is always one.
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Figure 6-12: Survival by market for the subscription data shows that Smallville has the
best survival and Gotham the worst.

Figure 6-13: The survival ratio is the ratio of survival in each market to Smallville’s survival.

The survival ratio chart shows that Gotham’s survival is uniformly worse
than Smallville’s at all points in time. Survival in Metropolis is as bad as
Gotham in the first year, but then it improves. Although the chart does not
specify what is happening, the timing is suggestive. For instance, some cus-
tomers start with one-year contracts, some with two-year contracts, and some
with no contracts at all. Further, customers on one-year contracts are more
likely to cancel at one year than during the first year. So, perhaps the difference
between Metropolis and Gotham is due to the proportion of customers on one-
year contracts. Whatever the cause, the survival ratio changes for different
tenures. There is not a uniform proportionality between the curves.

Sometimes the ratio between survival curves can provide somewhat mis-
leading results. For instance, if one market has very poor coverage in outlying
areas, then customers from these areas would sign up for the service and
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quickly stop — their cell phone is not working. Say, 5% of the customers stop in
the first couple of months due to bad coverage. This 5% lingers in the survival
curves. So, even if the two markets are identical — except for the outlying cov-
erage issue that only affects recent starts — the ratio will always show that the
first market is worse because the ratio accumulates the differences in survival.

Conditional Survival
The survival ratio suggests another question about survival. Two markets
have essentially the same survival characteristics for the first year, but then
their survival diverges after the contract expiration period. What about cus-
tomers who make it beyond the contract expiration? Do customers start to
look more similar or more different?

Conditional survival answers the question: “What is the survival of customers
given that they have survived a certain amount of time?” Contract expiration typi-
cally occurs after one year. However, some customers procrastinate, so a
period a bit longer than one year is useful, such as thirteen months (390 days).

There are two ways to calculate conditional survival. One way is to re-run
the survival calculation, only on customers who survive at least 390 days. The
following WHERE clause could be added onto the query:

WHERE tenure >= 390

This approach requires recalculating all the survival values.
There is a simpler approach. The conditional survival can also be calculated

with the following two rules:

■■ For tenures <= 390, the conditional survival is 100% (because of the
assumption that all customers survive to 390 days.

■■ For tenures > 390, the conditional survival is the survival at time t
divided by the survival at time 390.

Excel’s VLOOKUP() function makes it easy to find the survival at time 390. The
conditional survival is then just the ratio of the survival to this value.

Figure 6-14 shows the survival and the conditional survival at time 390 for
the three markets. The same pattern holds after thirteen months, with Small-
ville being the best and Gotham the worst for survival after thirteen months.

Comparing Survival over Time

There are three years of complete starts in the subscription data. The analyses
so far have mixed all the data together. One interesting question is whether the
hazards have changed over time. This section presents three ways to approach
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this problem. The first looks at whether a particular hazard has changed over
time. The second looks at customers by the year in which they started, answer-
ing the question: What is the survival of customers who started in a given year? The
third takes snapshots of the hazards at the end of each year, answering the
question: What did the hazards look like at the end of each year? All these ways of
approaching this question use the same data. They simply require cleverness
to calculate the hazards. 

Figure 6-14: Conditional survival after thirteen months shows that Smallville is still the
best market and Gotham the worst.

The next chapter presents yet another way to look at this problem. It answers
the question: What did the hazards look like based on the stops in each year? Answer-
ing this question requires a different approach to the hazard calculation.

How Has a Particular Hazard Changed over Time?
The calculation of the hazard is really the average of a particular hazard prob-
ability during a period of time. So far, this average has been over the three
years of data starting in 2004. Trends in hazards, particularly in hazards rele-
vant to the business, can provide important information.

Figure 6-15 shows the trend in the 365-day hazard over the course of 2005
and 2006 (there are not 365 days worth of data for 2004 since we are using only
starts during these three years). This hazard is interesting because it is associ-
ated with anniversary churn; that is, customers leaving on the one-year
anniversary after they start. As the chart shows, anniversary churn increased
in 2005, hitting a peak at the end of the year, and then stabilized through 2006.
The 28-day moving average removes much of the variability, helping to see the
long-term pattern.
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Figure 6-15: The hazard at 365 days changes throughout 2005 and 2006.

Calculating the hazard requires thinking carefully about the population at
risk at each point in time. At any given tenure, the population at risk for the
365-day hazard probability is all customers whose tenure is exactly 365. Cal-
culating this population for any given date, such as Feb 14, 2006, is easy:

SELECT COUNT(*) as pop365,

SUM(CASE WHEN stop_date = ‘2006-02-14’ THEN 1 ELSE 0 END) as s365,

AVG(CASE WHEN stop_date = ‘2006-02-14’ THEN 1.0 ELSE 0 END) as h365

FROM subs

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0 AND

(stop_date >= ‘2006-02-14’ OR stop_date IS NULL) AND

DATEDIFF(dd, start_date, ‘2006-02-14’) = 365

Almost all the work in this calculation is in the WHERE clause. The first two condi-
tions are the standard conditions for filtering the data because of left truncation
(these conditions are actually redundant in this case). The next condition says that
only customers who were active on Feb 14, 2006, are being considered. And the
final condition selects only customers whose tenure is exactly 365 on that date.

Extending this idea to all tenures is actually fairly easy. Customers are at risk
for the 365-day hazard on exactly the day 365 days after they start. The fol-
lowing SQL extends the calculation to all dates in 2005 and 2006:

SELECT date365, COUNT(*) as pop365,

SUM(CASE WHEN stop_date = date365 AND

stop_type IS NOT NULL THEN 1 ELSE 0 END) as stop365,

AVG(CASE WHEN stop_date = date365 AND

stop_type IS NOT NULL THEN 1.0 ELSE 0 END) as h365

FROM (SELECT s.*, DATEADD(dd, 365, start_date) as date365 FROM subs s) s

WHERE start_date >= ‘2004-01-01’ AND tenure >= 365

GROUP BY date365

ORDER BY 1

In this query, most of the work is being done in the GROUP BY and SELECT
clauses. The date of interest is 365 days after the start. All customers who are
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active 365 days after they start are in the population at risk on exactly that date.
Of these, some customers stop, as captured by the stop date being 365 days
after the start date. Because no accumulations are necessary, the hazard can be
readily calculated.

It is important to note that one particular hazard — even one as large as
anniversary churn — has a very small impact on overall survival. However,
trends in particular hazards can be useful for tracking particular aspects of the
business. The next two subsections discuss changes in overall survival from
one year to the next.

What Is Customer Survival by Year of Start?
Filtering customers by their start date is an acceptable way of calculating haz-
ards; that is, filters by start date do not bias the hazard estimates. So, calculat-
ing hazards by year of start is similar to calculating hazards by market. The
only difference is that the groups are based on the year of the start:

SELECT tenure,

SUM(is2004) as p2004, SUM(is2005) as p2005, SUM(is2006) as p2006,

SUM(is2004*isstop) as s2004, SUM(is2005*isstop) as s2005,

SUM(is2006*isstop) as s2006

FROM (SELECT s.*,

(CASE WHEN YEAR(start_date) = 2004 THEN 1 ELSE 0 END

) as is2004,

(CASE WHEN YEAR(start_date) = 2005 THEN 1 ELSE 0 END

) as is2005,

(CASE WHEN YEAR(start_date) = 2006 THEN 1 ELSE 0 END

) as is2006,

(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END

) as isstop

FROM subs s) s

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0

GROUP BY tenure

ORDER BY 1

Figure 6-16 shows the resulting survival curves for starts in each year. One
thing apparent in the chart is that the length of the curves varies by year.
Because the cutoff date is in 2006, the starts in 2006 only have survival for
about one year. The starts in 2005 have survival values for two years, and 2004
starts have three years of survival.

What Did Survival Look Like in the Past?
This question is more challenging than the previous one, because shifting the
cutoff date to an earlier date potentially changes both the tenure and stop flag
for customers. Figure 6-17 illustrates what happens. Customers who are now
stopped, such as customers 3, 6, and 7, are active as of the earlier cutoff date.
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Similarly, the tenure for most customers has also changed. Technically, the
process of shifting the cutoff date is forcing the right censorship date to be at
an earlier date than the cutoff date for the data. This discussion uses “cutoff
date” to mean the latest date in the database, and “right censorship date” to be
the earlier date. Up to now, these two dates have been the same.

Figure 6-16: The survival curves here are based on starts in each of the years.

Figure 6-17: Shifting the right censorship date into the past changes the tenure, the stop
flag, and the group of customers included in the survival calculation.

Consider a customer who started on 1 Jan 2004 and stopped on 1 Jan 2006.
In the database, this customer has a tenure of two years and the stop flag is 1,
indicating that the customer is no longer active. What does the customer look
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like at the end of 2004, though? The customer is active on that date, so the cur-
rent stop flag is incorrect. And, the customer’s tenure is one year, rather than
two years. So, the tenure is also incorrect. Both the tenure and the stop flag
need to be recalculated. Similarly, customers who start after the right censor-
ship date should not be included.

Recalculating tenure and the stop flag as of some right censorship date, such
as 2004-12-31, uses the following rules:

■■ Only customers who started on or before the right censorship date are
included in the calculation.

■■ For customers who are currently active, the stop flag is 0, indicating
that they were active as of the right censorship date.

■■ For customers who are currently stopped and whose stop date is after
the right censorship date, the stop flag is 0. Otherwise the stop flag is 1.

The tenure on the right censorship date has a similar logic, incorporating the
following rules:

■■ For customers whose stop date is on or before the right censorship date,
the tenure is the stop date minus the start date.

■■ For the rest of the customers, the tenure is the right censorship date
minus the stop date.

The following SQL uses two levels of subqueries to define the new stop flag
and tenure columns:

SELECT tenure2004, COUNT(*) as pop2004, SUM(isstop2004) as stop2004

FROM (SELECT s.*,

(CASE WHEN stop_type IS NULL THEN 0

WHEN stop_date > censordate THEN 0

ELSE 1 END) as isstop2004,

(CASE WHEN stop_type IS NOT NULL AND

stop_date <= censordate THEN tenure

ELSE DATEDIFF(dd, start_date, censordate) END

) as tenure2004

FROM (SELECT CAST(‘2004-12-31’ as DATETIME) as censordate, s.*

FROM subs s) s

WHERE start_date <= censordate AND

start_date >= ‘2004-01-01’ AND tenure >= 0

) s

GROUP BY tenure2004

ORDER BY 1

Note that this query uses a subquery to define CENSORDATE as the right cen-
sorship date. The purpose is to define CENSORDATE only once, reducing the
possibility of errors in the query.

Chapter 6 ■ How Long Will Customers Last? 277

99513c06.qxd:WileyRed  8/27/07  4:23 PM  Page 277



Figure 6-18 shows the survival curves as of the end of the three years. These
curves vary in length, with the 2004 curve only having one year of survival
data, 2005 having two years, and 2006 having three years. Also, the 2004 curve
is the survival for only 2004 starts. 2005 has both 2004 and 2005, and 2006 has
starts from all three years. The survival curves as of the end of 2005 and 2006
are very similar to each other, because there is a big overlap in the customers
used for the calculations.

Important Measures Derived from Survival

Survival and hazard curves provide nice pictures of customers over time, and
make it possible to compare different groups of customers visually. Graphics
are great for conveying information, but survival analysis can also provide
informative metrics. This section discusses three particular measures: the
point estimate of survival, the median customer lifetime, and the average
remaining customer lifetime. It ends with a discussion of confidence in the
hazard values.

Figure 6-18: Shifting the right censorship date back to the end of each year makes it
possible to reconstruct the survival curves as of the end of 2004, 2005, and 2006.

Point Estimate of Survival
The point estimate of survival is the survival value at a particular tenure. For
instance, earlier the point estimate at 450 days was used to compare survival
in the three markets. This calculation looks up the survival value at a particu-
lar point tenure value. The point estimate answers the simple question: How
many customers do we expect to survive up to a given point in time?

There are some situations where the point estimate is the best measure to
use. For instance, many companies invest in customer acquisition, so cus-
tomers must stay around long enough to recoup this investment. This is true
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when telephone companies give away handsets, when insurance companies
pay commissions to agents, and so on. For a given acquisition effort, an impor-
tant question is how many customers “graduate” to the profitable stage of the
customer relationship?

Of course, answering such a question in detail might require understanding
the cash flows that each customer generates and range of predictive models to
handle expected tenure and expected revenues and expected costs. And all of
that is difficult enough for existing customers, and harder still for prospects. A
simpler approach is to see which customers survive to a particular tenure,
which is usually a good enough approximation:

■■ Perhaps when the customer has passed the initial promo period and is
paying the full bill;

■■ Perhaps when revenues from the customer have paid for initial outlays,
such as commissions to agents or the cost of handsets; or,

■■ Perhaps a seemingly arbitrary period, such as one year.

The point estimate of the survival function is then a good measure for the
effectiveness of such campaigns.

As an example, a major newspaper publisher used survival analysis for
understanding its home delivery customers. Many things happen during the
initial period when customers sign up for home delivery. For instance:

■■ The customer may never get a paper delivered because they live in a
non-routable area.

■■ The customer may not pay their first bill.

■■ The customer may have only signed up for the initial promotional 
discount.

Each of these affects the survival during the first few months. After analyz-
ing the customers, though, it became clear that four months was an impor-
tant milestone, and quite predictive of longer-term survival. One advantage
of four months over one year (the previous measure) is that four-month sur-
vival is available eight months sooner for new customers. That is, it became
possible to measure the retention effectiveness of acquisition campaigns —
using four-month survival — within a few months after the campaign starts.

Median Customer Tenure
Another measure of survival is the median customer tenure or customer half-life.
This is the tenure where exactly half the customers have left. The median cus-
tomer tenure is easy to calculate. It is simply the place where the survival
curve crosses the horizontal 50% line, as shown in Figure 6-19.
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Figure 6-19: The median lifetime is the tenure where the survival curve passes the 
50% line.

The median customer tenure suffers from the same problem that all medi-
ans do. It tells us about exactly one customer, the one in the middle. Consider
three different scenarios.

1. Scenario 1: all customers survive for exactly one year and then all cus-
tomers stop.

2. Scenario 2: customers stop at a uniform pace for the first two years, so
half the customers have left after one year and the remaining half in the
second year.

3. Scenario 3: half the customers minus one stop on the first day, then one
customer stops after a year, and the remaining customers stay around
indefinitely.

All of these scenarios have exactly the same median customer tenure, one year,
because that is when half the customers have left. However, in the first sce-
nario, all the customers survived for all of the first year, whereas in the third,
almost half were gone immediately. The first scenario has no one surviving
beyond one year; the second has no one surviving beyond two years, and in
the third, they survive indefinitely. These examples illustrate that the median
tenure does not provide information about what happens to customers before
and after the median tenure. It simply says that the customer in the middle
survived to that point in time.

The median tenure also illustrates one of the disadvantages of the retention
curve, versus the survival curve. Because it is jagged, the retention curve
might cross the 50% line several times. Which is the correct value for median
retention? The right answer is to use survival instead of retention.
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Average Customer Lifetime
The median customer lifetime provides information about exactly one cus-
tomer, the one in the middle. Averages are more useful, because they can be
included in financial calculations. So if a customer generates $200 in revenue
per year, and the average customer stays for two years, then the average cus-
tomer generates $400 in revenue.

The average truncated tenure is the average tenure for a given period of time
after customers start, answering a question such as: “What is the average
number of days that customers are expected to survive in the first year after
they start?” Limiting the span to one year is helpful for both business reasons
and technical reasons. On the business side, it means that the results can be
validated after one year. On the technical side, average truncated tenures are
easier to calculate, because they are for a finite time period.

Calculating the average truncated tenure from the survival curve turns out to
be quite easy. To illustrate the process, start with the simplest case, the average
one-day tenure. That is, what is the average tenure of customers in the one day
after they start? The number of customers who survived to day one is the num-
ber who started times day-one survival. The average divides by the number
who started, so the average is just the survival on day one. If 99% of customers
survive for one day, then the average customer survives for 0.99 days in the first
day after they start. 

What is the average two-day tenure? This is the average number of days
that customers are active in the two days after they start. The total number of
days that customers survive is the sum of those who were around on days one
and two. So, the total number of days is day-one survival times the number of
customers who started plus day-two survival times the number of customers
who started. The average divides out the number of customers. The average
two-day tenure is survival on day one plus survival on day two.

This generalizes to any tenure. The average tenure for any given time after a
customer starts is the sum of the survival values up to that tenure.

Another way of looking at the calculation leads to the observation that the
area under the survival curve is the average truncated tenure. Figure 6-20
shows how to calculate the area, by placing rectangles around each survival
value. The area of each rectangle is the base times the height. The base is one
time unit. The height is the survival value. Voila. The area under the curve 
is the sum of the survival values, which as we just saw, is the average trun-
cated tenure.

TI P The area under the survival curve is the average customer lifetime for the
period of time covered by the curve. For instance, for a survival curve that has
two years of data, the area under the curve up to day 730 is the two-year
average tenure.
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Figure 6-20: The average customer lifetime is the area under the survival curve.

Confidence in the Hazards
An important question about the hazards is the confidence in how accurate
they are. The way a statistician would pose the question is something like:
How close are the observed hazard probabilities to the true hazards in the pop-
ulation? To the non-statistician, such a question can be a bit hard to under-
stand. After all, aren’t the calculations producing the true hazards?

So, let’s phrase the question a bit differently. Say that there is one year of cus-
tomer data that has been used to calculate one year of hazards. How does cal-
culation compare to using two years of customer data instead of one? There is
an intuitive sense that the results based on two years should be more stable,
because there is more data supporting them. On the other hand, the one year
data may be closer to what’s happening now, because it is more recent.

Chapter 3 discussed confidence intervals in general and the standard error
of a proportion in particular. Table 6-5 applies the standard error of a propor-
tion to various hazard probabilities, based on calculations using one and two
years of starts.

The most important thing to note is that the standard error is quite small. For
this reason, it is safe to ignore it. Second, there are theoretical reasons why the
standard error of a proportion overstates the error for hazards. It is worth not-
ing that as the tenure gets larger, the population at risk declines, so the standard
error gets bigger. This is particularly true for the one-year calculation in month
12. When the population at risk has one million customers, the standard error
is so small that it can be ignored. However, when there are only one hundred
customers, the standard error is quite large.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Tenure (Days)

Su
rv

iv
al

282 Chapter 6 ■ How Long Will Customers Last?

99513c06.qxd:WileyRed  8/27/07  4:23 PM  Page 282



Table 6-5: Standard Error for Hazard Calculations Using One Year vs Two Years of Starts

ONE YEAR TWO YEAR
CUMULATIVE STANDARD CUMULATIVE STANDARD

TENURE POPULATION H ERROR POPULATION H ERROR

0 656,193 0.016% 0.002% 1,949,012 0.016% 0.001%

30 544,196 0.158% 0.005% 1,747,837 0.151% 0.003%

60 492,669 0.042% 0.003% 1,676,349 0.035% 0.001%

90 446,981 0.070% 0.004% 1,616,928 0.059% 0.002%

120 397,010 0.110% 0.005% 1,539,639 0.145% 0.003%

150 339,308 0.097% 0.005% 1,445,250 0.073% 0.002%

180 290,931 0.076% 0.005% 1,372,105 0.052% 0.002%

210 246,560 0.073% 0.005% 1,305,919 0.051% 0.002%

240 205,392 0.049% 0.005% 1,245,427 0.038% 0.002%

270 159,290 0.058% 0.006% 1,182,404 0.037% 0.002%

300 108,339 0.051% 0.007% 1,116,510 0.032% 0.002%

330 59,571 0.045% 0.009% 1,053,415 0.033% 0.002%

360 4,272 0.094% 0.047% 969,757 0.173% 0.004%

The query used to generate the data for this is:

SELECT tenure,

SUM(CASE WHEN start_date >= ‘2006-01-01’ THEN 1 ELSE 0 END

) as oneyear,

SUM(CASE WHEN start_date >= ‘2005-01-01’ THEN 1 ELSE 0 END

) as twoyear,

SUM(CASE WHEN start_date >= ‘2004-01-01’ THEN 1 ELSE 0 END

) as threeyear,

SUM(CASE WHEN start_date >= ‘2006-01-01’ THEN isstop

ELSE 0 END) as oneyears,

SUM(CASE WHEN start_date >= ‘2005-01-01’ THEN isstop

ELSE 0 END) as twoyears,

SUM(CASE WHEN start_date >= ‘2004-01-01’ THEN isstop

ELSE 0 END) as threeyears

FROM (SELECT s.*,

(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END) as isstop

FROM subs s) s

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0

GROUP BY tenure

ORDER BY 1

This query is quite similar to earlier queries that calculated hazards.
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WARN I NG Survival values and hazards are accurate when lots of data are
used for the calculation. As the number of data points in the calculations
decreases (even down to the few hundreds), the values have a much larger
margin of error.

Using Survival for Customer Value Calculations

The customer value calculation is theoretically quite simple. The value of a
customer is estimated future revenue times the estimated future duration of
the customer relationship. This just has one little challenge, knowing the
future. We can make informed guesses using historical data.

How far in the future? One possibility is “forever”; however, a finite amount
of time — typically, one, two, or five years — is usually sufficient. The future
revenue stream is a guesstimation process. Remember, the goal is to under-
stand customers. It is not a full financial profitability model, with all the checks
and balances of corporate accounting.

The choice of revenue instead of profit or net revenue is quite intentional. In
general, customers have some control over the revenue flow they generate
because revenue is related to product usage patterns. Plus, because customers
are actually paying the money, customers pay much more attention to the rev-
enue they generate than to the costs.

Often, customers have little control over costs, which might be subject to
internal allocation formulas. An actual profitability calculation would neces-
sarily be making many assumptions about the future, and these assumptions
might turn out to have a greater impact on customer value than customer
behavior. So, although such profitability analyses are interesting and perhaps
necessary for financial modeling, they do not necessarily benefit from being
done at the granularity of individual customers.

Consider a magazine as a good example. Subscription customers receive the
magazine, hopefully paying for copies that in turn generate revenue for the com-
pany. Customers continue their subscription while they see value in the relation-
ship. However, profitability depends on all sources of revenue and costs,
including the amount of advertising, the cost of paper, and the cost of postage.
These cost factors are beyond customer control; on the other hand, revenue is
based on when customers start and stop and is under their control.

This section discusses customer value, with particular emphasis on using
survival analysis for estimating the customer duration. It starts with a method
of estimating revenue, which is then applied to estimating the value of future
starts. Then, the method is applied to existing customers. The purpose of cus-
tomer value is generally to compare different groups of customers or prospects
over time. Customer value is a tool to help enable companies to make more
informed decisions about their customers.
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Estimated Revenue
The estimated revenue is assumed to be a stream of money that arrives at a
given rate, such as $50/month. This rate may be calculated based on the his-
tory of a particular customer or group of customers. It might also be estimated
for a group of prospects based on the products they will use after they start.
Note that for a real financial calculation, future revenue might be discounted.
However, because customer value calculations are for insight rather than
accounting, discounts are usually a distraction.

The subscription data does not have a separate revenue history, so this sec-
tion uses the initial monthly fee as a good estimate for the revenue stream.
Actual billing data or payment data would be preferable, but it is not available.

Assume that number of future customers is forecast by market and channel.
What revenue should be used for prospective customers? The monthly fee is already
a revenue rate, so the question becomes: What is the average monthly fee for recent
starts by market and channel? The following query answers this question for the
most recent year of customers:

SELECT market, channel, COUNT(*) as numsubs,

AVG(monthly_fee) as avgmonthly,

AVG(monthly_fee)/30.4 as avgdaily

FROM subs

WHERE start_date >= ‘2006-01-01’ AND tenure >= 0

GROUP BY market, channel

With three markets and four channels, there are twelve groups. Table 6-6
shows the average fee for each of the twelve groups, both per month and per
day. Notice that the variation in rates is not that great, between $36.10 per
month to $39.61. However, the “Chain” channel seems to have the lowest rev-
enue, regardless of market. And Metropolis’s revenue is higher than the other
two markets. 

Table 6-6: Average Monthly and Daily Revenue for Customer by Market and Channel

NUMBER OF $$ AVERAGE $$ AVERAGE
MARKET CHANNEL SUBSCRIBERS MONTHLY DAILY

Gotham Chain 9,032 $36.10 $1.19

Gotham Dealer 202,924 $39.05 $1.28

Gotham Mail 66,353 $37.97 $1.25

Gotham Store 28,669 $36.80 $1.21

Metropolis Chain 37,884 $36.86 $1.21

Metropolis Dealer 65,626 $38.97 $1.28

Continued on next page
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Table 6-6  (continued)

NUMBER OF $$ AVERAGE $$ AVERAGE
MARKET CHANNEL SUBSCRIBERS MONTHLY DAILY

Metropolis Mail 53,082 $39.61 $1.30

Metropolis Store 65,582 $38.19 $1.26

Smallville Chain 15,423 $37.48 $1.23

Smallville Dealer 44,108 $37.82 $1.24

Smallville Mail 24,871 $38.43 $1.26

Smallville Store 42,640 $37.36 $1.23

Estimating Future Revenue for One Future Start
Survival provides the estimated duration for new starts. The key is to gener-
ate separate survival curves for each market and channel combination and
then to multiply each day of revenue by the average daily revenue from the
previous section.

Table 6-7 shows an example; assume that 100 customers start tomorrow in
Gotham from the Dealer channel. On the first day, there are 100 customers,
and then the number decreases according to the survival curve. The revenue
on any particular day is the product of the survival times the daily revenue
times the number of customers. The total revenue for the first year after they
start is the sum of the daily contributions.

This calculation can also be performed in SQL. The next two sections show
two different methods.

Table 6-7: First Few Days of Survival Calculation for Market = Gotham and Channel = Dealer

NUMBER OF DAILY CUMULATIVE
DAYS SURVIVAL CUSTOMERS REVENUE REVENUE

0 100.00% 100.0 $128.46 $128.46

1 100.00% 100.0 $128.46 $256.92

2 99.51% 99.5 $127.84 $384.76

3 99.12% 99.1 $127.34 $512.10

4 98.80% 98.8 $126.92 $639.02

5 98.50% 98.5 $126.54 $765.56
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SQL Day-by-Day Approach

Assume that there are two tables, Survivalmc and Revenue. Survivalmc has
the following columns:

■■ Market;

■■ Channel;

■■ Tenure in days; and,

■■ Survival.

This table could be created using the process described earlier for calculating
survival in SQL, breaking the results into groups based on market and channel.
The Revenue table has:

■■ Market;

■■ Channel; and,

■■ Daily revenue.

This table could be created from the query used to generate Table 6-7.
With these two tables, it is possible to calculate the estimated revenue for the

first 365 days after a customer starts: 

SELECT s.market, s.channel,

SUM(s.survival*r.avgdaily*numdays365) as yearrevenue

FROM (SELECT s.*,

(CASE WHEN endtenure > 365 THEN 365 – tenure

ELSE numdays END) as numdays365

FROM survivalmc s) s LEFT OUTER JOIN

revenue r

ON s.market = r.market AND

s.channel = r.channel

WHERE tenure < 365

GROUP BY market, channel

The approach is to join Survivalmc to Revenue and then multiply the values
together to get expected revenue per day.  The first 365 days are then summed
for each channel and market. The complication in the query comes from the
possibility that some tenure values are missing in the survival table.

The calculation for revenue uses NUMDAYS, because some tenure values
might be skipped in Survivalmc. For instance, if days 101 and 102 are missing,
the row for tenure 100 would have NUMDAYS set to three. This means that the
survival remains the same for three days. The next row in the table would be
for tenure 103. These missing tenure values need to be included in the revenue
calculation.

Chapter 6 ■ How Long Will Customers Last? 287

99513c06.qxd:WileyRed  8/27/07  4:23 PM  Page 287



The need for NUMDAYS365 occurs when the missing tenures are at the end
of the first year. For instance, if tenure 364 had NUMDAYS set to 10, its sur-
vival would be counted ten times instead of one. The use of NUMDAYS365
fixes this boundary-effect problem.

SQL Summary Approach

An alternative approach calculates the sum of the survival values first, and
then multiplies by the revenue. This is possible because the revenue is constant
for each day, so it can, in essence, be factored out. The SQL looks like:

SELECT ssum.market, ssum.channel,

(ssum.survdays*r.avgdaily) as yearrevenue

FROM (SELECT market, channel, SUM(s.survival*numdays365) as survdays

FROM (SELECT s.*,

(CASE WHEN endtenure >= 365 THEN 365 – tenure

ELSE numdays END) as numdays365

FROM survivalmc s) as s

WHERE tenure < 365

GROUP BY market, channel) ssum LEFT OUTER JOIN

revenue r

ON ssum.market = r.market AND

ssum.channel = r.channel

The first approach multiplied survival by the revenue and then aggregated
the result. This approach aggregates the survival first and then multiplies by
revenue. The two are equivalent mathematically. In terms of processing,
though, the second approach results in a smaller table being joined, perhaps
having an impact on the efficiency of the query.

Table 6-8 shows the total first year revenue for each of the twelve groups.
The table shows that per customer, Gotham Chain generates the least revenue
and Smallville Dealer generates the most. These one-year revenue values can
then be compared to the cost of acquisition to determine how much an addi-
tional $1000 in spending buys in terms of first year revenue.

Table 6-8: First Year Revenue for Market/Channel Combination

FIRST YEAR REVENUE BY CHANNEL
MARKET CHAIN DEALER MAIL STORE

Gotham $283.78 $392.53 $331.31 $385.13

Metropolis $349.10 $399.52 $349.64 $408.33

Smallville $402.90 $420.56 $387.89 $417.33
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Estimated Revenue for a Simple Group of 
Existing Customers
Existing customers pose a different challenge from new starts. Obtaining his-
torical revenue is simply a matter of adding up the revenue that existing cus-
tomers have paid. For future revenue, there is a hitch. Existing customers are
not starting at tenure zero, because these customers are active now and have
a particular tenure. So, direct application of survival values is not the 
right approach. The solution is to use conditional survival, that is, survival
conditioned on the fact that customers have already survived up to their cur-
rent tenure.

Estimated Second Year Revenue for a Homogenous Group

To illustrate this process, let’s start with a simple group consisting of cus-
tomers who started exactly one year prior to the cutoff date. What is the sec-
ond year of revenue for these customers? The first year is already known,
because that is before the cutoff date.

Because this group of customers has already survived for one year, the con-
ditional survival for one year is needed. Remember the one-year conditional
survival at tenure t is simply the survival at tenure t divided by the survival at
365 days. The following query calculates the conditional survival:

SELECT s.survival/s365.survival as survival365, s.*

FROM survivalmc s LEFT OUTER JOIN

(SELECT market, channel, s.survival

FROM survivalmc s

WHERE 365 BETWEEN tenure AND endtenure

) s365

ON s.market = s365.market AND

s.channel = s365.channel

WHERE s.tenure >= 365

Applying the conditional survival to the group of existing customers uses a
join. Each customer is joined to the conditional survival for days 365 through 730.

■■ The group of customers needs to be defined. This consists of customers
who are active and who started exactly 365 days before the cutoff date.
There are 1,928 of them.

■■ The conditional survival needs to be calculated. This uses the survival
divided by the survival at day 365, and only applies to tenures greater
than or equal to 365.

■■ Each customer is joined to the survival table, for all tenures between 365
and 729 (these are the tenures these customers have in the forecast year).

■■ This table is then aggregated by the market and channel dimensions.
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The query that does this is:

SELECT ssum.market, ssum.channel, oneyear.numsubs, oneyear.numactives,

oneyear.numactives*ssum.survdays*r.avgdaily as year2revenue

FROM (SELECT market, channel, COUNT(*) as numsubs,

SUM(CASE WHEN stop_type IS NULL THEN 1 ELSE 0 END

) as numactives

FROM subs

WHERE start_date = ‘2005-12-28’

GROUP BY market, channel

) oneyear LEFT OUTER JOIN

(SELECT s.market, s.channel,

SUM(numdays730*s.survival/s365.survival) as survdays

FROM (SELECT s.*,

(CASE WHEN endtenure >= 730 THEN 730 – tenure

ELSE numdays END) as numdays730

FROM survivalmc s) as s LEFT OUTER JOIN

(SELECT s.market, s.channel, s.survival

FROM survivalmc s

WHERE 365 BETWEEN tenure AND endtenure

) s365

ON s.market = s365.market AND

s.channel = s365.channel

WHERE s.tenure BETWEEN 365 AND 729

GROUP BY s.market, s.channel) ssum

ON oneyear.market = ssum.market AND

oneyear.channel = ssum.channel LEFT OUTER JOIN

revenue r

ON ssum.market = r.market AND

ssum.channel = r.channel

Table 6-9 shows the second year revenue for the group that started exactly one
year previously. Notice that there are two ways of calculating revenue per cus-
tomer. The “Year 2 Revenue Per Start” column is based on the original number
of starts; the “Year 2 Revenue Per Year 1 Active” is based on the customers who
survived the first year. Comparing this table to Table 6.8, we see that the 
second year revenue per start is always lower than the first year. That is
because some customers leave during the first year. Some groups, such as
Smallville/Store, have very high retention, so their second year revenue is
almost as high as the first year revenue.

Pre-calculating Yearly Revenue by Tenure

The preceding query is not only complicated, it is also starting to push the
limits of SQL in terms of performance. The Subs table contains over one mil-
lion rows (although most are filtered out), and it is being joined to 365 rows of
Survivalmc. The intermediate result is, conceptually, a table with hundreds 
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of millions of rows. Expanding the forecast period and increasing the num-
bers of customers causes this to grow quite quickly.

Table 6-9: Second Year Revenue per Customer by Market/Channel Combination

NUMBER OF
SUBSCRIBERS YEAR 2 REVENUE

PER
YEAR 1 YEAR 1

MARKET CHANNEL STARTS ACTIVES TOTAL PER START ACTIVE

Gotham Chain 29 23 $7,179.80 $247.58 $312.17

Gotham Dealer 1,091 883 $252,336.63 $231.29 $285.77

Gotham Mail 15 9 $3,314.24 $220.95 $368.25

Gotham Store 55 44 $16,269.76 $295.81 $369.77

Metropolis Chain 348 239 $79,047.43 $227.15 $330.74

Metropolis Dealer 192 148 $46,307.53 $241.19 $312.89

Metropolis Mail 19 7 $2,702.21 $142.22 $386.03

Metropolis Store 169 148 $57,627.20 $340.99 $389.37

Smallville Chain 161 144 $56,244.24 $349.34 $390.59

Smallville Dealer 210 179 $62,097.47 $295.70 $346.91

Smallville Mail 13 6 $2,403.04 $184.85 $400.51

Smallville Store 107 95 $38,043.21 $355.54 $400.45

The solution to the potential performance problem is to ask the question:
What is the yearly revenue for a single customer in the next year, for any given start
tenure? This query is answered by adding up the conditional survival value for
days 365 through 729 for each market/channel combination. The result is then
multiplied by the revenue, and then multiplied by the number of subs in each
group. The following query returns the same values as the previous one, but
the aggregations are done before the joins:

SELECT ssum.market, ssum.channel, oneyear.numsubs,

oneyear.numsubs*ssum.survdays*r.avgdaily as year2revenue

FROM (SELECT market, channel, COUNT(*) as numsubs

FROM subs WHERE tenure = 365 AND stop_type IS NULL

GROUP BY market, channel

) oneyear LEFT OUTER JOIN

(SELECT s.market, s.channel,

SUM(numdays730*s.survival/s365.survival) as survdays

(continued)

Chapter 6 ■ How Long Will Customers Last? 291

99513c06.qxd:WileyRed  8/27/07  4:24 PM  Page 291



FROM (SELECT s.*,

(CASE WHEN endtenure >= 730 THEN 730 – tenure

ELSE numdays END) as numdays730

FROM survivalmc s) as s LEFT OUTER JOIN

(SELECT s.market, s.channel, s.survival

FROM survivalmc s

WHERE 365 BETWEEN tenure AND endtenure

) s365

ON s.market = s365.market AND

s.channel = s365.channel

WHERE s.tenure BETWEEN 365 AND 729

GROUP BY s.market, s.channel) ssum

ON oneyear.market = ssum.market AND

oneyear.channel = ssum.channel LEFT OUTER JOIN

revenue r

ON ssum.market = r.market AND

ssum.channel = r.channel

Notice that the outermost query here does not do an aggregation. This is
because each of the subqueries is aggregated by market and channel. The first
subquery calculates the number of subscribers in each market/channel group
among those who started 365 days before the cutoff date. The second calcu-
lates the sum of the conditional survival for days 365 through 729. These are
joined to the revenue table, which is already at the level of market/channel.

TI P When combining multiple tables and doing an aggregation, it is often
more efficient to aggregate first and then do the joins, if this is possible.

Estimated Future Revenue for All Customers
Estimating the next year of revenue for all existing customers adds another
level of complexity. Pre-calculating as much as possible helps. What is needed
is a survival table with the following columns:

■■ Market;

■■ Channel;

■■ Tenure in days; and,

■■ Sum of conditional survival for the next 365 days.

One big problem is what happens to the oldest customers. The largest
tenure is 1091 days. There is no data beyond this point. There are several
approaches:

■■ Assume that everyone stops. This is not reasonable because these are
good customers.
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■■ Assume that no one stops. This is the approach we take, although it
overestimates revenue for long-term customers, because it assumes
they do not stop.

■■ Calculate a longer-term rate of decline, perhaps using a constant haz-
ard. Add rows to the survival table incorporating this information.

The third approach is the simplest, because it uses the table of survival 
values directly.

The following query calculates the sum of the conditional survival values
for the next 365 days. It uses a self-join for the calculation:

SELECT s.market, s.channel, s.tenure, s.numdays,

SUM((s1year.survival/s.survival) *

(CASE WHEN s1year.endtenure - s.tenure >= 365

THEN 365 - (s1year.tenure - s.tenure)

ELSE s1year.numdays END)) as sumsurvival1year

FROM survivalmc s LEFT OUTER JOIN

survivalmc s1year

ON s.market = s1year.market AND

s.channel = s1year.channel AND

s1year.tenure BETWEEN s.tenure AND s.tenure+364

GROUP BY s.market, s.channel, s.tenure, s.numdays

ORDER BY 1, 2, 3

The next step is to join this to the revenue table and to the original data. For
convenience, the original data is aggregated by market, channel, and tenure.

SELECT subs.market, subs.channel, SUM(subs.numsubs) as numsubs,

SUM(numactives) as numactives,

SUM(subs.numactives*ssum.sumsurvival1year*r.avgdaily) as revenue

FROM (SELECT market, channel, tenure, COUNT(*) as numsubs,

SUM(CASE WHEN stop_type IS NULL THEN 1 ELSE 0 END

) as numactives

FROM subs

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0

GROUP BY market, channel, tenure

) subs LEFT OUTER JOIN

(SELECT s.market, s.channel, s.tenure, s.numdays,

SUM((s1year.survival/s.survival) *

(CASE WHEN s1year.endtenure - s.tenure >= 365

THEN 365 - (s1year.tenure - s.tenure)

ELSE s1year.numdays END)) as sumsurvival1year

FROM survivalmc s LEFT OUTER JOIN

survivalmc s1year

ON s.market = s1year.market AND

s.channel = s1year.channel AND

s1year.tenure BETWEEN s.tenure AND s.tenure+365
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GROUP BY s.market, s.channel, s.tenure, s.numdays

) ssum

ON subs.market = ssum.market AND

subs.channel = ssum.channel AND

subs.tenure = ssum.tenure LEFT OUTER JOIN

revenue r

ON subs.market = r.market AND

subs.channel = r.channel

GROUP BY subs.market, subs.channel

Table 6-10 shows the next year revenue for each of the groups based on starts
since 2004. This table also shows the revenue per start and the revenue per
active customer. There are three factors that affect the next year revenue. The
first is the average revenue for the group. The second is the estimated survival
over the next year. And the third is when the starts occurred. For example, a
group might in general have poor survival. However, if lots and lots of starts
came in two years ago and a significant number survived, then the next year
revenue is probably pretty good because it is based on the conditional survival.
However, the revenue per start will be much lower than the revenue per active,
as is the case with customers from Gotham chains.

Table 6-10: Next Year Revenue for Existing Customers

# SUBSCRIBERS REVENUE
PER PER

MARKET CHANNEL STARTS ACTIVES TOTAL START ACTIVE

Gotham Chain 67,054 18,457 $6,354,927 $94.77 $344.31

Gotham Dealer 1,089,445 480,811 $170,636,341 $156.63 $354.89

Gotham Mail 236,886 117,230 $44,200,098 $186.59 $377.04

Gotham Store 106,011 68,678 $26,109,568 $246.29 $380.17

Metropolis Chain 226,968 103,091 $36,711,583 $161.75 $356.11

Metropolis Dealer 301,656 140,632 $51,799,400 $171.72 $368.33

Metropolis Mail 204,862 102,085 $40,388,696 $197.15 $395.64

Metropolis Store 262,086 173,901 $69,210,279 $264.07 $397.99

Smallville Chain 68,448 49,903 $20,025,906 $292.57 $401.30

Smallville Dealer 240,753 152,602 $57,849,788 $240.29 $379.09

Smallville Mail 100,028 65,007 $26,655,777 $266.48 $410.04

Smallville Store 157,522 122,902 $50,139,040 $318.30 $407.96

TOTAL 3,061,719 1,595,299 $600,081,404 $195.99 $376.16
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Such a table often suggests more questions than it answers: What difference
does the mix of rate plans make to the revenue? What is the revenue for starts
by year in each of the groups? What other factors affect revenue?

Lessons Learned

This chapter introduced survival analysis for understanding customers. The
earliest origins of survival analysis were for understanding mortality rates to
calculate the value of financial products. This was pretty sophisticated stuff
for 1693. Since then, the technique has been used in many areas, from manu-
facturing to medical outcomes studies to understanding convicts released
from prison.

Two key concepts in survival analysis are the hazard probability, which is
the probability that someone will succumb to a risk at a given tenure, and sur-
vival, which is the proportion of people who have not succumbed to the risk.
For customer-based survival, these two values are calculated for all tenures.
The resulting hazard and survival charts can be quite informative and help us
better understand customers.

Survival can also be quantified. The median customer tenure (or customer
half-life) is the time it takes for half the customers to stop. The point estimate
of survival, such as the one year survival, is the proportion of customers who
make it to one year. The average truncated tenure is the average tenure of a
customer during a period of time.

One powerful way that survival analysis can be used is to estimate customer
value by estimating future customer revenue. This works for both new and
existing customers. Although the calculations are a bit complicated, the ideas are
fairly simple — just multiplying the average expected survival by the revenue.

The next chapter dives into survival analysis in more detail, introducing the
concepts of time windows (to handle left truncation) and competing risks.
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297

The previous chapter demonstrated the value of survival analysis for under-
standing customers and their stop behaviors. It introduced a powerful method
for calculating hazards, called the empirical hazards method, where separate haz-
ard probabilities are calculated for all tenures. And, it included several examples
and extensions showing how to apply survival analysis to some business prob-
lems, including forecasting the number of active customers in the future.

This chapter builds on this foundation, by introducing three extensions of
basic survival analysis. These extensions solve some common problems faced
when applying survival analysis in the real world. They also make it possible
to understand the effects of other factors besides tenure on survival. 

The first extension focuses on the factors that are most important for deter-
mining who survives and who does not. A big complication here is that the
effect of these factors depends on tenure. For instance, consider the effect of
market on survival. Customers in Gotham and Metropolis have about the
same survival for the first year. Around the one-year anniversary, Gotham cus-
tomers start leaving at a much faster rate. In other words, the effect of market
on survival varies by tenure.

The most prominent statistical technique in this area, Cox proportional haz-
ards regression, assumes that such effects do not change over time. Although this
method is outside the scope of this book, it does inspire us to look at the chang-
ing effects of each factor at different tenures. This chapter explains several differ-
ent approaches for understanding how and when such factors affect survival.

Factors Affecting Survival: 
The What and Why 

of Customer Tenure

C H A P T E R

7
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The second extension is the calculation of hazards based on time windows.
This chapter introduces time windows as a way to solve a problem that exists
in many data sources, including the subscription data: starts come from a
longer time period than stops — the left truncation problem. However, time
windows do much more than just solve this problem. They are a powerful tool
for estimating unbiased hazard probabilities based on a time window of stops,
rather than on a time window of starts.

The third extension goes in a different direction. The factors that affect sur-
vival occur at the beginning of or during the customer life cycle. At the end
of the life cycle, customers stop and they stop for some reason. This reason
may be voluntary (the customer switches to a competitor); or the reason may
be forced (the customer stops paying their bills); or the customer might
migrate to a different product. Competing risks is a method for incorporat-
ing these different outcomes into survival analysis.

Competing risks is used to answer the question: “What happens next for all
the customers?” That is, at a given point in the future, what proportion of cus-
tomers have stopped for each of the competing risks? This question follows
from the forecasting introduced in the previous chapter. Forecasts can include
not only the numbers of remaining customers, but also of what happens to
the stopped customers. Before diving into what happens next, let’s start at the
beginning; that is, with what we know at the beginning of the customer rela-
tionship and how these factors affect survival.

What Factors Are Important and When

Survival probabilities can be used to compare different groups of customers by
calculating separate probabilities for each group. This process is called stratifi-
cation, and makes it possible to see the effect of market, or rate plan, or chan-
nel, or a combination of them on survival.

This section discusses quantifying the effects for factors at different tenures.
For numeric variables, the comparison uses averages of the variable at differ-
ent tenures for customers who stop and do not stop. For categorical variables,
the comparison uses the ratio of hazards at different tenures. The key idea is
that the effect of such variables may be stronger during some parts of the cus-
tomer tenure and weaker during others. Being able to see the effects at differ-
ent tenures sheds light on the effect of the variables on the duration of the
customer relationship.

Explanation of the Approach
Figure 7-1 shows a group of customers on the tenure timeline. The chart is sim-
ilar to the charts in the previous chapter, which were used to illustrate the cal-
culation of hazard probabilities. Here, though, we are going to look at the chart
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a bit differently.  The chart shows eight customers. At tenure three, exactly one
of them stops, and the rest remain active. This suggests the following question:
What differentiates the customer(s) who stop and the customers who remain active?

Figure 7-1: At any given tenure, what differentiates customers who stop and those who
remain active?

Part of the answer is obvious: what differentiates them is that one group
stopped and the other did not. A better way to phrase the question is to ask
what differentiates the two groups by other variables. The goal is to estimate,
understand, and visualize the effect of other variables on survival at any
given tenure.

For tenures when no one stops, there is no answer because the group of
stopped customers is empty. As mentioned earlier, the factors differentiating
between the stopped customers and active customers are different for different
tenures. For instance, during some tenure periods, initial promotions end. During
others, customers are stopped because they do not pay their first bill. There is no
reason to expect the groups of stopped customers at these tenures to be similar.

The comparison between the customers who stop at a particular tenure and
those who remain active was first investigated by Sir David Cox. A statement
such as “Every cigarette a person smokes reduces his or her life by 11 min-
utes” is an example of a result using this technique. Although it is outside the
scope of this book, the aside “Proportional Hazards Regression” introduces
the basic ideas.

The next two sections show reasonable ways to make the comparison for
variables in customer data. In one sense, these techniques are more powerful
than proportional hazards regression, because they eliminate the assumption
of proportionality. They are also better suited for understanding and visualiz-
ing the effects. On the other hand, the proportional hazards regression is bet-
ter for reducing the effects down to a single number, to a coefficient in the
language of statistics.

Customer 8 
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T enure 
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PROPORTIONAL HAZARDS REGRESSION

In 1972, Prof. David Cox at the University of Cambridge in England published 
a paper with the entertaining title, “Regression Models and Life Tables (with
discussion).” This paper is purportedly one of the ten most cited scientific
papers, because his techniques are widely used in medical research studies.
Because of his contributions to statistics, Prof. Cox was knighted and is now
known as Sir David Cox.

Why is this paper so important? Sir Cox devised a method of determining the
effect of variables on survival without actually calculating the hazards. His method
is quite clever and it is worthwhile understanding how it works. Although it is
available in almost all statistics tools, it is not feasible to replicate the method
directly in SQL and Excel. This is actually okay, because the method relies on an
assumption that is generally not true in customer data. The proportionality
assumption asserts that the effect of a variable is the same for all tenures. For 
the subscription data, it fails for market, channel, rate plan, and monthly fee. In
general, the assumption is important for technical reasons and, unfortunately, not
true for most customer data.

Nevertheless, proportional hazards regression is important for two reasons.
Even when the proportionality assumption is not true, the results are often
qualitatively correct. That is, the method can tell us which variables are more
important than others. Also, the method inspires us to look at the effects of
factors over time, the methods discussed in the text.

The basic idea behind Cox proportional hazards regression is quite simple. 
It asks the question: What is the likelihood that exactly the customers who
stopped at tenure t are those customers who actually did stop? By assuming 
that each customer has his or her own hazard function, this likelihood can be
expressed as a big equation consisting of products of expressions, such as
(1–h(t)) for the customers who remain active at tenure t and h(t) for
customers who stop at that tenure. So, if there are four customers and the 
third stopped at tenure 5, then the likelihood equation for tenure 5 looks 
like: (1–h1(5))*(1–h2(5))*h3(5)*(1–h4(5)). Each of the customer hazard
functions is then expressed as a function of the variables describing the
customers.

Cox’s clever idea was to ask this question for all tenures, and go further: What
values of the variables maximize the likelihood that exactly the set of customers
who stopped are those who did stop? The assumption of proportionality makes it
possible to answer this question without referring to the hazard probabilities
themselves. They simply cancel out. It does, however, rely on a technique called
maximum likelihood estimation (MLE), a sophisticated statistical method used to
answer such questions.

The result is a measure of the importance of each variable on survival. 
This measure is useful as an overall measure, but because the proportionality
assumption is not necessarily reasonable on customer data, we need to do
additional investigations anyway, investigations such as the methods discussed
in the text.
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Using Averages to Compare Numeric Variables
A good way to see the effects of a numeric variable on survival is to compare
the average value for stopped customers and for active customers at any given
tenure. A chart then shows the two averages for all tenures. Such a chart dis-
plays the effect of the variable at different tenures.

There is one numeric variable in the subscription data, MONTHLY_FEE.
The question is: What is the difference in the average value of the monthly fee for cus-
tomers who stop versus customers who remain active for all tenures?

The Answer

Figure 7-2 shows the chart for the monthly fee. This chart has two series; one
shows the average monthly fee of the stopped customers, the other has the
average monthly fee of active customers by tenure.

Figure 7-2: This chart compares the average monthly fees of customers who stop and
who remain active at each tenure.

During the first year, customers who stop have higher monthly fees than
those who remain active. This may be due to price sensitive customers who are
paying too much when they sign up. Almost all customers start on a one- or
two-year contract, with a penalty for breaking the contract. The purpose of the
penalty is to prevent customers from stopping during the contract period.
However, customers with higher monthly fees have more to gain by stopping
than those with lower monthly fees, so it is not surprising that the contract
penalty has less effect on customers who have higher fees.

Around the first year anniversary, the curves for the active and stopped cus-
tomers intersect. The stopped customers initially have a higher monthly fee;
after the one year mark, the order is inverted. In the second year stopped cus-
tomers have a lower monthly fee. Presumably, the customers on less expensive
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plans who do not stop during the first year do stop around the anniversary
date. This washes out after a month or two, and the averages for the two
groups are essentially the same for the second year. After the second year, they
reverse yet again, although by the third year, the data is becoming sparser
because only three years of starts are used for the analysis.

Notice also that the average for the active customers is smooth and the
average for the stopped customers jumps around. The average for the active
customers is smooth because millions of customers are active for many of
the tenures. In addition, the customers active for two tenures significantly
overlap — because all customers active for the longer tenure are active for
the shorter one. The average for the stopped customers jumps around
because there are many fewer stopped customers (just a few hundred or
thousand for any given tenure) and the stopped customers at two tenures
do not overlap at all with each other. 

Answering the Question in SQL

Creating such a chart requires two values for each tenure: the average value
for stopped customers at each tenure, and the average value for active cus-
tomers at each tenure. The first of these quantities is quite easy to calculate,
because each stopped customer is included in the average only at the tenure
when the customer stops. The following SQL does this calculation:

SELECT tenure, AVG(monthly_fee) as avg_stop_monthly_fee

FROM subs

WHERE stop_type IS NOT NULL AND start_date >= ‘2004-01-01’ AND tenure > 0

GROUP BY tenure

ORDER BY tenure

The calculation for active customers is more complicated and similar to the
hazard probability calculation, although it needs to carry the monthly fee
information as well as the population count. The key idea is as follows. The
population at risk at each tenure is calculated just as for the hazards. It is then
divided into two groups, those who remain active and those who stop. The
total sum of the monthly fees is calculated for each tenure using the same sum-
mation method as for the population at risk. This total is divided into two
groups, one for the customers who remain active and one for the customers
who stop. The total monthly fees for the active and stopped customers are then
divided by the total populations of the two groups, to get the average monthly
fee for the active and stopped customers. This is best illustrated by walking
through the calculation.

This calculation relies on five variables for each tenure:

■■ The tenure;

■■ The number of customers at each tenure;
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■■ The number of customers who stop at each tenure;

■■ The sum of the initial monthly fees of all customers at each tenure; and,

■■ The sum of the initial monthly fees of stopped customers at 
each tenure.

These values are generated in SQL by simply summing and counting various
values:

SELECT tenure, COUNT(*) as pop, SUM(isstop) as numstops,

SUM(monthly_fee) as mfsumall, SUM(monthly_fee*isstop) as mfsumstop

FROM (SELECT s.*,

(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END) as isstop

FROM subs s) s

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0

GROUP BY tenure

ORDER BY 1

The population at risk for each tenure is the sum of the customers with
tenures as large as or larger than each tenure. The population at risk is split
into two groups, one being the customers who stop at that tenure (which 
is one of the five variables returned by the query) and the other being every-
one else.

Similarly, the total initial monthly fees of everyone at a given tenure is split
into two groups. The first is the sum of the initial monthly fees of all customers
who stop at exactly that tenure. The second is the sum of the initial monthly
fees of customers who are active at that tenure. These calculated values pro-
vide the information to calculate the average for each group. Figure 7-3 shows
an Excel spreadsheet that does this calculation.

Figure 7-3: This Excel spreadsheet calculates the average monthly fee for active customers
and for stopped customers.
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Extension to Include Confidence Bounds

This process of taking the average initial monthly fee at each tenure for
stopped and active customers is an example of taking a sample average. As
discussed in Chapter 3, such averages have confidence intervals based on the
standard error, so a reasonable enhancement is to include the standard error or
confidence bounds in the chart.

Figure 7-4 shows the previous chart with 95% confidence bounds for the
stopped customers. The confidence bounds for the active customers are so
small as to be negligible, so they are not shown on the chart. Because the con-
fidence bounds depend on the number of points at each point, the data is sum-
marized at the weekly level rather than the daily level to narrow the
confidence intervals for the stopped customers.

Figure 7-4: The comparison of averages can include error bars that show a confidence
interval for either average. In this case, the 95% confidence bound is shown for the
monthly fee average for stops.

This chart clearly illustrates that during the first year, stopped customers
have an average monthly fee that is significantly higher than that of active cus-
tomers. After a year and a few months, the averages become quite similar.

It is worth noting that even if the two curves had overlapping standard
errors during the first year, there would probably still be a statistically signifi-
cant difference between them because the trends are so apparent. Overlapping
confidence intervals would normally suggest that at any given tenure, two
points might be in either order due to random variation. However, a consistent
trend undercuts this observation. If the difference between two groups with
overlapping confidence were due to chance, there would not be long series
where one is greater than the other.

WARN I NG When looking at confidence bounds on series, it is important to
look at trends as well as overlapping confidence intervals.
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The confidence bound uses the statistical formula for the standard error of a
sample. The bound is 1.96 times the standard error. Recall from Chapter 3 that
the standard error for a sample average is the standard deviation divided by
the square root of the size of the sample. The standard deviation is calculated
as follows:

■■ Take the sum of the squares of the monthly fees;

■■ Subtract the average monthly fee squared divided by the number of
values;

■■ Divide the difference by one less than the number of values;

■■ Then the square root is an estimate of the standard deviation.

This calculation requires several aggregated values in addition to the values
used for the average initial monthly fee averages. The following query does
the necessary work:

SELECT FLOOR(tenure/7) as tenureweeks, COUNT(*) as pop,

SUM(isstop) as numstops, SUM(monthly_fee) as mfsumall,

SUM(monthly_fee*isstop) as mfsumstop,

SUM(monthly_fee*monthly_fee) as sum2all,

SUM(monthly_fee*monthly_fee*isstop) as mfsum2stop

FROM (SELECT s.*,

(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END) as isstop

FROM subs s) s

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0

GROUP BY FLOOR(tenure/7)

ORDER BY 1

This query adds several aggregations to the SELECT clause of the query used in
the previous section; this version includes the sum of the squares of the
monthly fee for all customers and for stopped customers. The query also uses
an indicator variable, ISSTOP, for the stop calculations, rather than a CASE
statement. The two methods are equivalent.

The sum of squares values are accumulated for each tenure, and split into
two groups for the actives and the stopped customers; this is the same process
used for the monthly fee average calculation. The sum provides the missing
information for the standard deviation calculation, which subtracts the num-
ber of values times the sum of squares of the averages from this value and
divides the difference by one less than the number of values. The standard
error is then the standard deviation divided by the square root of the number
of stops. And, the 95% confidence bound is 1.96 times the standard error.

Showing the result as confidence bounds in the chart makes use of positive
and negative Y-error bars. These are placed in the chart by selecting the series,
right-clicking to bring up the “Format Data Series” dialog box, and going to
the “Y Error Bars” tab. On this tab, choose the “Both” option choosing the
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“Custom” option on the bottom. Place the cell range with the confidence
bounds in the “+” and “–” boxes. The same range is used for both.

Hazard Ratios
Averages work for numeric variables, but they do not work for categorical
variables: The “average” value of something that takes on distinct values, such
as Gotham, Smallville, and Metropolis does not make sense. Yet, there is still
the question: What is the effect of a categorical variable (such as market or rate plan)
on survival for different tenures? Because averages as discussed in the previous
section do not work, an alternative approach is needed; this approach uses the
ratio of hazard probabilities.

Interpreting Hazard Ratios

Figure 7-5 shows two hazard ratio charts. The top chart shows the ratio of the
hazards by market, so the curves are for the Smallville to Gotham ratio and
Metropolis to Gotham ratio. The Gotham to Gotham ratio is not included in
the chart, because it is uniformly one.

Figure 7-5: The top chart shows hazard ratios for market, compared to Gotham, and the
bottom shows hazard ratios for channel, compared to Dealer.
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Smallville’s survival is better than Gotham’s, so as expected, the ratio of
Smallville’s hazards to Gotham’s hazards is uniformly less than one. However,
this effect is strongest during the first year, with the ratio climbing up a bit in
the second year. The first year average hazard ratio is 0.44, which rises to 0.55
in the second year. Although they are much better customers, Smallville’s cus-
tomers are becoming less good, relative to Gotham’s, at longer tenures.

The situation with Metropolis is the opposite. During the first year, the haz-
ard ratio is close to one, so Metropolis’s customers are almost as bad as
Gotham’s in the first year. In the second year, the hazard ratio drops from 0.96
to 0.75. So, Metropolis’s customers are getting better while Smallville’s are get-
ting worse. After two years, though, Smallville’s customers are still stopping at
a lower rate than Metropolis’s.

The lower chart in Figure 7-5 shows the hazard ratios by channel for Chain,
Store, and Mail compared to Dealer. The hazards for the Store channel are
almost uniformly lower than for Dealer, implying that survival of customers
from Store is better than customers from Dealer. This makes sense, because the
Store channel consists of own-branded stores, where the personnel are actually
employees of the cell phone company. It is not surprising that these stores
attract and retain the best customers, and in particular, better than the inde-
pendently owned dealers.

The Mail and Chain hazard ratios are interesting, because these ratios are
greater than one during the first year and then lower during the second year.
One possibility is that the Dealers are intentionally churning their customers
in the second year. That is, the independently owned dealers switch customers
who have been around a year to another carrier, because they then get an
acquisition bonus from another carrier. Customers who were acquired
through national chains and customers who come in by calling or through the
Internet would not be subject to such a ploy.

Calculating Hazard Ratios

Calculating the hazard ratios is basically the same as calculating the hazard
probabilities. SQL is used to start the hazard calculation, which is finished in
Excel, and then the ratio is calculated in Excel. The query to calculate the haz-
ards by market and channel is:

SELECT tenure,

SUM(CASE WHEN market = ‘Small’ THEN 1 ELSE 0 END) as small,

. . . 

SUM(CASE WHEN channel = ‘Chain’ THEN 1 ELSE 0 END) as chain,

. . . 

SUM(CASE WHEN market = ‘Smallville’ THEN isstop ELSE 0 END

) as stopsmall,

. . . 

SUM(CASE WHEN channel = ‘Chain’ THEN isstop ELSE 0 END

(continued)
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) as stopchain,

. . . 

FROM (SELECT s.*,

(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END) as isstop

FROM subs s) s

WHERE start_date >= ‘2004-01-01’ AND tenure >= 0

GROUP BY tenure

ORDER BY 1

The results are copied into Excel to calculate the hazards. For the ratios,
Gotham and Dealer were chosen arbitrarily. The one with the best survival
(Smallville) or worst survival (Gotham) are good choices. In other circum-
stances, it might be useful to compare each group to the population as a whole.
This would be particularly true if the groups were rather small, because the
overall group would have non-zero hazards even when some of the other
groups occasionally have zero hazards.

One caution about the hazard ratio is that it does not work when there are
no stops in the comparison group at a given tenure. However, for the compar-
ison by market, the sizes of the various subgroups are large enough so this
does not happen. In other cases, it might be desirable to use a larger time
period, such as seven days (one week) or 30 days (approximately one month).

TI P When using hazard ratios, adjust the time period used for the tenure
calculations to ensure that there are enough stops during each time period, 
for instance, by summarizing at the weekly level rather than the daily level.

Why the Hazard Ratio

A question may be occurring to some readers: Why the hazard ratio and not
the survival ratio? First, it is important to note that the survival ratio can also
be informative. After all, the ratio of survival provides information about how
much better one group is than another. It can even be used as a rough estimate
of the difference in customer half-life. That is, if one group has a survival ratio
half that of another group, the customer half-life for the first group should be
about twice as long as the customer half-life for the second.

The hazard ratio has two advantages, one theoretical and one practical. The
theoretical advantage is that there is a relationship between the hazard ratio and
the methods used for Cox proportional hazards regression. Both techniques look
at what happens at a particular tenure and determine who is stopping. This rela-
tionship is theoretically appealing.

The more practical reason is that the hazard ratio gives independent infor-
mation for each tenure as opposed to survival, which accumulates information.
In the charts, there was often a cutoff at one year, where the ratios flipped. This
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phenomenon would show up much more slowly in the survival ratio, because
the information has to accumulate over many tenures. In fact, the hazard ratio
shows that the hazard probabilities for Smallville are getting worse while the
hazard probabilities for Metropolis are getting better. However, even after two
years, Smallville still has better survival than Metropolis, because of what hap-
pens during the first year. The survival ratio does not show this phenomenon
clearly at all.

One drawback of the hazard ratio is that there might be only a small amount
of data at each tenure. This can be fixed by using longer tenure periods, such
as weeks or multiples of weeks, instead of days.

Left Truncation

Understanding variables improves our understanding of survival and haz-
ards. This section moves to another topic, which is the accurate calculation of
hazard probabilities. As noted in the previous chapter, the customers in the
Subs table data have an unusual property: customers who stopped before
2004-01-01 are excluded from the table. This phenomenon, where customers
are excluded based on their stop date, is called left truncation. In the previous
chapter, the problem of left truncation was handled by ignoring customers
who started before 2004-01-01. This section presents another method, based on
an idea called time windows.

Left truncation is a problem, because hazard estimates on left truncated data
are simply incorrect. The solution to left truncation uses stop time windows, a
powerful enhancement to survival analysis that has other applications. Before
discussing time windows in general, though, let’s look at the left truncation
problem that they solve.

Recognizing Left Truncation
Left truncation is identified by looking at a histogram of starts and stops by
date on the same chart. The chart itself is similar to other histograms, except
two curves need to be shown on the same chart. One way to do this is to gen-
erate the data for each histogram separately, and then combine them in Excel.
However, doing the combining in SQL simplifies the Excel work. The follow-
ing query returns the number of starts and stops by month:

SELECT YEAR(thedate) as year, MONTH(thedate) as month,

SUM(numstarts) as numstarts, SUM(numstops) as numstops

FROM ((SELECT start_date as thedate, COUNT(*) as numstarts, 0 as numstops

FROM subs

GROUP BY start_date)

UNION ALL

(continued)
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(SELECT stop_date as thedate, 0 as numstarts, COUNT(*) as numstops

FROM subs

GROUP BY stop_date)) a

WHERE thedate IS NOT NULL

GROUP BY YEAR(thedate), MONTH(thedate)

ORDER BY 1, 2

Figure 7-6 shows the resulting histogram. This chart suggests that starts are
coming from a much longer time period than stops. One way to confirm this is
to ask the question: How many years (or months or days) have both starts and stops
and how many have one without the other? The following query characterizes
years according to whether or not the year has any starts and whether or not
the year has any stops:

SELECT (CASE WHEN numstarts = 0 THEN ‘NONE’ ELSE ‘SOME’ END) as starts,

(CASE WHEN numstops = 0 THEN ‘NONE’ ELSE ‘SOME’ END) as stops,

COUNT(DISTINCT theyear) as numyears,

MIN(theyear) as minyear, MAX(theyear) as maxyear

FROM (SELECT theyear, SUM(numstarts) as numstarts,

SUM(numstops) as numstops

FROM ((SELECT YEAR(start_date) as theyear, COUNT(*) as numstarts,

0 as numstops

FROM subs

GROUP BY YEAR(start_date) )

UNION ALL

(SELECT YEAR(stop_date) as theyear, 0 as numstarts,

COUNT(*) as numstops

FROM subs

GROUP BY YEAR(stop_date) )) a

GROUP BY theyear) b

GROUP BY (CASE WHEN numstarts = 0 THEN ‘NONE’ ELSE ‘SOME’ END),

(CASE WHEN numstops = 0 THEN ‘NONE’ ELSE ‘SOME’ END)

ORDER BY 1, 2

Figure 7-6: This histogram of start and stop counts by month suggests that prior to 
2004, starts are recorded in the database but not stops.
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Table 7-1 has the results from this query, which confirms what we already
know. Prior to 2004, starts were recorded in the database but not stops. Chap-
ter 6 got around this problem by filtering the starts to include only those since
2004. The resulting hazard calculation uses customers for whom full start and
stop information is available.

Table 7-1: Number of Years, Characterized by Presence of Starts and Stops

NUMBER MINIMUM MAXIMUM
STARTS STOPS OF YEARS YEAR YEAR

SOME NONE 17 1958 2003

SOME SOME 3 2004 2006

The subscribers table has a particularly egregious form of left truncation,
because all stopped customers were excluded. Often, left truncation is not
quite so blatant. For instance, some stops might make it into the database, per-
haps because they were pending on the cutoff date. Or, the left truncation may
be within a single market or customer subgroup. Perhaps a small company
was acquired, and only their active customers were included in the database.
Fortunately, the techniques that deal with left truncation can be enhanced to
deal a separate left truncation date for each customer.

Effect of Left Truncation
Left truncation, in general, biases hazard probabilities by making them
smaller. This is because customers are included in the population at risk, when
these customers really are not at risk. For instance, a customer that started in
2001 is included in the population at risk for tenure one. If this customer had
stopped at tenure one, she would not be in the data. Her stop date, if any, must
be after the left truncation date. Yet, it is easy to include her in the population
at risk for tenure one.

As a consequence, the denominator of the hazard probability ratio is too
large, thereby making the hazard probability too small, which in turn makes
the survival estimates too big. Figure 7-7 compares survival curves generated
from all the customers and from only those who started after the left truncation
date. The result from overestimating survival is that the survival values are too
optimistic. Optimism is good. Ungrounded optimism bordering on fantasy
might lead to incorrect decisions and assumptions. It is much preferable to cal-
culate unbiased estimates.

Although left truncated data usually underestimates hazard probabilities,
the resulting hazard probabilities could actually be either larger or smaller
than the unbiased estimate. Consider the hazard probability at 730 days. It can
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be set to almost any value by making up data before the left truncation date.
So, consider the customers who start on 1 Jan 2001. If all these customers stop
at exactly 730 days, then they all stop before the left truncation date (1 Jan 2003
is before 1 Jan 2004), and they are not in the data. However, their stops would
increase the 730-day hazard relative to the observed value. If, instead, these
customers all stop at exactly 731 days of tenure, then they have survived 730
days without stopping, thereby decreasing the 730-day hazard. Because these
customers are not in the data, we don’t know which, if either, of these scenar-
ios occurred.

Figure 7-7: Calculations on left truncated data overestimate the survival. Filtering is one
way to get unbiased estimates.

However, when doing survival analysis, we assume that the hazard proba-
bilities do not change radically over time. This assumption of similarity over
time has a name, the homogeneity assumption. The scenarios described in the
previous paragraph severely violate the homogeneity assumption. Figure 6-15
did show that the 365-day hazard probability does change over time. How-
ever, the change is gradual, so this hazard does not severely violate homo-
geneity. With this assumption, the hazards calculated from left truncated data
underestimate the hazard and hence overestimate the survival.

TI P The homogeneity assumption asserts that the hazard probabilities do not
change radically or suddenly over time. This is usually a reasonable assumption
for customer databases, although it is worth validating.
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How to Fix Left Truncation, Conceptually
Figure 7-8 shows several customers throughout time, on the calendar time
line. Two dates are highlighted; the earlier is the left truncation date and the
later is the cutoff date. Only customers who are active after the left truncation
date are in the database.

Customer #5 started and stopped before the left truncation date. This cus-
tomer is simply missing from the data. We do not even know to look for the
customer, because the customer is not there. Customer #2 started at about the
same time yet appears in the data, because this customer survived to the left
truncation date. The fact that one customer is present and another absent is a
property of the data, as opposed to a property of any particular record.

Figure 7-8: Customers who stop before the left truncation date are not included in 
the database.

How can the hazard probabilities be calculated without the biases introduced by
missing data? Answering this question requires a detailed look at the hazard
calculation itself. Remember, the hazard probability at a particular tenure is
the number of customers who have an observed stop at that tenure divided 
by the number of customers who are at risk of stopping. The population at risk
is everyone who was active at that tenure who could have stopped, regardless
of whether they stopped.

Left truncation adds a twist. Consider the at-risk population for customers
at tenure zero in left truncated data. If a customer started before the left trun-
cation date, the customer is not in the at-risk pool for tenure zero. Customers
who started before the left truncation date and would have a tenure of zero are
simply not available in the data. So, the at-risk population at tenure zero con-
sists only of customers who started since the left truncation date.
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Consider the at-risk population for customers at tenure one. These cus-
tomers have to be at risk of stopping at tenure one and the stop needs to occur
after the left truncation date. So, tenure one needs to occur on or after the left
truncation date. In other words, the customer must start between one day
before the left truncation date and one day before the cutoff date.

The general rule is that a customer is in the population at risk at tenure t when
that tenure occurs on or after the left truncation date and before the cutoff date.
The following two rules for membership in the population at risk encapsulate
this observation:

■■ Customers start in the time period from the left truncation date minus t
to the cutoff date minus t; and,

■■ Customers are active at tenure t.

Together, these two rules imply that the customer is active at that tenure in the
period after the left truncation date.

Estimating Hazard Probability for One Tenure
The preceding rules readily translate into SQL for a given tenure For instance,
the hazard probability for tenure 100 is calculated as:

SELECT MIN(thetenure) as thetenure, COUNT(*) as poprisk_t,

SUM(CASE WHEN tenure = thetenure THEN isstop ELSE 0 END

) as numstops,

AVG(CASE WHEN tenure = thetenure THEN isstop*1.0 ELSE 0 END

) as haz_t

FROM (SELECT s.*, 100 as thetenure,

(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END) as isstop

FROM subs s) s

WHERE tenure >= thetenure AND

DATEADD(dd, thetenure, start_date) BETWEEN ‘2004-01-01’ AND

‘2006-12-31’

The result is 0.088%. Notice that this query sets the THETENURE variable 
in the subquery as a convenience for the overall calculation. Changing
THETENURE results in estimates for other tenures. For instance, changing it
to 1460 gives the tenure at four years (1460=365*4). That value is 0.07%.

Wow. Calculating the hazard for such a large tenure is quite remarkable. Up to
this point, hazard probabilities have been limited to tenures less than three years,
because starts before 1 Jan 2004 were filtered out. However, by using a time win-
dow for the stops, hazard probabilities can be calculated for any tenure. 

Estimating Hazard Probabilities for All Tenures
The method used to estimate hazard probabilities for a single tenure does not
readily scale to all tenures. Doing the calculation efficiently for all tenures
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requires a bit more cleverness based on some observations about the popula-
tion at risk. These observations look at the calculation from a different per-
spective, the relationship between the population at risk at one tenure and the
population at risk for the previous tenure.

The observations are:

■■ The population at risk for a given tenure t is the population at risk for
t–1, plus

■■ Customers who enter the time window with tenure t (that is, those who
have tenure t on the left truncation date), minus

■■ Customers who leave the time window with tenure t–1 (that is, those
who are stopped or censored at the previous tenure).

These observations use the number of customers who enter and leave the time
window defined by the left truncation date and the cutoff date. The number of
customers who enter at a given tenure is easily calculated. If the customer
started on or after the left truncation date, then the customer entered at tenure
zero. Customers who start before the left truncation date enter the time window
on their tenure as of the left truncation date. Only customers who have entered
the time window are counted in the population at risk for a given tenure.

The number of customers who leave the time window at a given tenure is
even easier. This is simply the number of customers with a given tenure,
regardless of whether or not they stop. Any customers who stop before the left
truncation date need to be excluded from both the “enters” and “leaves” cal-
culations. This condition is a bit redundant, because customers who stop
before the left truncation date are not in the data at all, which is why we are
going through this effort to calculate unbiased hazards.

The following SQL calculates the columns NUMENTERS, NUMLEAVES,
and NUMSTOPS for all tenures less than 1000 by placing all longer tenure cus-
tomers into one group (this is just a convenience for the calculation and not
necessary for handling left truncation):

SELECT (CASE WHEN thetenure < 1000 THEN thetenure ELSE 1000

END) as tenure, SUM(enters) as numenters,

SUM(leaves) as numleaves, SUM(isstop) as numstops

FROM ((SELECT (CASE WHEN start_date >= ‘2004-01-01’ THEN 0

ELSE DATEDIFF(dd, start_date, ‘2004-01-01’) END

) as thetenure,

1 as enters, 0 as leaves, 0 as isstop, s.*

FROM subs s) UNION ALL

(SELECT tenure as thetenure, 0 as enters, 1 as leaves,

(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END

) as isstop, s.*

FROM subs s) ) a

WHERE start_date IS NOT NULL AND tenure >= 0

GROUP BY (CASE WHEN thetenure < 1000 THEN thetenure ELSE 1000 END)

ORDER BY 1
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The number of customers who enter and leave the time window are calculated
in two subqueries, one for entering and one for leaving, connected with a
UNION ALL. The second of these subqueries also keeps track of the customers
who stop, because the tenure at the stop is the same as the tenure when the
customer leaves the time window.

These columns provide the fodder for the Excel calculation, which fol-
lows the logic described in the preceding observations. Figure 7-9 shows an
Excel spreadsheet that does the calculations. The population at risk for a
given tenure is the previous population at risk plus the new customers that
enter minus the ones that leave at the previous tenure. The hazard probabil-
ities are then calculated by dividing the number of stops by the population
at risk. When doing the calculation for all tenures, it is worth validating the
result for one or two tenures, using the single tenure estimate in the previ-
ous section.

Figure 7-9: The Excel calculation for handling left truncation is not much more difficult
than the calculation for empirical hazards.

Notice that the number of customers who enter the time window at tenure
zero is in the millions, but for the other tenures, the count is, at most, in the
thousands. This is because all customers who start on or after the left truncation
date enter the time window at tenure zero. So, the tenure zero number includes
three years worth of starts. On the other hand, the customers who enter at
larger tenures started that number of days before the left truncation date.

Time Windowing

Time windows are more than just the solution to left truncation. They are a
powerful technique for other purposes. This section investigates time win-
dows in general and some ways that they can be used.
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A Business Problem
Once upon a time, a company was developing a forecasting application using
survival analysis. This type of application was discussed in the previous
chapter, and forecasting can be a powerful application of survival analysis. A
large amount of data for tens of millions of customers was provided early in
May for a proof-of-concept. The schedule called for the proof-of-concept to be
reviewed in the summer, steadily improved upon, and then the final forecast-
ing project would begin at the end of the year. So, using the historical data, the
proof-of-concept began.

During that May, a shrewd person in finance decided to change one of the
company’s policies, just a little tweak actually. The old policy was to discon-
nect a customer on the date that the customer requested the stop. The new
policy was to disconnect customers at the end of their billing cycle, unless the
customer very loudly objected.

The merits of the new policy were multifold and manifest. The new policy
meant that almost no monies needed to be refunded to customers, for instance,
because accounts were paid up through the end of the billing period. Such
refunds were generally small amounts of money, and the overhead for each
refund was a significant proportion of the amount refunded. In addition, the
new policy kept customers active for a longer period of time. In fact, assuming
that customers call randomly during their billing periods to stop, it would add
half a billing period — or two weeks — onto each customer’s tenure.

Hmmm, would the new policy have an effect on customers’ tenures? Could
it conceivably be possible that adding an extra two weeks of tenure to every
customer who stops would have an effect on the proof-of-concept project? No
suspense here; the answer is “yes.” The more important question is how to
deal with the situation.

Filtering customers who started after the date the new policy went into effect
would not work, because the population would consist of customers having
only very short tenures — about one month for the proof-of-concept and less
than one year for the larger project. A better solution would be to calculate unbi-
ased hazard probabilities using only stops after the new policy went into effect.
In other words, forcing the left truncation date to be a recent date would only use
stops that have the new policy. Voila! The hazard estimates would reflect the
new policy, while still having hazard estimates for all tenures.

Forcing left truncation solves the problem. Once this is recognized as a pos-
sibility other situations are amenable to the solution. Another company
changed its initial non-payment policy. Previously, customers were cancelled
after 63 days, if they did not pay their initial bill. This was changed to 77 days.
And, yes, this has an impact on the forecast customer numbers. Eventually, the
policy was made more complicated, varying from 56 days to 84 days for dif-
ferent groups of customers. By using left truncation to estimate hazards using
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stops only since the new policies went into effect, it was possible to get accu-
rate survival estimates for a customer forecast application.

Time Windows = Left Truncation + Right Censoring
The examples discussed in the previous section use forced left truncation to
handle a business problem. However, a more general way to think about time
windows is that they calculate unbiased estimates of hazard probabilities
using a time window of stops. The beginning of the time window is the left
truncation date and the end of the time window is the cutoff date (technically
called the right censor date for the data).

Figure 7-10 illustrates a general time window for a small number of cus-
tomers. As this example shows, a given time window is a combination of left
truncation and forcing an earlier right censorship date (which we saw in the
previous chapter in Figure 6-17). With these two ideas, it is possible to gener-
ate unbiased hazards using almost any time window where stops occur.

Figure 7-10: Time windows make it possible to estimate unbiased hazard probabilities
for stops during a particular period of time (the shaded area).

Calculating One Hazard Probability Using a Time Window

Consider the following question: What are the hazard probabilities at tenure 100
based on stops in 2004, in 2005, and in 2006? This is a question about changes in
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a hazard probability over time. The following SQL statement does the calcula-
tion based on stops in 2004:

SELECT MAX(thetenure) as tenure, COUNT(*) as poprisk_t,

SUM(CASE WHEN tenure = thetenure THEN isstop ELSE 0 END

) as numstops,

AVG(CASE WHEN tenure = thetenure THEN isstop*1.0 ELSE 0 END

) as haz_t

FROM (SELECT s.*, 100 as thetenure,

(CASE WHEN stop_type IS NOT NULL AND

stop_date <= ‘2004-12-31’

THEN 1 ELSE 0 END) as isstop

FROM subs s) s

WHERE tenure >= thetenure  AND

ADDDATE(dd, thetenure, start_date, thetenure)

BETWEEN ‘2004-01-01’ AND ‘2004-12-31’ 

This SQL statement combines left truncation and forced censoring. Left trun-
cation is implemented in the WHERE clause, by restricting the customers only to
those whose 100th day of tenure is during 2004. The forced censoring is as of
the end of 2004, so the definition of ISSTOP is as of that date.

The queries for 2005 and 2006 are similar. Table 7-2 shows the hazard prob-
ability for tenure 100 for stops during each of the three years. The probability
itself is quite low. It is interesting that the hazard is lowest during 2005, which
also had the most starts.

Table 7-2: Hazard Probability for Tenure 100 Based on Stops in 2004, 2005, and 2006

POPULATION HAZARD
YEAR TENURE AT RISK STOPS PROBABILITY

2004 100 956,937 957 0.10%

2005 100 1,174,610 777 0.07%

2006 100 750,064 808 0.11%

All Hazard Probabilities for a Time Window

Calculating a hazard probability for a single tenure is a good illustration of
time windows. More interesting, though, is calculating hazard probabilities
for all tenures. This calculation follows the same form as the left truncation
calculation, where STOPS, ENTERS, and LEAVES variables are calculated for
all tenures. These are then combined in Excel. The next section provides an
example of this calculation.
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Comparison of Hazards by Stops in Year

The previous chapter showed two ways of comparing changes in survival
probabilities over time. The first method was to use starts in a given year,
which provides information about acquisition during the year, but not about
all the customers who were active during that time. The second approach
forces the right censorship date to be earlier, creating a snapshot of survival
at the end of each year. Using starts, customers who start in 2006 have rela-
tively lower survival than customers who start in 2004 or 2005. However, the
snapshot method shows that 2006 survival looks better than survival at the
end of 2004. 

This section proposes another method, based on time windows. Using time
windows, hazard probabilities are estimated based on the stops during each
year, rather than the starts. Time windows make it possible to calculate hazard
probabilities for all tenures.

The approach is to calculate the number of customers who enter, leave, and
stop at a given tenure, taking into account the time window. The following
query does the calculation for stops during 2006:

SELECT (CASE WHEN tenure < 1000 THEN tenure ELSE 1000 END) as tenure,

SUM(enters) as numenters, SUM(leaves) as numleaves,

SUM(isstop) as numstops

FROM ((SELECT (CASE WHEN start_date >= ‘2006-01-01’ THEN 0

ELSE DATEDIFF(dd, start_date, ‘2006-01-01’) END

) as tenure,

1 as enters, 0 as leaves, 0 as isstop

FROM subs s

WHERE tenure >= 0 AND start_date <= ‘2006-12-31’ AND

(stop_date IS NULL OR stop_date >= ‘2006-01-01’)

) UNION ALL

(SELECT (CASE WHEN stop_date IS NULL OR stop_date >= ‘2006-12-31’

THEN DATEDIFF(dd, start_date, ‘2006-12-31’)

ELSE tenure END) as tenure, 0 as enters, 1 as leaves,

(CASE WHEN stop_type IS NOT NULL AND

stop_date <= ‘2006-12-31’ THEN 1 ELSE 0 END

) as isstop

FROM subs s

WHERE tenure >= 0 AND start_date <= ‘2006-12-31’ AND

(stop_date IS NULL OR stop_date >= ‘2006-01-01’) )

) a

GROUP BY (CASE WHEN tenure < 1000 THEN tenure ELSE 1000 END)

ORDER BY 1

This query calculates the variable ENTERS by determining the tenure when a
customer enters the stop window — either the tenure on the left truncation
date or zero for customers who start during the window. The variables
LEAVES and STOPS are calculated based on the tenure on the right censorship
date or the tenure when a customer stops. 
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Each subquery has the same WHERE clause in order to select only customers
active during the time window––customers had to start before the end of the
year and stop after the beginning of the year in order to be included. For good
measure, each subquery also requires that TENURE be greater than zero, elim-
inating the row that has a spurious negative value.

Figure 7-11 shows the survival curves based on stops in each of the three
years. These curves are comparable to Figure 6-16 and 6-18, which show the
survival based on starts and the end-of-year snapshots, respectively. This chart
has a more complete picture. By using time windows on stops, all three years
have survival estimates for all tenures. None of the series are longer or shorter
than the others.

Figure 7-11: Using time windows, the stops during different years can be used to
calculate hazard probabilities and survival.

The chart shows that the anniversary churn effect is much stronger in 2005
and 2006 versus 2004. Anniversary churn is the tendency of customers to stop on
the one-year anniversary of their start, typically because their contracts expire.
So, although customers in 2005 and 2006 survive better in the first year (com-
pared to customers in 2004), as the tenures stretch out, the difference in survival
disappears. Based on the stops, 2006 seems to be the worst of all possible worlds,
with the worst short-term survival (in the first 90 days) and the worst long-term
survival (over 720 days), although it does a bit better in between.

Competing Risks

The opening lines to Leo Tolstoy’s classic novel Anna Karenina is the insightful
quote: “All happy families are alike; each unhappy family is unhappy in its
own way.” This book is not about literary criticism, but what Tolstoy wrote in
the 19th century about families is also true of customers in the 21st century.
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Happy customers who stay are all alike, because they remain customers.
Unhappy customers stop, and they do so for a variety of reasons. Although
perhaps not as compelling as the family tragedies in a Tolstoy novel, these dif-
ferent reasons are of analytic interest. Competing risks is the part of survival
analysis that quantifies the effects of these different reasons.

Examples of Competing Risks
One way to think of competing risks is to imagine a guardian angel “compet-
ing” with various devils of temptation for each customer. The guardian angel
encourages the customer to remain a happy, loyal, paying customer. The vari-
ous devils of temptation urge the customer to defect to a competitor, or to stop
paying, or quit for some other reason. This competition goes on throughout
the customer lifetime, with the guardian angel usually winning . . . but even-
tually a devil of temptation comes out ahead, and the customer stops.

This image of guardian angels and devils of temptation encapsulates the
central notion of competing risks: at a given tenure, a customer not only has a
risk of stopping, but of stopping for one of a variety of reasons. For instance,
the subscription data has three types of customer unhappiness encoded in the
STOP_TYPE column. So far, we have used the stop type to identify whether or
not customers have stopped, lumping together all non-NULL values as stopped
customers. The next three subsections explain these stop types in more detail.

TI P When working with many different reasons for customers leaving, it is a
good idea to classify them into a handful of different categories, say between
two and five. These categories depend on the business needs.

I=Involuntary Churn

Stop type “I” stands for “involuntary churn,” which occurs when the com-
pany initiates the stop. In this dataset, involuntary churn is synonymous with
customers not paying their bill. However, involuntary churn can arise in other
situations. A company might close down its operations in a geographic area or
sell a business unit to a competitor. These are examples of situations where
customers cease being customers, but through no fault of their own.

Involuntary churn may not really be involuntary. Customers may communi-
cate their desire to leave by not paying their bills. Once upon a time, a mobile
telephone company believed that it had no involuntary churn at all; that is, the
company performed credit checks and believed that all customers could pay
their bills. What the company did have was poor customer service—the hold
times in the call center were often measured in tens of minutes. Customers
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would call customer service, perhaps with a billing or coverage question, and
very likely get angry over the long wait time. Instead of canceling by calling
back––and waiting again––some customers simply stopped paying their bills.
The data suggested this, because many customers who stopped paying had
called customer service shortly before they stopped, even though they had high
credit scores that indicated their ability to pay the bill.

V=Voluntary Churn

Another form of churn is “V,” which stands for “voluntary churn.” This is a
much more diverse array of reasons, because these are customer initiated. Cus-
tomers may stop because the price is too high, or because the product does not
meet expectations (such as coverage for a cell phone company), or because
customer service has treated them poorly, or because they are moving, or
because of a change in financial conditions, or to boycott the company’s envi-
ronmental policy, or because their astrologer recommended change. There are
a myriad of reasons, and it is not uncommon for there to be dozens or hun-
dreds of detailed stop codes. In the Subs table, all these reasons (and more) are
grouped together into one group, “V.”

Not all voluntary churn is necessarily truly voluntary. Often, customers can-
cel their accounts after late notices start appearing. They may stop voluntarily
but they owe money. These customers were en route to involuntary churn, but
took a detour by stopping on their own.

These borderline cases do not affect the applicability of competing risks.
Instead, they suggest that under certain circumstances, additional data
might be incorporated into the stop types. For instance, there might be a dif-
ference between customers who stop voluntarily with an outstanding bal-
ance (larger than a certain size or so many days past due) and other
customers who stop voluntarily.

M=Migration

The third type of churn in the subscription data is migration churn, indicated
by “M.” One example of migration churn is when a company introduces a new
improved product and wants to move all customers to the new product. This
occurred when companies introduced digital cell phone technologies, and
moved customers from analog services.

The accounts in this dataset consist of customers on subscription accounts.
These customers pay for service one month at a time as part of an ongoing
service arrangement. Prepaid customers pay in advance for a block of time.
The prepaid option is more appropriate for some customers, particularly
those with limited financial means.
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Migration from a subscription account to a prepaid account is a down-
grade, because the prepay product is not as profitable as the subscription
product. In other cases, migration might be an upgrade. For instance, in a
credit card database, switching to a gold, platinum, titanium, or black card
might close one credit card account but open another, more valuable
account. In the pharmaceutical world, a patient might go from a 10 mg dose
to a 40 mg dose.

From the holistic customer perspective, migration may not actually indicate
a stop at all. After all, the customer remains a customer with the company. On
the other hand, from the perspective of a particular product group, migrated
customers no longer use that product. Whether or not migration indicates a
stop is a business question whose answer varies depending on the particular
analytic needs.

TI P Whether or not a customer has stopped is sometimes a business question.
For some analyses (more product-centric), customers who migrate to another
product might be considered stopped. For other more customer-centric analyses,
such customers would still be active.

Other

Another type of churn is “expected” churn. For instance, customers may die or
move outside the service area; in both cases, the cancellation is not because the
customer does not want to be a customer; it is due to extraneous factors.

It would be possible to handle competing risks for all the dozens of types
of churn specified by reason codes. However, it is usually better to work with
a smaller number of reasons, classifying the reasons into a handful of impor-
tant stop classes.

Competing Risk “Hazard Probability”
The fundamental idea behind competing risks is that a customer who is still
active has not succumbed to any of the risks. In the original imagery, this
means that the guardian angel and the devils of temptation keep battling for
the customer’s fate. While a customer is active, the angel and the devils con-
tinue to compete for the customer.

Figure 7-12 illustrates a small group of customers. In this chart, open circles
indicate that the customer is still active. The dark and light shadings indicate
different ways that customers might leave. It is possible to calculate the haz-
ard for each of the risks, by dividing the number of stops for that risk by the
population at risk. Because the angel and the devils are all competing for the
same customers, the population at risk is the same for all the risks. Actually,
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the population at risk might vary slightly for different risks, but this variation
is a technical detail. For intuitive purposes, it is safe to assume that the popu-
lations are the same.

Figure 7-12: Different customers stop for different reasons, such as voluntary and
involuntary churn and migration.

The following query sets up the appropriate data in SQL:

SELECT tenure, COUNT(*) as pop,

SUM(CASE WHEN stop_type = ‘V’ THEN 1 ELSE 0 END) as voluntary,

SUM(CASE WHEN stop_type = ‘I’ THEN 1 ELSE 0 END) as involuntary,

SUM(CASE WHEN stop_type = ‘M’ THEN 1 ELSE 0 END) as migration

FROM subs

WHERE start_date IS NOT NULL AND tenure >= 0 AND 

start_date >= ‘2004-01-01’

GROUP BY tenure

ORDER BY 1

This SQL simply divides the stops into three groups, the “V,” the “I,” and the
“M” groups. Competing risk hazards are then calculated separately for each of
these groups, using the same population at risk.

There is a theoretical reason for slightly tweaking the population at risk, by
making a small adjustment for the customers who stop. Even though all stopped
during the same discrete time interval, we can imagine that they stopped in
some order. Once a customer has stopped for any reason, that customer is no
longer in the population at risk for the other risks. On average, all the customers
who stopped for a particular risk stopped halfway through the time interval.
These customers are not at risk for stopping again. For this reason, a reasonable
adjustment on the population at risk for a particular risk is to subtract half the
stops of the other types of risk.

Customer 8 

Customer 7 

Customer 6 

Customer 5 

Customer 4 

Customer 3 

Customer 2 

Customer 1 

Tenure 

M 

I 

V 

I 

V 

Chapter 7 ■ The What and Why of Customer Tenure 325

99513c07.qxd:WileyRed  8/27/07  4:26 PM  Page 325



This adjustment generally has a negligible impact on the resulting hazard
probabilities, because the number of stops at any given time is much smaller
than the population at risk. When the number of stops and the population at
risk are closer together, the adjustment is more important. However, this hap-
pens when the population at risk is small, so the confidence interval around
the hazard probability is large. Incidentally, this same adjustment can be made
for the overall hazard calculation.

What does the competing risk hazard mean? A good intuitive answer is that
the hazard is the conditional probability of succumbing to a particular risk,
given that the customer has not succumbed to any risk so far. Competing risk
hazard probabilities are always smaller than or equal to the overall hazard
probabilities at the same tenure. In fact, if all competing risks have been taken
into account, the overall hazard probability is the sum of the competing risk
hazard probabilities (or at least, very close to the sum if using the adjustment).

Is there an alternative approach? One idea might be to keep only the stops for
one risk, filtering out all the others. This is a no-no. Previously, there was a
warning that filtering or stratifying customers by anything that happens during
or at the end of the customer relationship results in biased hazards. There is no
exception for competing risks. The customers who stopped involuntarily were
at risk of stopping voluntarily before their stop date. Removing them reduces
the size of the population at risk, which, in turn, overestimates the hazards.

WARN I NG When using survival techniques, be sure that all stops are taken
into account. Use competing risks to handle different stop reasons, rather than
filtering the customers by stop reason.

Competing Risk “Survival”
Given competing risk hazard probabilities, the next step is to calculate the
competing risk survival, as shown in Figure 7-13. The survival values for one
competing risk are always larger than the overall survival. For the data with
large numbers of customers and relatively few stops at any given tenure, the
product of all the competing risk survival values at a given tenure is a good
approximation of the overall survival. This formula is not exact, but it is a
good approximation.

Competing risk survival curves do not have an easy interpretation. They are
conditional on a customer not stopping for other reasons. So, the “V” curve is
answering the question: What is the probability of surviving to a given tenure
assuming that the customer does not stop for any reason other than “V”? This ques-
tion is rather arcane; customers do stop for other reasons.

Competing risk survival curves do not have the nice analytic properties of
overall survival curves. In particular, the median value and the area under the
curve do not have easily understood interpretations.
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Figure 7-13: Competing risk survival is always larger than overall survival.

On the other hand, the curves are quite useful qualitatively. For instance, the
chart shows that voluntary churn is the cause of anniversary churn. On the other
hand, involuntary churn predominates at a few months after a customer starts,
and becomes less significant after that. Migration is never a big cause of churn.
This ability to see the importance of different cancellation types makes compet-
ing risk survival charts useful, though more qualitatively than quantitatively.

What Happens to Customers over Time
Survival curves have a nice property. At any given tenure, the survival curve
estimates the proportion of customers who are active; and hence the number
who have stopped. Or, if the risk is something other than stopping, the curve
tells us the proportion of customers who have succumbed to the risk and the
proportion who have not. Competing risks extends this by refining the stopped
population by risk type.

Example

Figure 7-14 shows a graph of the subscribers by tenure, divided into four parts.
The lowest region is the customers who are active. The next is the customers
who stopped voluntarily and the next region is the customers who stopped
involuntarily. At the very top is a thin line for customers who have migrated,
but it is invisible because there are so few. For instance, at 730 days, 42.3% are
still active, 37.1% have stopped voluntarily, 20.2% have stopped involuntarily,
and 0.4% have migrated. At every point, all customers are accounted for, so the
sum of the three curves is always 100%.
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Figure 7-14: This chart shows what happens after subscribers start, by breaking the stops
into different groups based on the stop type.

These curves show what happens next after customers start. The only possi-
bilities are remaining active, or stopping, either voluntarily, involuntarily, or
by migrating. However, some customers who stop may restart and become
active again. Customers who migrate away may also migrate back. These
curves do not take these more complex scenarios into account, because they
only show the next thing that happens.

The boundary between the active customers and the voluntary customers is
the overall survival curve. The other three regions are calculated from the haz-
ards, but not in exactly the same way as the survival curves. There are two
approaches for creating a “what-happens-next” chart. The first is a brute-force,
cohort-based approach. The second uses survival analysis.

A Cohort-Based Approach

One way to create a chart of what happens next is by doing a cohort-based cal-
culation. This focuses on the outcomes of a group of customers who all start
around the same time. For instance, the following SQL keeps track of the
cohort of customers who start on 1 January 2004:

SELECT tenure, COUNT(*) as pop,

SUM(CASE WHEN stop_type = ‘V’ THEN 1 ELSE 0 END) as voluntary,

SUM(CASE WHEN stop_type = ‘I’ THEN 1 ELSE 0 END) as involuntary,

SUM(CASE WHEN stop_type = ‘M’ THEN 1 ELSE 0 END) as migration

FROM subs

WHERE start_date = ‘2004-01-01’

GROUP BY tenure

ORDER BY 1
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This query is quite similar to the previous query. The only difference is that the
query restricts the population to one day of starts. The idea is to use this data
to calculate the cumulative number of starts and stops for each tenure, directly
from the data.

Calculating the cumulative numbers for all tenures relies on two rules. The
number of active customers at a given tenure is the sum of all customers with
longer tenures plus the number at that tenure who are active. For the other
three groups, the rule is simply a cumulative sum. So, the number of voluntary
stops is the sum of the number of voluntary stops for all tenures less than or
equal to the given tenure.

Excel readily supports these calculations. Figure 7-15 shows the resulting
chart, with the population of each group on a separate line. This chart is not
stacked, so it is not obvious that the sum at any given tenure is the same value,
the 349 customers who started on 1 January 2004.

Figure 7-15: This chart shows what happens to customers who started on 1 Jan 2004,
by showing the size of the groups that are active, voluntary stoppers, involuntary stoppers,
and migrators.

The cohort approach is very useful for seeing what happens to a group of
customers. With additional information, customers could be placed into dif-
ferent groups, such as:

■■ Active, with no overdue amount;

■■ Active, with overdue amount;

■■ Stopped voluntarily, no money owed;

■■ Stopped voluntarily, with an outstanding balance;

■■ Stopped involuntarily, outstanding balance written off;

■■ Stopped involuntarily, eventually paid outstanding balance;

■■ Migrated, still active on migration product;

■■ Migrated, stopped; and

■■ Migrated, but returned to subscription product.
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These groups combine different types of information, such as the outstanding
balance and whether a customer who migrated returned to the original product.

The cohort approach does have a downside. The wider the time period when
customers start, the more difficult it is to use. The problem occurs because dif-
ferent groups of customers are eligible for different tenures. That is, customers
who started in January 2004 can be tracked for thirty-six months. However, cus-
tomers who started in January 2006 can only be tracked for twelve months;
their data cannot be used for months thirteen through thirty-six.

It is possible to try to keep track of how many customers are eligible for each
tenure, as well as the numbers who are in the various groups. Such attempts
often result in a “big triangle” in Excel, with starts from each month being
tracked for the month after the customers start. So one row in Excel is devoted to
customers who start in January with separate columns describing what happens
to them in February and March and April and so on. The next row then has the
data for February. This gets complicated, both for generating the data and for
managing it in Excel. It feels as though the cohort approach is reaching its limits.
Fortunately, there is an alternative, using survival analysis and competing risks.

The Survival Analysis Approach

This section explains how to use competing risk hazards to quantify the num-
ber of customers in each group for all tenures. The place to start is with the
overall survival, which splits the customer base into the customers who are
active and the customers who have stopped. There are two questions. The first
is: What proportion of customers stop at each tenure? The second is: Of the customers
who stop at each tenure, what proportion stopped for each of the competing reasons?

Answering the first question is easy. The proportion of customers who stop
is the difference between overall survival at time t and overall survival at time
t+1. The answer to the second question is almost as easy. The solution is to
divide the customers who stop proportionally among the competing risks. So,
assume that 10, 20, and 70 customers stop for each of three risks at a given
tenure. The proportion of customers who stop at that tenure is split into three
groups, one with 10% of the stops, one with 20%, and one with 70%.

Earlier, we saw the query for calculating the competing risk hazards. Fig-
ure 7-16 shows a screen shot of the Excel spreadsheet that completes the calcu-
lation. This calculation determines the proportion of customers who stop at
the tenure, by taking the survival at that tenure and subtracting the survival 
at the next tenure. The difference is then divided proportionately among the
competing risks; their cumulative sum is the proportion of customers who
have succumbed to a particular risk at a particular tenure.

This method of calculation has an advantage over the cohort approach,
because it readily combines data from many start dates. It can also be extended
to define additional groups, by introducing more competing risks. For
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instance, the risk for voluntary churn could be split into two risks, one where
the outstanding balance is zero and the other where the customer owes money.

Figure 7-16: In Excel, it is possible to calculate what happens next using competing 
risk survival.

Competing risks makes it possible to understand what happens to cus-
tomers over time. However, there is an interesting paradox involving compet-
ing risk hazard probabilities and survival values, discussed in the aside “A
Competing Risks Conundrum.”

A COMPETING RISKS CONUNDRUM

Competing risks survival suggests two approximations that seem intuitive (or at
least very reasonable). The first is that the product of the competing risk survival
values equals the overall survival. The second approximation is that the sum of
the competing risk hazard probabilities at a particular tenure equals the overall
hazard probability.

Fortunately, these approximations are very good for customer data. In
particular, both these statements are very close to being true when there are 
a large number of overall customers and few stops at each tenure. In extreme
cases, though, the discrepancies are blatant and it is worth explaining this to
help better understand competing risks in general.

The first approximation about the survival runs into a problem when all
customers stop. Take the case where there are three customers at risk at a given
tenure and all three stop, for three different reasons. The overall hazard is 100%,
and the hazard probabilities for each competing risk are 33.3%. The survival at the
next time period is 0%. However, the survival for each competing risk is 66.7%, so
the product is 29.6%, quite different from 0%. A bit of reflection suggests that
almost no matter how we handle the competing risk hazard probabilities, they are
always going to be equal and less than 100%. The product of the resulting survival
is never going to be 0%.

This problem arises because there is a singularity in the survival probabilities.
The survival drops to zero when all customers stop. Fortunately, when working
with large numbers of customers, this does not happen.

Continued on next page
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A COMPETING RISKS CONUNDRUM (CONTINUED)

What about the sum of the competing risk hazards being the overall hazard?
In this case, the explanation is a bit different. Imagine the same situation as
before, with three customers each of who stops for a different reason. What is
the “real” competing risk hazard when we look at this under a microscope?
What would happen to the hazard probabilities if we assumed that the stops
do not occur at exactly the same time, but in some sequence?

Well, the first customer who stops, say for competing risk A, has a hazard of
1/3, about 33.3%. An instant later, when the second customer stops for competing
risk B, the population at risk now has only two members, B and C (because the
first customer has stopped). So, the competing risk hazard is 1/2 or 50%. And 
for the third one, the hazard comes to 1/1 or 100%. These look quite different
from the hazards as calculated over the whole population. 

The problem is, we don’t know the exact order that the customers stopped
in. It could be A then B then C, or B then C then A, or A then C then B, and so
on. One solution is to guesstimate the average by taking the average hazard
probability for the three cases. This comes to 11/18 (61.1%).

An alternative approach is to say that for any given risk, the population at
risk needs to be reduced by half the customers who stop for other reasons.
That is, the customers who stop for reasons B and C cannot stop for reason A.
And, on average, those customers stop for reasons B and C halfway through the
time period. This yields a hazard probability of 50% for each of the risks.

All of this discussion is academic, because the number of customers who
stop is much, much smaller than the population at risk for problems involving
customers. Each competing risk hazard estimate can be made a bit more
accurate when reducing the population at risk by half the number of customers
who stop for other risks. In practice, though, this adjustment has a very small
effect on the hazards. And, this effect is much less than the effect of other
biases, such as left truncation.

Before and After

The first topic in this chapter explained how to understand factors that are
known about customers when they start, using stratification and hazard ratios.
The previous section explained how to understand factors that occur at the end
of the customer relationship, by using competing risks. The final topic in this
chapter is about events that happen during customers’ life cycles, technically
known as time-varying covariates. In particular, this section talks about survival
measures before and after an event occurs during the customer lifetime.

Understanding time-varying covariates starts to push the limits of what can
be accomplished with SQL and Excel; statistical methods such as Cox propor-
tional hazard regression continue the analysis beyond what we can accomplish.
However, there are still interesting analyses that are possible. 
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This section discusses three techniques for understanding these types of fac-
tors. The first is to compare forecasts. The second is a brute-force approach
using cohorts. And the third is to directly calculate survival curves for before
the event and after the event. Before explaining the techniques, the section
starts with three scenarios that illustrate these types of problems.

Three Scenarios
This section discusses three business problems that involve time-varying
events. These are only intended as examples. The scenarios are intended to
show the challenges in approaching these problems.

A Billing Mistake

Oops! An insurance company makes a little billing boo-boo. During one bill
cycle, some long-standing customers who paid their premiums are acciden-
tally sent dunning notices, accusing them of not paying their bill; worse, the
notices continue even after the customers complain. Of course, this might
anger a few customers, and angry customers are more likely to cancel their
policies. What is the cost of this mistake, in terms of lost customer revenue?

Figure 7-17 shows this situation on both the calendar time line and the
tenure time line. The “X”s indicate when the billing mistake occurred. It
affects everyone at the same time on the calendar time line; however, this is at
a different tenure for each customer on the tenure time line. From a business
perspective, we expect the effect of such a one-time billing mistake to pass
quickly. During the period when the error occurs, stops spike up and hazards
go up. However, this effect should pass quickly, as the company recovers
from the mistake. It is possible, of course, to test this assumption, by compar-
ing hazards before and after the event using time windows to see if there are
any long-term effects.

A Loyalty Program

Not all events are negative. Consider customers in a subscription-based busi-
ness who enroll in a loyalty program. How can the company measure the effective-
ness of the loyalty program in terms of increased customer tenure?

In this case, customers enroll in the program at different points on both the
calendar and tenure time lines. Of course, some enrollment tenures may be
more common than others; this would be the case if customers were only eli-
gible for their program after their first year, resulting in an enrollment spike at
one year. Similarly, some calendar times may be more common than other
times, particularly when there are marketing campaigns encouraging cus-
tomers to enroll in the program. It is worth pointing out that with a loyalty
program, we know everyone who is enrolled, which may not be the case for
customers who stop due to a billing error.
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Figure 7-17: These two diagrams show the effect of a billing mistake on the calendar
time line and on the tenure time line.

When customers enroll during their lifetimes is interesting. In fact, the time
of enrollment is another problem amenable to survival analysis. Perhaps more
interesting is translating enrollment into increased tenure, and increased
tenure into dollars and cents. Measuring an increase in tenure for the cus-
tomers in the loyalty program does not illustrate that the program is causing
the increase. An alternative explanation is that better customers join the pro-
gram in the first place. This is an example of the difference between causation
and correlation. Increased tenure is a correlation, but it does not imply that the
program caused the increase.

WARN I NG Historical data can show correlation between different events.
However, we have to reach outside mere data analysis to justify causation,
either through formal testing or by suggesting how one thing causes the other.
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Unlike the billing error, though, we expect the loyalty program to continue
having an effect even after customers are enrolled. There is not some short
period where the event (enrollment) affects customers’ survival; there is a point
in each customer’s tenure where the customer changes state from unenrolled to
enrolled, and we expect the enrolled customers to have better survival.

Raising Prices

The third scenario is a price increase on a subscription product. An increase in
prices can have two effects. Existing customers might leave in response to the
price increase. This would occur around the period when the increase goes
into effect. The second is that new customers may leave at a faster rate. Some
of the customers who stop are identified; presumably, they complained about
the price increase when they stopped. However, not all such customers give
price as the reason. A customer might say “customer service is awful,” when
the customer really means “for the price I’m paying, customer service is
awful.” There is typically only one stop reason recorded, although customers
may be unhappy for more than one reason.

Measuring the impact of the price increase requires looking at survival
both when the event occurs and after the event occurs. There are several inter-
esting questions:

■■ Who likely stopped during the period of the price increase and what
impact did this have? This is a question about excess stops during a
particular period.

■■ Did existing customers who survived the initial shake-out period have
a degradation in survival after the price increase?

■■ Did new customers who started after the increase have a degradation 
in survival?

These questions are all related to the financial impact of the price increase on
existing customers. Of course, the customers who stay are paying more money,
so that often offsets the loss in customers who leave.

The remainder of this section discusses different ways of quantifying the
effects of events during customer lifetimes, starting with an approach based on
forecasting.

Using Survival Forecasts
Forecasts, which were introduced in the previous chapter, are a powerful tool
for measuring the impact of events on customers. Remember that a forecast
takes a base of customers and applies a set of hazards to them, producing an
estimate of the number of customers on any day in the future. Forecasts based
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on existing customers show declines over time, because new customers are not
included. By adding up the forecast values over a period of time, the forecast
turns into customer-days, which in turn can be turned into a financial value,
based on the monetary value that a customer contributes on each day. There
are two basic approaches for using forecasts to understand the effect of an
event. The two differ, depending on whether the specific customers who stop
can be identified.

Forecasting Identified Customers Who Stopped

When the customers who stop are known, forecasting can be applied just to
these customers. This is the most direct method of using survival forecasting
to measure the impact of an event. The method is to apply the forecast haz-
ards only to the subset of customers identified as leaving due to the event.
The result of the forecast is the number of customer-days we would have
expected from those customers but lost because they stopped prematurely.
The difference between these expected days and the actual days observed is
the lost customer-days, which can in turn be used to calculate a financial loss.
For this to work, the stopped customers need to be clearly identified. Another
challenge is getting the right set of hazards. 

A good set of hazards would be based on stops from some period before the
event occurred, such as the month or year before the event, using a stop time
window to calculate unbiased hazards. This has the advantage of a clean set of
comparison data.

Another approach for estimating the hazards is to use competing risks.
Remove the customers who stopped for the particular reason, and calculate
the hazards using the remaining customers and remaining stops. The previous
section warned against using competing risks this way, because it underesti-
mates the hazards. However, when the group of customers who leave is small
relative to all stops, the error may be small enough to be ignored.

Estimating Excess Stops

In some cases, the customers who leave for a specific reason are not clearly
identified. In the case of the loyalty program, all the customers in the program
are identified, but the customers of interest are those who do not even stop. In
this case, the approach is to estimate an excess (or deficiency) of stops indi-
rectly rather than directly.

The approach here is the difference between two forecasts. One is the forecast
of what would have happened if the event had not occurred and the other is the
forecast of what actually did happen. Because the customer base is the same —
consisting of the customers who are active just when the event happens — the
difference between the two forecasts is in the hazard probabilities.

336 Chapter 7 ■ The What and Why of Customer Tenure

99513c07.qxd:WileyRed  8/27/07  4:26 PM  Page 336



The hazard probabilities for what actually did happen are easy to calculate
using a time window of stops after the event. Similarly, the hazard probabili-
ties ignoring the event can be calculated by taking a time period from before
the event. The difference between the two is the lost customer-days.

The problem is slightly more complicated when the event occurs relative to
the customer lifetime, such as joining a loyalty program that takes place at a
different tenure for each customer. In this case, there is no overall “before”
date. Instead, customers are right censored on the date that they join the pro-
gram, if ever. Prior to joining the loyalty program, customers contribute to
both the population at risk and the stops. Once they join, they no longer con-
tribute to either one. 

Before and After Comparison
The before and after calculation of hazards is quite simple, using the time
window technique for estimating hazards. These hazards are used to gener-
ate survival curves, and the area between the survival curves quantifies the
effect in customer-days.

Because the effect starts at tenure zero, this is most readily applied to new
customers. Figure 7-18 illustrates an example. Remember that the area
between the curves is easy to calculate; it is simply the sum of the differences
in the survival values during a particular period of time.

Figure 7-18: The area between two survival curves quantifies the difference between
them in customer-days.
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Cohort-Based Approach
There is a cohort-based approach to calculating the remaining customer tenure
after an event. It is appropriate when the event does not affect all customers at
the same time, such as enrollment in a loyalty program. This approach is very
computationally intensive. This section describes how to do the calculation,
even though the calculation may not be feasible on even largish sets of data.

Figure 7-19 shows the basic idea behind the approach. This chart shows a
customer who has an event that occurs at some point in the customer’s life-
time. Also shown are a group of other customers who are candidates for this
customer’s cohort. To be in the cohort, the candidate customers must meet the
following conditions:

■■ The cohort customers start at about the same time as the customer;

■■ The cohort customers have similar initial start characteristics to the 
customer;

■■ The cohort customers are active at the tenure when the event occurred
to the customer; and,

■■ The cohort customers do not experience the event.

The cohort is a comparison group that can be used to understand survival after
the event. The same customer can appear in multiple cohorts, so long as the
customer meets the criteria for each one.

First, the survival for all customers who have the event is calculated after
the event date. That is, the event date becomes time zero. Then, the survival of
each cohort is calculated, after the event date that defines the cohort. These
survivals are combined into a single survival curve, and compared to the sur-
vival of customers who experience the event.

For the customers that succumb to the event, it is easy to calculate the sur-
vival after the event assuming there is a column named something like
EVENT_DATE. Although such a column is not available in the subscription
data, the following examples will assume that it is. The survival after the event
is the survival calculation, where the start date is fast-forwarded to the event
date, and the tenure is measured only after the event:

SELECT tenure_after_event, COUNT(*) as pop, SUM(isstop) as stopped

FROM (SELECT DATEDIFF(dd, start_date, event_date) as tenure_after_event,

(CASE WHEN stop_type IS NOT NULL THEN 1 ELSE 0 END) as isstop

FROM subs

WHERE event_date IS NOT NULL) s

GROUP BY tenure_after_event

ORDER BY 1
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This generates the data needed to calculate the survival after the event for 
the group of customers who succumb to the event. The challenge is to get the
survival for a cohort of customers, similar to the original customer. For any
given customer, the cohort survival could be defined by:

SELECT cohort.tenure – tenure_at_event,

COUNT(*) as pop,

SUM(CASE WHEN cohort.stop_type IS NOT NULL THEN 1 ELSE 0

END) as isstop 

FROM (SELECT s.*,

DATEDIFF(dd, start_date, event_date) as tenure_at_event

FROM subs

WHERE customer_id = <event cust id>) ev JOIN

(SELECT *

FROM subs

WHERE event_date IS NULL) cohort

ON cohort.start_date = ev.start_date AND

cohort.market = ev.market AND

cohort.channel = ev.channel AND

cohort.tenure >= ev.tenure_at_event

GROUP BY tenure_after_event

ORDER BY 1

In this case, the cohort is defined as customers who started on the same date,
in the same market, and did not have the event. The actual survival values can
then be calculated in Excel.

Figure 7-19: A customer has a cohort defined by initial characteristics and when 
the event occurred. In this chart, THE CUSTOMER experiences an event at some time.
Customers 1 and 7 are in the cohort, because they started at the same time and survived
to the event time. The other customers fail one or both of these conditions.
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The challenge is doing this for all cohorts and averaging the curves. It is
tempting to modify the preceding query so the first subquery looks like:

FROM (SELECT s.*,

DATEDIFF(dd, start_date, event_date) as tenure_at_event

FROM subs

WHERE event_date IS NOT NULL) s

However, this is not correct, because it combines all members of all cohorts
into one big pool of customers, and then calculates the survival of the pool.
The problem is that cohorts have different sizes, and the larger cohorts would
dominate this calculation. We want one customer’s cohort to have a weight of
one, regardless of the size of the cohort.

The solution is to determine the size of the cohort in order to weight every-
thing appropriately. Once the weight is determined, the counts POP and ISSTOP
are just multiplied by the weight. The following query includes the weight:

SELECT cohort.tenure – ev.tenure_at_event,

SUM(weight) as pop,

SUM(CASE WHEN cohort.stop_type IS NOT NULL THEN weight ELSE 0 END

) as isstop 

FROM (SELECT ev.customer_id, tenure_at_event,

COUNT(*) as cohort_size, 1.0/COUNT(*) as weight

FROM (SELECT s.*,

DATEDIFF(dd, start_date, event_date) as tenure_at_event

FROM subs s

WHERE event_date IS NOT NULL) ev JOIN

(SELECT s.*

FROM subs s

WHERE event_date IS NULL) cohort

ON cohort.start_date = ev.start_date AND

cohort.market = ev.market AND

cohort.channel = ev.channel AND

cohort.tenure >= ev.tenure_at_event

GROUP BY ev.customer_id, ev.tenure_at_event

) ev JOIN

(SELECT s.*

FROM subs s

WHERE event_date IS NULL) cohort

ON cohort.start_date = ev.start_date AND

cohort.market = ev.market AND

cohort.channel = ev.channel AND

cohort.tenure >= ev.tenure_at_event

GROUP BY tenure_after_event

ORDER BY 1

These weighted estimates can then be brought into Excel and used the same
way as unweighted counts. The only difference is that the population counts
and stop counts are now decimal numbers rather than integers.
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This approach is possible, but perhaps not feasible. This query can be very
slow, because it is a non-equijoin on a large table. Although the join looks like
an equijoin, it isn’t because the join keys are not unique in the table. There are
some alternatives to making this run faster. If the size of the group that experi-
ences the event is rather small, the calculation could be done in Excel. Of
course, if this is true, the SQL might be slow, but it will finish. Another alter-
native is to calculate the size of the cohort using SQL window functions, which
are explained in Chapter 8.

However, it is possible to estimate the effect of a time-varying covariate
without resorting to cohorts or to sophisticated statistical software. The next
section explains how to calculate separate survival curves for before and after
the event.

Direct Estimation of Event Effect
This section explains stratifying survival based on whether or not a time-
varying event has occurred. This method generates two separate survival
curves; one for survival without the event and the other for survival with the
event. These curves can be used to qualitatively describe what happens to
customers before and after the event; or they can be used to quantitatively
measure the difference between the two groups.

Approach to the Calculation

To illustrate this, let’s assume that something happens on June 1, 2005, such as
a price increase. This is an arbitrary date that is being used just as an example;
the technique works even when there is a different date for each customer.
Customers who start before this date are in the “before” group until they reach
June 1, 2005. Customers who start after this date are in the “after” group for
their entire tenure. What are the survival values for the “before” and “after” groups?

The key to answering this question is determining how to calculate unbi-
ased hazards for customers in the before and after groups. The stops for each
group are easy, because we know whether customers stopped before or after
the event date. The challenge is calculating the population at risk, because cus-
tomers switch from one group to another. Other than the details on calculating
the population at risk, the survival calculation follows the same methodology
as in other examples.

Customers who start and stop before the event date are only in the “before”
population at risk. Other customers who start before the event remain in the
“before” population at risk until the event date. For larger tenures, they con-
tribute to the “after” population at risk. And customers who start after the
event date only contribute to the “after” population at risk. 

The population at risk for the “after” group has two parts. One group consists
of customers who start on or after the event date. They enter the population at
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risk from tenure zero; they leave the population at risk when they are censored
or stop. The number of such customers at a given tenure is simply the popula-
tion of such customers whose tenure is greater than or equal to the given tenure.

The second group consists of the customers who start before the event date and
then remain active on the event date. This group starts being at risk in the “after”
group on their tenure as of the event date and they remain at risk until they stop
or are censored. The size of this group is determined by the following rules:

■■ The population at risk at tenure t is the population at risk at tenure t–1,

■■ Plus the customers who started before the event date who passed the
event date at tenure t,

■■ Minus the customers who started before the event date, who passed the
event date, and who stopped or were censored at tenure t.

The population at risk here is calculated using a forward summation, rather
than a backward summation.

Time-Varying Covariate Survival Using SQL and Excel

To answer this question in SQL requires the following variables:

■■ Before Pop at Each Tenure: Count of all customers by the tenure of cus-
tomers who started before the event date as of the event date.

■■ Before Stops at Each Tenure: Count of stopped customers who started
and stopped before the event date.

■■ After Starts at Each Tenure: Count of all customers who start after the
event date by tenure.

■■ After Stops at Each Tenure: Count of stopped customers who start and
stop after the event date by tenure.

■■ Before Enters at Each Tenure: Count of customers who start before the
event date by their tenure at the event date.

■■ Before Leaves at Each Tenure: Count of customers who start before the
event date by their tenure when they stop or are censored.

■■ Before/After Stop at Each Tenure: Count of stopped customers who
start before the event date and stop after the event date, by tenure.

The first two of these variables are used to calculate the population at risk and
stops for customers who start before the event date. The next two do the same
calculation for customers who start after the event date. The final three are for
the population at risk and stops for customers who experience the event date.
These three groups can be treated as three different groups for comparison
purposes, which is useful for questions such as: Did experiencing the billing error
affect survival? Or, the last two groups can be combined into one group, for
questions such as: What impact did the price increase have on survival?
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The following SQL uses two subqueries to answer these questions. The first
subquery is for customers who started before the event date; it groups every-
thing by the tenure as of the event date. The second subquery is for what hap-
pens after the event date; it aggregates by the full tenure:

SELECT tenure, SUM(bef) as bef, SUM(aft) as aft,

SUM(stop_before) as stop_before, SUM(to_after) as to_after, 

SUM(stop_after) as stop_aft, SUM(before_stop_after) as bef_stop_aft

FROM ((SELECT (CASE WHEN stop_date < ‘2005-06-01’ AND

stop_date IS NOT NULL THEN tenure

ELSE DATEDIFF(dd, start_date, ‘2005-06-01’) END

) as tenure,

1 as bef, 0 as aft,

(CASE WHEN stop_date < ‘2005-06-01’ AND

stop_date IS NOT NULL THEN 1 ELSE 0 END

) as stop_before,

(CASE WHEN stop_date >= ‘2005-06-01’ OR

stop_date IS NULL THEN 1 ELSE 0 END) as to_after,

0 as stop_after, 0 as before_stop_after

FROM subs s

WHERE (start_date >= ‘2004-01-01’) AND (tenure >= 0) AND

start_date < ‘2005-06-01’)

UNION ALL

(SELECT tenure, 0 as bef,

(CASE WHEN start_date >= ‘2005-06-01’ THEN 1 ELSE 0 END

) as aft,

0 as stop_before, 0 as to_after,

(CASE WHEN stop_date IS NOT NULL THEN 1 ELSE 0 END

) as stop_after,

(CASE WHEN start_date < ‘2005-06-01’ THEN 1 ELSE 0 END

) as before_stop_after

FROM subs s

WHERE (start_date >= ‘2004-01-01’) AND (tenure >= 0) AND

(stop_date IS NULL OR stop_date >= ‘2005-06-01’) )

) a

GROUP BY tenure

ORDER BY 1

Figure 7-20 shows a screen shot of the Excel spreadsheet that implements
the calculations. This figure shows the population at risk calculations for each
of the three groups. Calculating the hazards is just a matter of dividing the
population at risk by the appropriate stops; the survival is then calculated
from the hazards.

This approach to handling an event date combines two ideas already dis-
cussed. The survival for the “before” group uses forced censoring, which was
introduced in the previous chapter for historical snapshots of hazards. The
censor date is the event date, and only stops before the event date are counted.
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Figure 7-20: This spreadsheet calculates the survival curves based on whether an event
occurred or did not occur during the customer lifetime.

The “after” group (combining both the customers who start before and sur-
vive to the event date and those who start after) uses time windows to define the
values. In this case, the event date becomes the left truncation date for the group.

This example uses a single calendar date as the event date. This is by no
means a requirement. Instead of a constant date, the data could be defined on a
customer-by-customer basis, requiring only minor modifications to the queries.

Lessons Learned

The previous chapter introduced survival analysis and how to calculate haz-
ard probabilities and survival probabilities using SQL and Excel. This chapter
extends these ideas, showing ways to calculate survival in other situations and
to determine which factors influence survival.

The chapter starts by showing how to understand the effects of initial
value variables on survival. These effects might change over time, even
though the variables remain constant during each customer’s lifetime. Haz-
ard ratios capture the changes over time for categorical variables, by taking
the ratio of the hazards for different values. For numeric variables, the right
measure is the average of a numeric variable at different points in the sur-
vival curve for active and stopped customers.

One of the biggest challenges in using survival analysis is calculating unbi-
ased hazard estimates. This is particularly challenging when the data is left
truncated — that is, when customers who stopped before some date are not
included in the database. The solution to left truncation is the use of time win-
dows. However, time windows are more versatile than just the solution to left
truncation. They make it possible to calculate unbiased hazard probabilities
based on stops during a particular period of time.
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The chapter continues by looking at what happens at the end of the cus-
tomer lifetime using competing risks. The survival analysis discussion
assumes that all customers who leave are equal. However, the way that cus-
tomers leave can also be quite important. This section calculates what happens
to customers at a given point in time, by showing how many customers are
still active, and how many have left due to voluntary churn, involuntary
churn, and migration.

The chapter’s final topic is estimating the hazards when an event occurs
during the customer life cycle. The method for doing this combines forced
right censoring (discussed in the previous chapter) with time windows.

The next chapter moves to a related topic, the subject of recurrent events.
Unlike survival analysis so far, though, recurrent events happen more than
once, a twist that we haven’t yet considered.
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347

Subscription-type customer relationships have well-defined starts and stops.
This chapter moves from these types of relationships to those defined by 
multiple events that take place over time, such as purchases and web site 
visits, donations and clicks. Such relationships do not necessarily have a defi-
nite end because any particular event could be the customer’s last, or it could
be just another in a long chain of events.

The biggest challenge with repeated events is correctly assigning events to
the same customer. Sometimes we are lucky and customers identify them-
selves using an account. Even in this case, identification can be challenging
or confusing. Consider the example of Amazon.com and a family account.
The purchase behavior — and resulting recommendations — might combine
a teenage daughter’s music preferences with her mother’s technical pur-
chases with a pre-teen son’s choice of games.

Disambiguating customers within one account is a challenge; identifying
the same customer over time is another. When there is no associated account,
fancy algorithms match customers to transactions using name matching and
address matching (and sometimes other information). This chapter looks at
how SQL can help facilitate building and evaluating such techniques.

Sometimes, the events occur so frequently that they actually represent
subscription-like behaviors. For instance, prescription data consists of drug
purchases. Tracking patients who are taking a particular drug requires com-
bining the purchases over time into one patient view. Web sites, such as
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Yahoo! and eBay, have a similar conundrum. Users typically visit often; how-
ever, they do not signal the end of their relationship by politely closing their
accounts. They stop visiting, emailing, bidding, or offering. At the other
extreme are rare events. Automobile manufacturers trying to understand
long-term customer relationships must deal with purchase intervals that
stretch into multiple years.

This chapter focuses on retail purchase patterns that are in-between — not
too frequent and not too rare. In addition to being a common example of
repeated events, these purchases provide a good foundation for understand-
ing the opportunities with such data. Because of this focus on retail data, the
examples in this chapter use the purchases dataset exclusively.

The traditional method for understanding retail purchasing behaviors over
time uses a technique which is called RFM analysis, which is explained later in
this chaper. This is a good background for understanding customers and some
of their behaviors over time. Unfortunately, RFM focuses on three specific
dimensions of the customer relationship, leaving out many others.

Customer behaviors change over time, and tracking and measuring these
changes is important. There are several approaches, such as comparing the
most recent behavior to the earliest behaviors and fitting a trend line to each
customer’s interactions. Survival analysis is yet another alternative for
addressing the question: how long until the next interaction? The answer in
turn depends on the particular customer and what has happened in the past.
If too much time has elapsed, perhaps it is time to start worrying about how to
get the customer back. The place to begin, however, is the identification of cus-
tomers on different transactions.

Identifying Customers

Identifying different transactions as belonging to the same customer is challeng-
ing, both for retail customers (individuals and households) and for business 
customers. Even when customers have an ongoing relationship, such as a loy-
alty card, there is the question of whether they always use their identification
number. This section discusses the definition of customer and how it is repre-
sented in the data. The next section looks at other types of data, such as
addresses, that are not in this database.

Who Is the Customer?
The transactions in the purchases dataset are the orders. The database has
several ways to tie transactions together over time. Each contains an
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ORDERID, which leads to a CUSTOMERID, and a HOUSEHOLDID. The fol-
lowing query provides the counts of orders, customers, and households:

SELECT COUNT(*) as numorders, COUNT(DISTINCT c.customerid) as numcusts,

COUNT(DISTINCT householdid) as numhh

FROM orders o LEFT OUTER JOIN customer c ON o.customerid = c.customerid

This query shows that the data contains 192,983 orders for 189,559 customers
comprising 156,258 households. So, there are about 1.02 orders per customer
and about 1.2 customers per household. This data has some examples of repeat-
ing customers, but not very many.

There is a slightly different way to answer the same question, by directly
counting the number of households, customers, and orders in subqueries:

SELECT numorders, numcusts, numhh

FROM (SELECT COUNT(*) as numorders FROM orders) o CROSS JOIN

(SELECT COUNT(*) as numcusts, COUNT(DISTINCT householdid) as numhh

FROM customer) c

Note that this query uses the CROSS JOIN operator, which creates all combina-
tions of rows from two tables (or subqueries). The CROSS JOIN is sometimes
useful when working with very small tables, such as the two one-row sub-
queries in this example.

The two approaches could yield different results. The first counts CUS-
TOMERIDs and HOUSEHOLDIDs that have orders. The second counts all of
the ones that are in the database, even those that have no orders.

TI P Even a seemingly simple question such as “how many customers 
are there” can have different answers depending on specifics: “how many
customers have placed an order” and “how many households are in the
database” may have very different answers.

The purchases data already has the customer and household columns
assigned. The database intentionally does not contain identifying information
(such as last name, address, telephone number, or email address), but it does
contain gender and first name.

How Many?

How many customers are in a household? This is a simple histogram question on
the Customer table:

SELECT numinhousehold, COUNT(*) as numhh,

MIN(householdid), MAX(householdid)

FROM (SELECT householdid, COUNT(*) as numinhousehold

FROM customer c

(continued)
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GROUP BY householdid

) h

GROUP BY numinhousehold

ORDER BY 1

Table 8-1 shows the results, which emphasize that most households have only
one customer. At the other extreme, two have over 100 customers each. Such large
households suggest an anomaly in the householding algorithm. In fact, in this
dataset, business customers from the same business are grouped into a single
household. Whether or not this is correct depends on how the data is used.

Table 8-1: Histogram of Household Sizes

ACCOUNTS IN NUMBER OF CUMULATIVE CUMULATIVE
HOUSEHOLD HOUSEHOLDS NUMBER PERCENT

1 134,293 134,293 85.9%

2 16,039 150,332 96.2%

3 3,677 154,009 98.6%

4 1,221 155,230 99.3%

5 523 155,753 99.7%

6 244 155,997 99.8%

7 110 156,107 99.9%

8 63 156,170 99.9%

9 28 156,198 100.0%

10 18 156,216 100.0%

11 9 156,225 100.0%

12 14 156,239 100.0%

13 4 156,243 100.0%

14 4 156,247 100.0%

16 2 156,249 100.0%

17 2 156,251 100.0%

21 2 156,253 100.0%

24 1 156,254 100.0%

28 1 156,255 100.0%

38 1 156,256 100.0%

169 1 156,257 100.0%

746 1 156,258 100.0%
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How Many Genders in a Household

We might expect there to be only two genders assigned to customers, but one
never knows what the values are until one looks at the data. Table 8-2 shows
the results of the following simple histogram query:

SELECT gender, COUNT(*) as numcusts, MIN(customerid), MAX(customerid)

FROM customer

GROUP BY gender

ORDER BY 2 DESC

TI P Looking at the data is the only way to see what values really are in a
column; the answer is a histogram created using GROUP BY.

Table 8-2: Genders and Their Frequencies

GENDER FREQUENCY PROPORTION

M 96,481 50.9%

F 76,874 40.6%

16,204 8.5%

These results have the two expected genders, male and female. However,
the field contains a third value that looks blank. Blanks in output are ambigu-
ous. The column value could be NULL (some databases return NULL values as
blank, although Microsoft SQL uses the string “NULL”), blank, or, perhaps, a
string containing a space, or some other unorthodox value. The following vari-
ation on the query provides more clarity:

SELECT (CASE WHEN gender IS NULL THEN ‘NULL’ WHEN gender = ‘’ THEN ‘EMPTY’

WHEN gender = ‘ ‘ THEN ‘SPACE’

ELSE gender END) as gender, COUNT(*) as numcusts

FROM customer

GROUP BY gender

ORDER BY 2 DESC

For further refinement, the function ASCII() returns the actual numeric value
of any character. The results show that the third gender is actually the empty
string (‘’) as opposed to the other possibilities. This query has an interesting
feature; the GROUP BY expression differs from the SELECT expression.

This is worth a bit of discussion. SQL does allow the GROUP BY expression to
differ from the corresponding SELECT expression, although this capability is
rarely used. Consider the following query, which classifies the genders as
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“GOOD” and “BAD.” In the first version, the GROUP BY clause and the SELECT
use the same expression:

SELECT (CASE WHEN gender IN (‘M’, ‘F’) THEN ‘GOOD’ ELSE ‘BAD’ END) as g,

COUNT(*) as numcusts

FROM customer

GROUP BY (CASE WHEN gender IN (‘M’, ‘F’) THEN ‘GOOD’ ELSE ‘BAD’ END)

A slight variation uses only the GENDER variable in the GROUP BY clause:

SELECT (CASE WHEN gender IN (‘M’, ‘F’) THEN ‘GOOD’ ELSE ‘BAD’ END) as g,

COUNT(*) as numcusts

FROM customer

GROUP BY gender

The first version returns two rows, one for “GOOD” and one for “BAD.” The
second returns three rows, two “GOOD” and one “BAD”; the two “GOOD”
rows are for males and females. Figure 8-1 shows the dataflow diagrams that
describe each of these cases. The difference is whether the CASE statement is
calculated before or after the aggregation.

Figure 8-1: These dataflow diagrams show the difference in processing between
aggregating first and then calculating an expression versus aggregating on the
calculated value.
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For this example, the only difference is two or three rows in the result set.
However, in some situations there can be a big difference. For instance, the
SELECT statement might assign values into ranges. If the corresponding GROUP
BY does not have the same expression, the aggregation might not reduce the
number of rows.

WARN I NG When using an expression in the SELECT statement of an
aggregation query, be careful to think about whether the GROUP BY should
contain the full expression or just the variable. In most cases, the full
expression is the correct approach.

The relationship between genders and households leads to the next question:
How many households have one gender, two genders, and three genders? This question
does not require knowing the specific genders, just how many are in the house-
hold. Answering this question is fairly easy, but one question often leads to
another. Because a household with only one member has only one gender, there
is a relationship between household size and the number of genders. A related
question is more interesting: For each household size (by number of customers), how
many households have one gender, two genders, and three genders? The following SQL
answers this question:

SELECT numcustomers, COUNT(*) as numhh,

SUM(CASE WHEN numgenders = 1 THEN 1 ELSE 0 END) as gen1,

SUM(CASE WHEN numgenders = 2 THEN 1 ELSE 0 END) as gen2,

SUM(CASE WHEN numgenders = 3 THEN 1 ELSE 0 END) as gen3

FROM (SELECT householdid, COUNT(*) as numcustomers,

COUNT(DISTINCT gender) as numgenders

FROM customer c

GROUP BY householdid) hh

GROUP BY numcustomers

ORDER BY 1

The results in Table 8-3 look suspicious. One would not expect 94.1% of
households with two people to have only one gender. Further, in almost all
these cases, the households consist of people with the same first name. The
logical conclusion is that the identification of individuals does not work well.
One customer gets assigned multiple values of CUSTOMERID. For this rea-
son, and for others discussed later in this chapter, the HOUSEHOLDID is
preferable for identifying customers over time.
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Table 8-3: Count of Households by Number of Customers and Genders

CUSTOMERS IN NUMBER OF
HOUSEHOLD HOUSEHOLDS 1 GENDER 2 GENDERS 3 GENDERS

1 134,293 134,293 0 0

2 16,039 15,087 952 0

3 3,677 3,305 370 2

4 1,221 1,102 118 1

5 523 478 43 2

6 244 209 35 0

7 110 99 11 0

8 63 57 6 0

9 28 24 4 0

10 18 16 2 0

11 9 8 1 0

12 14 13 1 0

13 4 3 1 0

14 4 4 0 0

16 2 2 0 0

17 2 2 0 0

21 2 2 0 0

24 1 1 0 0

28 1 1 0 0

38 1 0 0 1

169 1 1 0 0

746 1 0 0 1

Investigating First Names

Something is awry when households consist of multiple customers having the
same first name. These households probably have one individual being
assigned multiple CUSTOMERIDs. To investigate this, let’s ask the question:
How many households consist of “different” customers that have the same first name
and the same gender?

354 Chapter 8 ■ Customer Purchases and Other Repeated Events

99513c08.qxd:WileyRed  8/27/07  1:56 PM  Page 354



Two approaches to answering this question are presented here. One way is
to enumerate the number of values of GENDER and of FIRSTNAME in each
household and then count the number of households that have one of each:

SELECT COUNT(*) as numhh,

SUM(CASE WHEN numgenders = 1 AND numfirstnames = 1 THEN 1 ELSE 0

END) as allsame

FROM (SELECT householdid, COUNT(*) as numcustomers,

COUNT(DISTINCT gender) as numgenders,

COUNT(DISTINCT firstname) as numfirstnames

FROM customer c

GROUP BY householdid) hh

WHERE numcustomers > 1

The second approach is to compare the minimum and maximum values of
the two columns. When these are the same, there is only one value in the
household:

SELECT COUNT(*) as numhh, 

SUM(CASE WHEN minfname = maxfname AND mingender = maxgender

THEN 1 ELSE 0 END) as allsame

FROM (SELECT householdid, COUNT (*) as cnt,

MIN(firstname) as minfname, MAX(firstname) as maxfname,

MIN(gender) as mingender, MAX(gender) as maxgender

FROM customer

GROUP BY householdid) hh

WHERE numcustomers > 1

Table 8-4 shows the results broken out by the number of customers in the
household (by adding NUMCUSTOMERS to the SELECT clause and replacing
the WHERE clause with GROUP BY numcustomers). It suggests that many house-
holds with multiple customers seem to consist of one individual who is
assigned multiple customer IDs.

These queries may not be doing exactly what we expect when there are NULL
values in the columns. If FIRSTNAME only contains NULL values for a given
household, COUNT DISTINCT returns a value of zero, rather than one. So, in the
first query, that household does not get counted as having all values identical.
The second query produces the same result, but for a different reason. In this case,
the minimum and maximum values are both NULL and these fail the equality test.
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Table 8-4: Customers with Same Identifying Information in Household

NUMBER OF NUMBER OF SAME GENDER
CUSTOMERS HOUSEHOLDS AND FIRST NAME

1 134,293 134,293

2 16,039 14,908

3 3,677 3,239

4 1,221 1,078

5 523 463

6 244 202

7 110 97

8 63 52

9 28 24

10 18 14

11 9 8

12 14 13

13 4 3

14 4 4

16 2 2

17 2 2

21 2 2

24 1 1

28 1 1

38 1 0

169 1 0

746 1 0

Similarly, if a household consists of customers with a mixture of NULL and
one non-NULL value, the household gets counted as having only one customer.
This is because COUNT DISTINCT counts the non-NULL values, and MIN() and
MAX() ignore NULL values. To count NULL values separately, use the COALESCE()
function to assign another value:

COALESCE(firstname, ‘<NULL>’)

This conversion then treats NULL as any other value; be careful that the second
argument to COALESCE() is not a valid value.
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WARN I NG Using standard SQL, NULL values tend not to be counted when
looking at the number of values a column takes on. Use an expression such as
COALESCE(<column>, ‘<NULL>’) to count all values including NULLs.

Counts of first names are interesting, but examples of first names are even
better. What are some examples of first names from each household where all members
have the same genders? The following query does a good job of getting examples:

SELECT householdid, MIN(firstname), MAX(firstname)

FROM customer

GROUP BY householdid

HAVING MIN(firstname) <> MAX(firstname) AND MIN(gender) = MAX(gender)

This query selects households that have multiple names all of the same gender.
By using the HAVING clause, no subqueries or joins are needed. The MIN() and
MAX() functions provide the examples of values in the column.

As with the previous query, households with NULL first names are not
included in the results. To include them, the HAVING clause would be modified
using the COALESCE() function:

HAVING (MIN(COALESCE(firstname, ‘<NULL>’)) <>

MAX(COALESCE(firstname, ‘<NULL>’))) AND . . .

This query returns 301 rows; the following are examples of customer names
that appear in the same household:

■■ “T.” and “THOMAS”

■■ “ELIAZBETH” and “ELIZABETH”

■■ “JEFF” and “JEFFREY”

■■ “MARGARET” and “MEG”

These four examples are probably referring to the same individual, but with
variations on the name caused by:

■■ Use of an initial rather than the full name;

■■ Shortened version of a name;

■■ Misspellings; and,

■■ Nicknames.

Such are examples of the complications in matching customers using names.
There are some ways to mitigate this problem. When a household contains

a name that is an initial of another name, ignore the initial. Or, when the first
part of one name exactly matches another name, ignore the shorter one.
These are reasonable rules for identifying what look like the same names on
different records.
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The rules are easy to express. However, implementing them in SQL is per-
haps more challenging than one might think. The idea behind the SQL imple-
mentation is to introduce a new column for each name, called
ALTFIRSTNAME, which is the full form of the name gleaned from other
names on the household. Calculating ALTFIRSTNAME requires a self-join on
the HOUSEHOLDID, because every name in a household has to be compared
to every other name in the household:

SELECT c1.householdid, c1.customerid, c1.firstname, c1.gender,

MAX(CASE WHEN LEN(c1.firstname) >= LEN(c2.firstname) THEN NULL

WHEN LEFT(c1.firstname, 1) = LEFT(c2.firstname, 1) AND

SUBSTRING(c1.firstname, 2, 1) = ‘.’ AND 

LEN(c1.firstname) = 2

THEN c2.firstname

WHEN LEFT(c2.firstname, LEN(c1.firstname)) = c1.firstname

THEN c2.firstname

ELSE NULL END) as altfirstname

FROM customer c1 JOIN customer c2 ON c1.householdid = c2.householdid

GROUP BY c1.householdid, c1.customerid, c1.firstname, c1.gender

This query implements the first two rules, the ones for the initial and for the
shortened version of names. Adding rules for misspellings and nicknames is
more difficult because these need a lookup table to rectify the spellings. 

These rules highlight issues about working with names and other short text
data. Values are often subject to misspellings and interpretations (such as
whether “T.” is for “Thomas” or “Theodore” or “Tiffany”) making it more
challenging to extract information from the columns. SQL string and text pro-
cessing functions are quite rudimentary. However, combined with SQL’s data
processing capability and the CASE statement, it is possible to use SQL to make
some sense out of such data.

Other Customer Information
A database with identified customers would normally also have full name,
address, and possibly telephone numbers, email addresses, and social secu-
rity numbers. None of these are ideal for matching customers over time,
because customers move and change names. In the United States, even social
security numbers may not be unique due to issues such as employment fraud.
This section discusses these types of data.

First and Last Names

Some names, such as James and Gordon, George and John, Kim and Kelly and
Lindsey, are common as both first and last names. Other names, though, almost
always fall in one or the other categories. When the FIRSTNAME column con-
tains values such as “ABRAHAMSOM,” “ALVAREZ,” “ROOSEVELT,” and
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“SILVERMAN,” it is suspicious that the first and last names are being inter-
changed on some records. This might either be a customer input error or a data
processing error.

When both first name and last name columns are available, it is worth
checking to see if they are being swapped. In practice, it is cumbersome to look
at thousands of names and impossible to look at millions of them. A big help is
to look at every record with a first and last name and calculate the suspicion
that the names might be swapped. A convenient definition of this suspicion is
the following:

suspicion = firstname as lastname rate + lastname as firstname rate

That is, a name is suspicious based on how suspicious the value in the FIRST-
NAME column is and how suspicious the value in the LASTNAME column is.

The following query calculates the first name suspicion value, assuming the
existence of a LASTNAME column, and outputs the results in order by high-
est suspicion:

SELECT c.householdid, c.firstname, susp.lastrate as firstnamesuspicion

FROM customer c JOIN

(SELECT name,

SUM(lastname) / (SUM(firstname)+SUM(lastname)) as lastrate,

SUM(firstname) / (SUM(firstname)+SUM(lastname)) as firstrate

FROM ((SELECT firstname as name, 1 as firstname, 0.0 as lastname

FROM customer c)

UNION ALL

(SELECT lastname as name, 0 as firstname, 1.0 as lastname

FROM customer c)) a

GROUP BY name) susp

ON c.firstname = susp.name

ORDER BY 3 DESC

The key to this query is calculating LASTRATE, which is the proportion of
times that a particular name is used as a last name among all occurrences of the
name. So, “Smith” might occur 99% of the time in the last name column. If we
see “Smith” in the first name column, it has a suspicion value of 99%.

The subquery that gathers the occurrences of a name in both the first and
last name columns needs to include all occurrences of a name; this suggests
using the UNION ALL operator, as opposed to a join. The results are then aggre-
gated by the new column NAME, which counts all occurrences as both a first
name and as a last name. The first name suspicion is the proportion of times
that the name occurs as a last name. If the name is always a first name, the
suspicion is zero. If the name is almost always a last name, the suspicion is
close to one.

Calculating the suspicion for the last name is the same process, and doing
both together in the same query requires joining in another Susp subquery
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joined on the last name rather than the first name. The overall row suspicion is
then the sum of the two values, all calculated using SQL. The best way to look
at the results is by sorting suspicion in reverse order.

As an alternative to using proportions, it is also possible to calculate the
chi-square value associated with a name. The calculation is a bit more cum-
bersome, but following the guidelines in Chapter 3, it is possible to use this
measure as well.

Addresses

Address matching is a cumbersome process that often uses specialized soft-
ware or outside data vendors. There are many ways of expressing an address.
The White House is located at “1600 Pennsylvania Avenue, NW.” Is this the
same as “1600 Pennsylvania Ave. NW”? “Sixteen Hundred Pennsylvania
Avenue, Northwest”? The friendly Post Office recognizes all these as the same
physical location, even though the addresses have subtle and not-so-subtle
differences.

Address standardization transforms addresses by replacing elements such as
“Street,” “Boulevard,” and “Avenue” with abbreviations (“ST,” “BLVD,” and
“AVE”). Street names that are spelled out (“Second Avenue” or “First Street”)
are usually changed to their numeric form (“2 AVE” and “1 ST”). The United
States Post Office has a standard address format (http://pe.usps.gov/
cpim/ftp/pubs/Pub28/pub28.pdf).

Standardization only solves part of the problem. Addresses in apartment
buildings, for instance, should include apartment numbers. Determining
whether an address should have an apartment number requires comparing
addresses to a master list that knows whether or not the building is multi-unit.

Fully disambiguating addresses is difficult. However, even an approximate
solution can be helpful to answer questions such as:

■■ Are external householding algorithms capturing all individuals in the
same household?

■■ How much duplicate mail is being sent out to the same household?

■■ Approximately how many households have made a purchase this year?

■■ Did prospects who received a marketing message respond through
other channels?

■■ About how many new customers are returning customers?

These questions can help in evaluating assignments of household ids. They
can also provide a very rudimentary way to understand which addresses
belong in the same household when no household ids are available.
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Using clever rules, rudimentary householding with names and addresses is
possible. The following are simple rules that together identify many individu-
als in the one household:

■■ The last names are the same.

■■ The zip codes are the same.

■■ The first five characters in the address are the same.

The following SQL creates household keys using these rules:

SELECT lastname+ ‘: ‘+zip+’: ‘+LEFT(address, 5) as tempkey, c.*

FROM customer c

This is not perfect and has some obvious failings (married couples with differ-
ent last names, neighborhoods with high proportions of people with similar
names, and so on). This is not a complete solution. The idea is to find individ-
uals that look similar so they can be verified manually. 

Other Identifying Information

Other types of identifying information such as telephone numbers, email
addresses, and credit card numbers are also useful for providing hints to iden-
tify that the same customer made multiple transactions. For instance, a cus-
tomer might make two online purchases, one at work and one at home. The
accounts could be different, with goods being sent to the work address during
one purchase transaction and being sent to the home address during another.
However, if the customer uses the same credit card, the credit card number can
be used to tie the transactions together.

WARN I NG Do not store clear-text credit card numbers in an analysis
database. Keep the first six digits to identify the type of credit card, and store
the number using an id or hash code so the real value is hidden.

Of course, each type of identifying information has its own peculiarities.
Telephone numbers might change through no fault of the customer, simply
because the area code changes. Email addresses might change through no fault
of the customer simply because one company purchases another and the
domain changes. Credit cards expire and the replacement card may have a dif-
ferent number.

These challenges are aggravated by the fact that households themselves
change over time. Individuals get married, and couples divorce. Children
grow up, and move out. And sometimes, older children and elderly relatives
move in. Although identifying the economic unit is a useful idea, there are
many challenges, including the fact that such economic units shift over time as
individuals combine into households and split apart.
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How Many New Customers Appear Each Year?
Regardless of the method used to identify customers, a basic question is: How
many new customers appear each year? This section discusses this question and
related questions about customers and purchase intervals.

Counting Customers

The basic question is almost a trick question, easy if we think about it the right
way, difficult if we think about it the wrong way. It is tempting to answer the
question by determining all the customers who place an order in a given year
and then filtering out those who made any purchase in previous years. Imple-
menting such a query requires a complicated self-join on the Orders table. This
is not unreasonable. But, there is a simpler line of reasoning.

From the perspective of the customer and not the date, every customer
makes an initial purchase, which is determined by MIN(ORDERDATE). The year
of the minimum of the order date is the year that the new customer appears,
an observation that results in a simple query:

SELECT firstyear, COUNT(*) as numcusts,

SUM(CASE WHEN numyears = 1 THEN 1 ELSE 0 END) as year1,

SUM(CASE WHEN numyears = 2 THEN 1 ELSE 0 END) as year2

FROM (SELECT customerid, MIN(YEAR(orderdate)) as firstyear,

COUNT(DISTINCT YEAR(orderdate)) as numyears

FROM orders o 

GROUP BY customerid) a

GROUP BY firstyear

ORDER BY 1

This query also calculates the number of years when a customer id placed an
order. It turns out that all customer ids are valid only during one year, shed-
ding some light on why households are a better level for tracking customers.

Revising the query for households requires joining in the Customer table to
get the HOUSEHOLDID:

SELECT firstyear, COUNT(*) as numcusts,

SUM(CASE WHEN numyears = 1 THEN 1 ELSE 0 END) as year1,

SUM(CASE WHEN numyears = 2 THEN 1 ELSE 0 END) as year2,

MIN(householdid), MAX(householdid)

FROM (SELECT householdid, MIN(YEAR(orderdate)) as firstyear,

COUNT(DISTINCT YEAR(orderdate)) as numyears

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid) a

GROUP BY firstyear

ORDER BY 1

Figure 8-2 shows a significant variation in attracting new customers/
households from year to year.
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Figure 8-2: The number of new households that make purchases varies considerably
from one year to another.

The next variation on the question is more difficult: What proportion of cus-
tomers who place orders in each year are new customers? This question is more dif-
ficult because all transactions in the year need to be taken into account, not
just the ones with new customers. There is a shortcut, because the number of
new customers and the number of total customers can be calculated in sepa-
rate subqueries:

SELECT theyear, SUM(numnew) as numnew, SUM(numall) as numall,

SUM(numnew*1.0)/SUM(numall) as propnew

FROM ((SELECT firstyear as theyear, COUNT(*) as numnew, 0 as numall

FROM (SELECT householdid, MIN(YEAR(orderdate)) as firstyear

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid) a

GROUP BY firstyear)

UNION ALL

(SELECT YEAR(orderdate) as theyear, 0 as numnew,

COUNT(DISTINCT householdid) as numall

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY YEAR(orderdate))

) a

GROUP BY theyear

ORDER BY 1

The first subquery calculates the new households in the year. The second cal-
culates the number of households that make a purchase each year, using COUNT
DISTINCT. Perhaps the most interesting aspect of the query is the UNION ALL
and subsequent GROUP BY at the outermost level. It is tempting to write this
using a join:

SELECT theyear, n.numnew, a.numall

FROM (<first subquery>) n JOIN

(<second subquery>) a

ON n.firstyear = a.theyear
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However, there might be years where one or the other groups have no data —
years where there are no new customers, for instance. The join eliminates
these years. Although this problem is unlikely with yearly summaries, the
UNION ALL method is safer. This version does work with the FULL OUTER JOIN

operator, rather than the JOIN.
The first row of the results in Table 8-5 shows that households that made

purchases during the earliest year are all new households (as expected). After
that, the proportion of new households tends to decrease from year to year,
falling to less than 85%. 

Table 8-5: New and All Customers by Year

NUMBER NEW TOTAL NUMBER
YEAR CUSTOMERS OF CUSTOMERS % NEW

2009 7,077 7,077 100.0%

2010 16,291 17,082 95.4%

2011 22,357 24,336 91.9%

2012 16,488 18,693 88.2%

2013 23,658 26,111 90.6%

2014 35,592 39,814 89.4%

2015 22,885 27,302 83.8%

2016 11,910 14,087 84.5%

Span of Time Making Purchases

Households make multiple purchases over the course of several years. Dur-
ing how many years do households make purchases? This question is different
from the total number of purchases a household makes, because it is asking
about the number of years when a household is active. The following query
answers the question:

SELECT numyears, COUNT(*), MIN(householdid), MAX(householdid)

FROM (SELECT householdid, COUNT(DISTINCT YEAR(orderdate)) as numyears

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid) a

GROUP BY numyears

ORDER BY 1

The number of years is calculated using COUNT DISTINCT in the subquery.
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Table 8-6 shows that there are thousands of households that make purchases
during more than one year. This is reassuring, because repeat business is usu-
ally important.

Table 8-6: Number of Years when Households Make Purchases

NUMBER OF YEARS COUNT

1 142,111

2 11,247

3 2,053

4 575

5 209

6 50

7 11

8 2

The next question relates to the frequency of these purchases during the
years that have purchases. Figure 8-3 shows several customers on the calendar
time line. This chart, incidentally, is a scatter plot where the clip art for a shop-
ping basket has been copied onto the points. To do this, adjust any picture to
be the right size (which is usually quite small), select the series by clicking it,
and type <control>-V to paste the image.

Figure 8-3: Customers make purchases at irregular frequencies over time.

Some households make purchases every year. Some make purchases occa-
sionally. One way to measure the purchase frequency is to divide the total

Calendar Time cutoff date
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span of years by the number of years with purchases. So, a customer who
makes three purchases over five years has a purchase frequency of 60%. The
following query calculates the purchase frequency, broken out by the span in
years from the first purchase to the last purchase and the number of purchases:

SELECT lastyear - firstyear + 1 as span, numyears, COUNT(*) as numhh,

MIN(householdid), MAX(householdid)

FROM (SELECT householdid, MIN(YEAR(orderdate)) as firstyear,

MAX(YEAR(orderdate)) as lastyear,

COUNT(DISTINCT YEAR(orderdate)) as numyears

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid) a

GROUP BY lastyear - firstyear + 1, numyears

ORDER BY 1, 2

Figure 8-4 shows the results as a bubble chart, which shows that even cus-
tomers who make purchases over large spans of time are often making pur-
chases only during two particular years. A note about the bubble chart:
Because there are many customers who make only one purchase and they
have a span of one year, these are not included in the chart. Also, Excel elimi-
nates the very smallest bubbles, because they are too small to see.

Figure 8-4: This bubble chart shows the number of years when customers make
purchases versus the span of time from the earliest purchase to the latest purchase.

Households that made purchases long ago have had more opportunity to
make a repeat purchase than households that started recently.  This observa-
tion leads to another question: What is the potential span for households? The
potential span is the potential number of years when a customer could have
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made a purchase. That is, it is the number of years from the first purchase to
the last year in the data, 2016. The only change to the previous query is to
change the definition of span to:

2016 – firstyear + 1 as potentialspan

This change affects both the SELECT clause and the GROUP BY clause. The results
for the potential span are also heavily affected by the fact that most households
only make a single purchase.

Average Time between Orders

Closely related to the span of time covered by orders is the average time
between orders, defined for those customers who have more than one order.
The query uses the subquery in the previous examples:

SELECT FLOOR(DATEDIFF(dd, mindate, maxdate) / (numorders-1)),

COUNT(*) as numhh

FROM (SELECT householdid, MIN(orderdate) as mindate,

MAX(orderdate) as maxdate, COUNT(*) as numorders

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid

HAVING COUNT(*) > 1) a

GROUP BY FLOOR(DATEDIFF(dd, mindate, maxdate) / (numorders-1))

ORDER BY 1

This query calculates the total span and then divides it by one less than the
number of orders. The result is the average spacing of the orders. The query
uses the HAVING clause to limit the results only to households with at least two
orders, preventing a divide by zero error.

The cumulative proportion, which is the cumulative sum for the first n days
divided by the total for all days, is calculated in Excel. This cumulative sum
shows how fast customers are placing orders (on average). Figure 8-5 shows
the average time to purchase for customers with two or more purchases, strat-
ified by the number of purchases. This curve has some unexpected properties.

The curve for six purchases is very ragged because there are relatively few
households with six purchases. This curve peaks at about 490 days, hitting
100%. That means that all customers with six purchases have an average time
between purchase of 490 days or less. All the curves show an increase around
the one-year mark, consisting of customers who make purchases once per
year, probably during the holiday season.

At the 600-day mark, the curves are in the right order. The curve for six
orders is at 100%, followed by five, four, three, and two. An interesting feature
of the two-order households is the lack of marked increase around one year.
This could be because customers who make two purchases one year apart are
likely to make yet another purchase the following year.
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Figure 8-5: This chart shows the time to purchase (in days) stratified by the number of
purchases a customer makes.

In addition, the curve for two-order households starts off very steep, indicat-
ing that many households with two orders make the purchases in rapid suc-
cession. So, 50% of the households with two purchases make the purchases
within 136 days of each other. For households with more purchases, the median
average time-to-purchase is closer to three hundreds days, or twice as long.

If the purchases were randomly distributed, the households with two orders
would have a longer average purchase time than households with more than
two. This is because the two-order households could make a purchase on the
earliest date and on the latest date, in which case the span would be about
seven years. If a household has three orders, one on the earliest date, one on
the latest date, and one in-between, the average time between purchases is
then about three and a half years.

One likely explanation for the speed of purchase results is marketing
efforts directed at people who just made a purchase. A customer buys some-
thing and there is a coupon or offer that arrives with the purchase, spurring
another purchase.

The average time between purchases is one way to measure purchase velocity.
Later in this chapter, we’ll use survival analysis to calculate time-to-next pur-
chase, an alternative measure.

TI P Normally, we expect the average time between orders to be smaller for
customers who have more orders.
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Purchase Intervals

Related to the average time between purchases is the average time from the
first purchase to any other purchase. This shows cycles in customer purchas-
ing patterns. For instance, Figure 8-6 shows the number of days from the first
purchase in a household to any other purchase. If a household has several pur-
chases, all of them are included.

Figure 8-6: This chart shows the time from the first purchase to every other purchase;
the wave pattern indicates customers who make a purchase at the same time every year.

This chart shows that there is a yearly cycle in the household purchasing
behavior, as illustrated by peaks around 360 days and 720 days and even after
that. These yearly peaks become smaller and smaller over time. One reason is
because the data contains all customers. Some of them make their first pur-
chase just one year before the cutoff; these customers do not have the oppor-
tunity to make repeated purchases at two years and three years and so on. On
the other hand, customers who start in the beginning of the data have the
opportunity for several years.

To calculate the data for the chart, subtract the first date of a household
order from all other order dates:

SELECT DATEDIFF(dd, h1.mindate, ho.orderdate) as days,

COUNT(*) as numorders

FROM (SELECT householdid, MIN(orderdate) as mindate

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid

HAVING MIN(orderdate) < MAX(orderdate)) h1 JOIN

(SELECT c.householdid, o.*

FROM orders o JOIN customer c ON o.customerid = c.customerid) ho

ON h1.householdid = ho.householdid

GROUP BY DATEDIFF(dd, h1.mindate, ho.orderdate)

ORDER BY 1
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This query calculates the first order date in the first subquery for households
that have orders on different dates. The second subquery contains all orders,
and these in turn are aggregated by the difference between the order date and
the first order date.

RFM Analysis

RFM is a traditional approach to analyzing customer behavior in the retailing
industry; the initials stand for recency, frequency, monetary analysis. This type of
analysis divides customers into groups, based on how recently they have made a
purchase, how frequently they make purchases, and how much money they have
spent. RFM analysis has its roots in techniques going back to the 1960s and 1970s.

The purpose of discussing RFM analysis is not to encourage its use because
there are often better ways of modeling customers for marketing efforts. RFM
is worthwhile for other reasons. First, it is based on simple ideas that are
applicable to many different industries and situations. Second, it is an oppor-
tunity to see how these ideas can be translated into useful technical measures
that can be calculated using SQL and Excel. Finally, RFM introduces the idea of
scoring customers by placing them in RFM cells; the idea of scoring customers
is extended in the last three chapters.

The following observations explain why RFM is of interest to retailing
businesses:

■■ Customers who have recently made a purchase are more likely to make
another purchase soon.

■■ Customers who frequently make purchases are more likely to make
more purchases.

■■ Customers who spend lots of money are more likely to spend 
more money.

Each of these observations corresponds to one of the RFM dimensions. This
section discusses these three dimensions and how to calculate them in SQL
and Excel.

The Dimensions
RFM divides each of the three dimensions into equal sized chunks (which are
formally called quantiles) and places customers in the corresponding chunk
along each dimension. The examples here use five quantiles for each dimension
(quintiles), although there is nothing magic about five. Figure 8-7 illustrates what
is happening. The RFM cells form a large cube consisting of 125 subcubes. Each
customer is assigned to a unique subcube based on his or her attributes along the
three dimensions. This section discusses each of these dimensions and shows
how to calculate the values as of a cutoff date, such as January 1, 2016.
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Figure 8-7: The RFM dimensions can be thought of as placing customers into small
subcubes along the dimensions.

Recency

Recency is the amount of time since the most recent purchase. Figure 8-8
shows a cumulative histogram of recency, as of the cutoff date of January 1,
2016 (orders after that date are ignored). This chart shows that 20% of the
households have placed an order within the previous 380 days. The chart also
has the four breakpoints that are used for defining the five recency quintiles.

Recency is calculated at the household level. The most recent purchase is the
one with the maximum order date before the cutoff, as calculated by the fol-
lowing query:

SELECT DATEDIFF(dd, maxdate, ‘2016-01-01’) as recency, COUNT(*)

FROM (SELECT householdid, MIN(orderdate) as mindate,

MAX(orderdate) as maxdate, COUNT(*) as numorders

FROM orders o JOIN customer c ON o.customerid = c.customerid

WHERE orderdate < ‘2016-01-01’

GROUP BY householdid) h

GROUP BY DATEDIFF(dd, maxdate, ‘2016-01-01’)

ORDER BY 1

The cumulative histogram, calculated in Excel, makes it possible to identify
the four breakpoints. The following SQL query then uses these breakpoints to
assign a recency quintile to each household:

SELECT (CASE WHEN recency <= 380 THEN 1 WHEN recency <= 615 THEN 2

WHEN recency <= 1067 THEN 3 WHEN recency <= 1686 THEN 4

ELSE 5 END) as recbin, h.*

FROM (SELECT householdid,

DATEDIFF(dd, MAX(orderdate) , ‘2016-01-01‘) as recency
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FROM orders o JOIN customer c ON o.customerid = c.customerid

WHERE orderdate < ‘2016-01-01’

GROUP BY householdid) h

The breakpoints are explicitly used in the CASE statement in the SELECT clause.
Finding the breakpoints using SQL and Excel is cumbersome. Fortunately,

there are functions in SQL that make it possible to do all the work within the
database, as discussed in the aside “SQL Ranking Functions.”

Figure 8-8: To break the recency into five equal sized buckets, look at the cumulative
histogram and break it into five groups. The resulting four breakpoints are shown on
the chart.

SQL RANKING FUNCTIONS

ANSI SQL has a special function, NTILE(), supported by SQL Server and Oracle,
that assigns quantiles to values in a column. Because these are part of standard
SQL and useful, other databases should eventually also include them.

NTILE() does exactly what we need it to do for finding quintiles. It divides
the recency values into five equal sized groups and assigns them the values one
through five. We might expect the syntax for NTILE() to look something like:

NTILE(recency, 5)

Alas, it is not that simple.

380 
0 180 360 540 720 900 1080 1260 1440 1620 1800 1980 2160 

615 

380 

1067 

1696 

0% 

10% 

20% 

30% 

40% 

100% 

90% 

80% 

70% 

60% 

50% 

372 Chapter 8 ■ Customer Purchases and Other Repeated Events

99513c08.qxd:WileyRed  8/27/07  1:56 PM  Page 372



SQL RANKING FUNCTIONS (CONTINUED)

NTILE() is an example of a special class of functions called window
functions. These functions combine information from multiple rows and use the
information to do the calculation. The particular group of rows is the window
being used. For recency, the correct syntax is:

NTILE(5) OVER (ORDER BY recency)

The argument “5” to NTILE() is a number that specifies the number of 
bins. The window specification says to include all values in all rows. The
ORDER BY clause specifies the variable (or variables) that define the bins, 
and the ordering (whether 1 is high or low). Although this syntax may seem
cumbersome, it is actually quite powerful for expressing many different
transformations. Examples later in this chapter apply window functions to
very different problems.

Putting this together into a query looks like:

SELECT h.*, NTILE(5) OVER (ORDER BY recency)

FROM (SELECT householdid,

DATEDIFF(dd, MAX(orderdate) , ‘2016-01-01’) as recency

FROM orders o JOIN customer c ON o.customerid = c.customerid

WHERE orderdate < ‘2016-01-01’

GROUP BY householdid) h

This syntax is definitely much simpler than the other alternatives. The subquery
is necessary, because window functions do not interact gracefully with GROUP
BYs. Using window functions and aggregations together results in a syntax
error. Fortunately, subqueries are an easy work-around.

It is also worth noting that window functions can be used multiple times in
the same statement. So, we can produce bins for multiple variables in the same
SELECT statement.

In addition to NTILE(), there are three other ranking functions:

ROW_NUMBER() OVER (ORDER BY recency)

RANK() OVER (ORDER BY recency)

DENSE_RANK() OVER (ORDER BY recency)

The first of these simply enumerates the rows by order of recency, assigning
numbers starting at one. The other two differ from ROW_NUMBER() when two 
or more rows have the same value. In this case, RANK() gives all rows with 
the same value the same ranking and then skips the subsequent values. So, the
ranking values might look like 1, 1, 1, 4, 5, 6, . . . if there are three ties for first
place. DENSE_RANK() does almost the same thing, but without skipping
intermediate values. It would produce the values 1, 1, 1, 2, 3, 4 in this case.

In the preceding example, the smallest value of recency gets the value of 1.
To reverse this so the largest value gets a recency of one simply requires using
the DESC modifier in the ORDER BY clause, to sort things in the opposite order.
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Frequency

Frequency is the rate at which customers make purchases, calculated as the
length of time since the earliest purchase divided by the number of pur-
chases (sometimes it is calculated as the total number of purchases over all
time). The breakpoints are determined the same way as for recency, and are
shown in Table 8-7.

Table 8-7: Breakpoint Values for Recency, Frequency, and Monetary Bins

BREAK POINT RECENCY FREQUENCY MONETARY

20% 380 372 13

40% 615 594 20

60% 1067 974 28

80% 1696 1628 59

The frequency itself is calculated in a way very similar to the span-of-time
queries:

SELECT FLOOR(DATEDIFF(dd, mindate, ‘2016-01-01’)/numorders) as frequency,

COUNT(*)

FROM (SELECT householdid, MIN(orderdate) as mindate, COUNT(*) as numorders

FROM orders o JOIN customer c ON o.customerid = c.customerid

WHERE orderdate < ‘2016-01-01’

GROUP BY householdid) h

GROUP BY FLOOR(DATEDIFF(dd, mindate, ‘2016-01-01’)/numorders)

ORDER BY 1

This query calculates the total span of time between the cutoff date and the
earliest purchase, and then divides by the number of purchases. Note that low
values for frequency and recency are both associated with good customers,
whereas high values are associated with poor customers.

Monetary

The last RFM variable is the monetary variable. Traditionally, this is the total
amount of money spent by households. However, this definition is usually
highly correlated with frequency, because customers who make more pur-
chases have larger total amounts. A better variable is the average amount of
each order:

SELECT FLOOR(money) as dollars, COUNT(*)

FROM (SELECT householdid, AVG(totalprice) as money

FROM orders o JOIN customer c ON o.customerid = c.customerid
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WHERE orderdate < ‘2016-01-01’

GROUP BY householdid) h

GROUP BY FLOOR(money)

ORDER BY 1

The difference between using the average or the total is simply changing the
definition of MONEY from AVG(totalprice) to SUM(totalprice). Excel can then
be used to find the four breakpoints that divide the values into five equal sized
bins, which are shown in Table 8-7. Note that unlike recency and frequency,
low values for monetary are associated with worse customers.

Calculating the RFM Cell
The RFM cell combines the bins used for recency, frequency, and monetary. The
cell has a tag that looks like a number, so 155 corresponds to the cell with the
highest recency value and the lowest frequency and monetary values. The tag
is just a label; it is not sensible to ask whether bin 155 is greater than or less than
another bin, say 244.

Although the customers are divided into equal sized chunks along each
dimension, the 125 RFM cells are not equal sized. In fact, some of them are
empty, such as cell 155. Others are quite large, such as cell 522, the largest,
which has 5.6% of the customers. This cell consists of customers who have not
made a purchase in a long time (worst recency). The household is highly infre-
quent, so the household probably made only one purchase. And, the purchase
was on the high end of the monetary scale.

Cell sizes differ because the three measures are not independent. Good cus-
tomers make frequent purchases that are higher in value, corresponding to one
set of RFM values. One-time customers make few purchases (one) that might
not be recent and are smaller in value.

Attempting to visualize the RFM cells is challenging using Excel chart capa-
bilities. What we really want is a three-dimensional bubble chart, where each
axis corresponds to one of the RFM dimensions. The size of the bubbles would
be the number of households in that cell. Unfortunately, Excel does not offer a
three-dimensional bubble plot capability.

Figure 8-9 shows a compromise using a two-dimensional bubble plot. The
vertical axis has the recency bin and the horizontal axis has a combination of
the frequency and monetary bins. The largest bubbles are along the diagonal,
which shows that recency and frequency are highly correlated. This is espe-
cially true for customers who have made only one purchase. A one-time,
recent purchase implies that the frequency is quite high. If the purchase was a
long time ago, the frequency is quite low. In this data, most households have
made only one purchase, so this effect is quite noticeable. By the way, when
creating scatter plots and bubble plots using Excel, the axes need to be num-
bers rather than strings.
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WARN I NG In Excel, bubble plots and scatter plots require that the axes be
numbers rather than text values. Using text values results in all values being
treated as zeros and sequential numbers placed on the axis.

Figure 8-9: This chart shows the RFM cells, with the recency on the vertical axis and the
frequency and monetary dimensions on the horizontal axis.

The following query calculates the sizes of the RFM bins for all customers:

SELECT recbin * 100 + freqbin * 10 + monbin as rfm, COUNT(*)

FROM (SELECT (CASE WHEN r <= 380 THEN 1 WHEN r <= 615 THEN 2

WHEN r <= 1067 THEN 3 WHEN r <= 1686 THEN 4

ELSE 5 END) as recbin,

(CASE WHEN f <= 372 THEN 1 WHEN f <= 594 THEN 2

WHEN f <= 974 THEN 3 WHEN f <= 1628 THEN 4

ELSE 5 END) as freqbin,

(CASE WHEN m <= 13 THEN 1 WHEN m <= 20 THEN 2

WHEN m <= 28 THEN 3 WHEN m <= 59 THEN 4

ELSE 5 END) as monbin

FROM (SELECT householdid, MIN(orderdate) as mindate,

DATEDIFF(dd, MAX(orderdate), ‘2016-01-01’)as r,

FLOOR(DATEDIFF(dd, MIN(orderdate), ‘2016-01-01’)/

COUNT(*) ) as f,

SUM(totalprice) / COUNT(*) as m

FROM orders o JOIN customer c ON o.customerid = c.customerid

WHERE orderdate < ‘2016-01-01’

GROUP BY householdid) a ) b

GROUP BY recbin * 100 + freqbin * 10 + monbin

ORDER BY 1

The inner query assigns the RFM values, and the outer query then aggregates
bins to count the values in each cell.
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Utility of RFM
RFM is a methodology that encourages the use of testing, and it encourages
businesses to think about customers migrating from one cell to another.
These two advantages of RFM are good ideas that are worth discussing in
more detail.

A Methodology for Marketing Experiments

The RFM methodology encourages a test-and-learn approach to marketing.
Because marketing efforts incur some cost, companies do not want to contact
every possible person; instead, they want to contact the customers or
prospects who are most likely to respond. The RFM solution is to divide the
customers into RFM cells and then to track the response of each cell. Once the
process is up and running, the following happens:

■■ The customers in the RFM cells with the highest response rate in the
previous campaign are included in the next campaign.

■■ A sample of customers in other RFM cells is included in the campaign,
so there is information about all cells moving forward.

The first item is a no-brainer. The point of using a methodology such as RFM
is to identify customers who are more likely to respond, so better responders
can be included in the next campaign. 

It is the second part that encompasses experimentation. Typically, the best-
responding cells are the ones in the best bins, particularly recency. Other cells
might not have the chance to prove themselves as having valuable customers.
And, during the next iteration, these customers have not had encouragement
to make a recent purchase, so they fall farther behind along the recency dimen-
sion and into even less valuable cells.

The solution is to include a sample of customers from all cells, even those
cells that are not chosen for the marketing effort. This means that all cells can
be tracked over time.

TI P For companies that have ongoing marketing campaigns, including test
cells is highly beneficial and worth the effort in the long term. Even though
such cells incur a cost in the short term, they provide the opportunity to learn
about customers over the long term.

Including such a sample of customers does have a cost, literally. Some cus-
tomers are being contacted even though their expected response rate is lower
than the threshold. Of course, not all the customers are contacted, just a sample,
but this is still a cost for any given campaign. The benefit is strategic: over time,
the lessons learned apply to all customers rather than to the smaller number
who would be chosen for each campaign.
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Customer Migration

The second advantage of RFM is that it encourages thinking about customers
who migrate from one cell to another. Customers fall into particular RFM cells
at the beginning of 2015 (which are based on different breakpoints). However,
based on customer behavior, the cells may change during the course of the
year. What is the pattern of RFM cell migration from the beginning of 2015 to 2016? 

This question can be answered by a SQL query. One way to write the query
would be to calculate the RFM bins for 2015 in one subquery and then calcu-
late the RFM bins for 2016 and then join the results together. There is a more
efficient way to do the calculation. The bins for the two years can be calculated
in one subquery, although this requires judicious use of the CASE statement to
select the right data for each year:

SELECT rfm.recbin2015*100+rfm.freqbin2015*10+rfm.monbin2015 as rfm2015,

rfm.recbin2016*100+rfm.freqbin2016*10+rfm.monbin2016 as rfm2016,

COUNT(*), MIN(rfm.householdid), MAX(rfm.householdid)

FROM (SELECT householdid,

(CASE WHEN r2016 <= 380 THEN 1 WHEN r2016 <= 615 THEN 2

WHEN r2016 <= 1067 THEN 3 WHEN r2016 <= 1686 THEN 4

ELSE 5 END) as recbin2016,

(CASE WHEN f2016 <= 372 THEN 1 WHEN f2016 <= 594 THEN 2

WHEN f2016 <= 974 THEN 3 WHEN f2016 <= 1628 THEN 4

ELSE 5 END) as freqbin2016,

(CASE WHEN m2016 <= 13 THEN 1 WHEN m2016 <= 20 THEN 2

WHEN m2016 <= 28 THEN 3 WHEN m2016 <= 59 THEN 4

ELSE 5 END) as monbin2016,

(CASE WHEN r2015 is null THEN null

WHEN r2015 <= 174 THEN 1 WHEN r2015 <= 420 THEN 2

WHEN r2015 <= 807 THEN 3 WHEN r2015 <= 1400 THEN 4

ELSE 5 END) as recbin2015,

(CASE WHEN f2015 IS NULL THEN NULL

WHEN f2015 <= 192 THEN 1 WHEN f2015 <= 427 THEN 2

WHEN f2015 <= 807 THEN 3 WHEN f2015 <= 1400 THEN 4

ELSE 5 END) as freqbin2015,

(CASE WHEN m2015 IS NULL THEN NULL

WHEN m2015 <= 13 THEN 1 WHEN m2015 <= 19 THEN 2

WHEN m2015 <= 28 THEN 3 WHEN m2015 <= 53 THEN 4

ELSE 5 END) as monbin2015

from (SELECT householdid,

DATEDIFF(dd, MAX(CASE WHEN orderdate < ‘2015-01-01’

THEN orderdate END),

‘2015-01-01’) as r2015,

FLOOR(DATEDIFF(dd,

MIN(CASE WHEN orderdate < ‘2015-01-01’

THEN orderdate END),

‘2015-01-01’)/

SUM(CASE WHEN orderdate < ‘2015-01-01’

THEN 1.0 END)) as f2015,

(SUM(CASE WHEN orderdate < ‘2015-01-01’
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THEN totalprice END) /

SUM(CASE WHEN orderdate < ‘2015-01-01’ THEN 1.0 END

)) as m2015,

DATEDIFF(dd, MAX(orderdate) , ‘2016-01-01’) as r2016,

FLOOR(DATEDIFF(dd, MIN(orderdate), ‘2016-01-01’)/

COUNT(*)) as f2016, AVG(totalprice) as m2016

FROM orders o JOIN customer c ON o.customerid = c.customerid

WHERE orderdate < ‘2016-01-01’

GROUP BY householdid) a

) rfm

GROUP BY rfm.recbin2015, rfm.freqbin2015, rfm.monbin2015,

rfm.recbin2016, rfm.freqbin2016, rfm.monbin2016

ORDER BY COUNT(*) DESC

This query uses explicit thresholds to define the quintiles for the two years. This
is for convenience. The thresholds could also be defined using RANK().

Households that first appear in 2016 have no previous RFM cell, so these are
given the value NULL for 2015. The new households arrive in only five cells, as
shown in Table 8-8.

Table 8-8: RFM Bins for New Customers in 2016

2016 RFM BIN COUNT

114 6,241

115 6,021

113 5,410

112 4,909

111 4,416

These five cells all have the highest values along the recency dimension for
2016, which is not surprising because these households have all made a recent
purchase. They are also highest along the frequency dimension for the same
reason. Only the monetary dimension is spread out, and it is skewed a bit
toward higher monetary amounts. In fact, 53.4% are in the two highest mone-
tary buckets, rather than the 40% that would be expected. So, new customers
in 2016 seem to be at the higher end of purchase values.

The biggest interest is customers who change from the bad bins (high values
along all dimensions) to good bins (low values along the dimensions). This
brings up the question: What campaigns in 2016 are converting long-term dormant
customers into active customers? This question could be answered by diving into
the RFM bins. However, it is easier to rephrase the question by simply asking
about customers who made no purchases in, say, the two years before January 1,
2015. This is easier than calculating all the RFM information, and probably just
as accurate. 
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Figure 8-10 shows the channel of the first purchase made in 2016 as a 100%
stacked, column chart. The purchases are split by the number of years since the
household made a previous purchase. This chart suggests that email is a strong
channel for bringing customers back. Unfortunately, the email channel is also
extremely small, with only sixteen households making a first 2016 purchase in
that channel, because email is used only for some small marketing tests.

Figure 8-10: The channel of first purchases in 2016 shows that some channels are better
at attracting new customers and others at bringing dormant customers back.

Of the significant channels, Partner seems to be the best in reactivating dor-
mant customers. A total of 5.6% of the households that place an order in 2016
in the Partner channel are older than two years. By comparison, only 2.2% of
the Web channel customers are older than two years.

RFM Limits

RFM is an interesting methodology because it breaks customers into segments,
promotes good experimental design (by requiring test cells in marketing), and
encourages thinking about changes in customer behavior over time. However,
the underlying methodology does have its limits.

One issue with RFM is that the dimensions are not independent. Customers
who make frequent purchases have also, generally, made recent purchases. The
example in this section uses five cells along each axis; of the 125 cells 15 have no
customers at all. At the other extreme, the 12 most populated cells have over
half the customers. In general, RFM does a good job of distinguishing the best
customers from the worst. However, it does not do a good job of distinguishing
among different groups of customers.

And, this is not surprising. Customer behavior is complex. The three
dimensions of recency, frequency, and monetary value are important for
understanding the customers’ purchasing behaviors — which is why this sec-
tion discusses them. However, RFM does not include the multitude of other
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behaviors that describe customers, such as geography and the products pur-
chased. These other aspects of the customer relationship are also critical for
understanding customers.

Which Households Are Increasing 
Purchase Amounts Over Time?

This section discusses a common question: Are purchase amounts increasing or
decreasing over time for each household? This question can be answered in several
ways. The most sophisticated is to define a trend for each household, using the
slope of the line that best fits that household’s purchase patterns. Two other
methods are also discussed. The first compares the earliest and latest spending
values, using a ratio or difference for the comparison. The second uses the
average of the earliest few purchases and compares them to the average
amount of the last few purchases.

Comparison of Earliest and Latest Values
The first and last purchase values for each household contain information
about how customer purchase patterns change over time. There are two com-
ponents to this analysis. The first is calculating the values themselves. The sec-
ond is deciding how to compare them.

Calculating the Earliest and Latest Values

What is the order amount for the earliest and latest order in each household (that has
more than one order)? One approach to answering this question is the “find-
the-transaction” method, which works with traditional SQL. Another
approach uses clever aggregation, which is often more efficient and results in
simpler SQL code. The third uses SQL window functions, which are not avail-
able in all databases.

“Find-the-Transaction” (Standard SQL Approach)

The standard SQL approach is to find the order that has the household’s min-
imum (or maximum) ORDERDATE, as in the following query that looks for
the order in a household having the smallest order date:

SELECT c.householdid, o.*

FROM orders o JOIN customer c ON o.customerid = c.customerid

WHERE o.orderdate IN

(SELECT MIN(orderdate)

FROM orders o1 JOIN customer c1

ON o1.customerid = c1.customerid

WHERE c1.householdid = c1.householdid)

Chapter 8 ■ Customer Purchases and Other Repeated Events 381

99513c08.qxd:WileyRed  8/27/07  1:56 PM  Page 381



This query uses a correlated subquery for the IN statement. Correlated sub-
queries can always be rewritten as joins (and we’ll shortly see an example).
This query is simple enough, but there is a catch. There might be more than
one order on the minimum date.

The following query calculates the number of orders on the minimum date:

SELECT nummindateorders, COUNT(*) as numhh,

MIN(householdid), MAX(householdid)

FROM (SELECT c.householdid, MIN(o.orderdate) as mindate,

COUNT(*) as nummindateorders

FROM orders o JOIN customer c ON o.customerid = c.customerid JOIN

(SELECT householdid, MIN(orderdate) as mindate

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid) minhh

ON c.householdid = minhh.householdid AND

o.orderdate = minhh.mindate

GROUP BY c.householdid) h

GROUP BY nummindateorders 

ORDER BY 1 DESC

This calculation uses two subqueries. The first aggregates the order informa-
tion by HOUSEHOLDID and ORDERDATE to get the number of orders on
each date for each household. The second aggregates by HOUSEHOLDID to
get the smallest ORDERDATE for each household. These are then joined
together to get count on the minimum order date.

The counts are shown in Table 8-9. Although the vast majority of house-
holds do have only one order on their earliest order date, over one thousand
have more than one. The strategy of looking for the one and only order on the
minimum order date does not work correctly.

Table 8-9: Number of Orders on Household’s First Order Date

NUMBER OF PURCHASES NUMBER OF
ON FIRST DAY HOUSEHOLDS PROPORTION

1 155,016 99.21%

2 1,184 0.76%

3 45 0.03%

4 9 0.01%

5 1 0.00%

6 2 0.00%

8 1 0.00%
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Fixing this requires adding another level of subqueries. The innermost
query finds the earliest order date for each household. The next level finds one
ORDERID on that date for the household. The outermost then joins in the
order information. Using JOINs instead of INs, the resulting query looks like:

SELECT c.householdid, o.*

FROM orders o JOIN customer c ON o.customerid = c.customerid JOIN

(SELECT c.householdid, MIN(o.orderid) as minorderid

FROM orders o JOIN customer c ON o.customerid = c.customerid JOIN

(SELECT householdid, MIN(orderdate) as minorderdate

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid) ho

ON ho.householdid = c.householdid AND

ho.minorderdate = o.orderdate

GROUP BY c.householdid) hhmin

ON hhmin.householdid = c.householdid AND

hhmin.minorderid = o.orderid

This is a rather complicated query for a rather simple question. Without an
incredible SQL optimizer, it requires joining the Orders and Customer tables
three times for what seems like a relatively direct question.

This query could be simplified if we assumed that the smallest ORDERID in
a household occurred on the earliest ORDERDATE. This condition is defi-
nitely worth checking for, as done by the following query:

SELECT COUNT(*) as numhh,

SUM(CASE WHEN o.orderdate = minodate THEN 1 ELSE 0 END) as numsame

FROM (SELECT householdid, MIN(orderdate) as minodate,

MIN(orderid) as minorderid

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid

HAVING COUNT(*) > 1) ho JOIN

orders o

ON ho.minorderid = o.orderid

ORDER BY 1

This query looks only at households that have more than one order. For those,
it compares the minimum order date to the date of the order with the mini-
mum order id.

This query finds 21,965 households with more than one order. Of these, 18,973
have the order date associated with the smallest id being the same as the earliest
order date. There remain 2,992 households whose minimum order date differs
from the order date on the minimum order id. Although it would simplify
queries to assume that the minimum ORDERID occurred on the earliest
ORDERDATE, this is simply not true.
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Clever Aggregation 

The clever aggregation approach uses aggregations rather than complex sub-
queries. The specific aggregation function that we want might look some-
thing like:

MIN(orderid) WHERE (orderdate = MIN(orderdate))

Alas, this is fantasy SQL that simply does not exist. However, clever tricks with
string values approximate the fantasy SQL. This method was first introduced
in Chapter 3, but we’ll review it here again.

The idea is to convert ORDERDATE to a string of the form YYYYMMDD
(with or without hyphens). This string has the nice characteristic that it sorts
alphabetically in the same order as the original date. So, the minimum value of
these strings is the minimum value of the original date. The clever idea is to
append something onto the end of the string. Now, the minimum value is
dominated by the first part of the string, so it corresponds to the date. The
basic expression looks like:

SUBSTRING(MIN(CAST(YEAR(orderdate)*10000+MONTH(orderdate)*100+

DAY(orderdate) as CHAR)+(CAST(totalprice as CHAR))),

9, 100)+0

The order date is first converted to a number, which is cast to a character value,
and then TOTALPRICE is appended onto the end. The minimum value for this
composite value is determined by the date which comes first, with the TOTAL-
PRICE carried along. Extract the total price by taking the string from position
nine onwards. The final “+0” converts the value back into a number.

The following SQL uses this technique:

SELECT ho.householdid, numorders,

DATEDIFF(dd, mindate, maxdate) as daysdiff,

(lasttotalprice – firsttotalprice) as pricediff

FROM (SELECT householdid, MIN(orderdate) as mindate,

MAX(orderdate) as maxdate, COUNT(*) as numorders,

CAST(SUBSTRING(MIN(CAST(YEAR(orderdate)*10000 + 

MONTH(orderdate)*100 + 

DAY(orderdate) as CHAR)+

CAST(totalprice as CHAR)), 9, 100

) AS DECIMAL) as firsttotalprice,

CAST(SUBSTRING(MAX(CAST(YEAR(orderdate)*10000 + 

MONTH(orderdate)*100 + 

DAY(orderdate) as CHAR)+

CAST(totalprice as CHAR)), 9, 100

) AS DECIMAL) as lasttotalprice

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid

HAVING MIN(orderdate) < MAX(orderdate) ) ho
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Although it uses a complicated set of functions for getting the maximum and
minimum TOTALPRICE, this query requires no extra joins or aggregations.
The technical aside “SQL Window Functions” discusses the third method,
which uses window functions to solve the problem.

SQL WINDOW FUNCTIONS

The ranking functions discussed earlier in this chapter are examples of SQL
window functions. SQL window functions are similar to aggregation functions
in that they calculate summary values. However, instead of returning a smaller
set of summary rows, the summary values are appended onto each row in the
original data.

For example, the following statement appends the average order amount
onto each order record:

SELECT AVG(totalprice) OVER (PARTITION BY NULL), o.*

FROM orders o

The syntax is similar to the syntax for the ranking functions. The OVER keyword
indicates that this is a window aggregation function rather than a group by
aggregation function. The part in parentheses describes the window of rows
that the AVG() works on. In this case, there is no partition, so the statement
takes the average of all rows.

The partitioning statement acts like a GROUP BY. So, the following calculates
the average order amount for each household:

SELECT AVG(totalprice) OVER (PARTITION BY c.householdid), o.*

FROM orders o JOIN customer c ON o.customerid = c.customerid

Unlike grouping aggregation functions, though, the household average is
appended onto every row.

Window aggregation functions are quite powerful and quite useful. The
simplest way to get the first and last values would be to use the FIRST() and
LAST() functions:

SELECT FIRST(totalprice) OVER (PARTITION BY c.householdid

ORDER BY orderdate) as pricefirst,

LAST(totalprice) OVER (PARTITION BY c.householdid

ORDER BY orderdate) as pricelast,

o.*

FROM orders o JOIN customer c ON o.customerid = c.customerid

Unfortunately, these functions are not available in SQL Server (although they are
available in Oracle). Other functions such as MIN(), MAX(), and AVG() do not 
do what we want. They ignore the ORDER BY clause and return the minimum,
maximum, or average value of the order amount.

Continued on next page
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SQL WINDOW FUNCTIONS (CONTINUED)

There is a relatively simple work-around, using the ROW_NUMBER() function 
to enumerate the orders in each household. This information can then be used to
find the first and last values:

SELECT householdid,

MAX(CASE WHEN i = 1 THEN totalprice END) as pricefirst,

MAX(CASE WHEN i = n THEN totalprice END) as pricelast

FROM (SELECT o.*, c.householdid,

COUNT(*) OVER (PARTITION BY c.householdid) as n,

ROW_NUMBER() OVER (PARTITION BY c.householdid

ORDER BY orderdate ASC) as i

FROM orders o JOIN customer c ON o.customerid = c.customerid

) h

GROUP BY householdid

The window aggregation functions are very useful, but their functionality can
usually be expressed using other SQL constructs (this is not true of the ranking
window functions). They are equivalent to doing the following:

1. Doing a GROUP BY aggregation on the partition columns; and then,

2. Joining the resulting table back to the original on the partition columns.

However, window functions are a significant improvement over this process 
for two reasons. First, they allow values with different partitioning columns to
be calculated in the same SELECT statement. Second, the ranking window
functions introduce a new level of functionality that is much harder to replicate
without the functions.

Comparing the First and Last Values

Given the order amounts on the earliest and latest dates, what is the best way
to compare these values? Four possibilities are:

■■ The difference between the earliest and latest purchase amounts. This 
is useful for determining the households whose spending is increasing
(positive differences) and decreasing (negative differences).

■■ The ratio of the latest purchase amount to the earliest purchase amount.
This is similar to the difference. Ratios between zero and one are decreas-
ing and ratios over one are increasing.

■■ The difference divided by the time units. This makes it possible to say
that the customer is increasing their purchase amounts by so many dol-
lars every day (or week or month or year).

■■ The ratio raised to the power of one divided by the number of time units.
This makes it possible to say that the customer is increasing their purchase
amounts by some percentage every day (or week or month or year).
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What do the differences look like? This is a reasonable question. There are only
about twenty thousand households that have more than one order. This is a
small enough number to include on an Excel scatter plot.

Figure 8-11 shows the distribution of the differences, because the differences
provide more information. The cumulative percent crosses the $0 line at about
67%, showing that more households have decreasing order amounts than
increasing order amounts. The summaries for the chart are done in Excel.

Figure 8-11: The distribution of the differences in total price between the first order 
and the last order shows that more households have decreases than increases in the
order amounts. 

What Happens as Customer Span Increases

Figure 8-12 shows what happens to the difference as the span between the first
and last purchases increases. There are two curves on the chart, one for the
total number of households whose purchases have that span (in 30-day incre-
ments) and one for the average price difference.

For the shortest differences in time, the second purchase has a lower value
than the first for a strong majority of households. However, after about six
months, the breakdown is more even. As the time span between the first pur-
chase and last purchase increases, the later purchase is more likely to be larger
than the first. This count of purchases has a wave pattern that fades over time,
corresponding to households that make purchases at the same time of the year.

The SQL for making this chart uses the subquery that finds the first and last
total price amounts. The outer query does the aggregation:

SELECT FLOOR(daysdiff/30)*30 as daystopurchase,

COUNT(*) as num, AVG(pricediff) as avgdiff
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FROM (<subquery>) ho 

GROUP BY FLOOR(daysdiff/30)*30

ORDER BY 1

Figure 8-12: As the customer time span increases, the amount that customers increase
their spending also increases.

The chart itself uses a trick to align the horizontal grid lines; this is challeng-
ing because the count on the left-hand axis has only positive values, and the dol-
lar amount on the right-hand axis has both positive and negative values. The
grid lines are lined up, by making the left-hand axis go from –1,500 to +2,500 and
the right hand from –$75 to +$125. The left-hand axis spans 4,000 units, which is
a multiple of the 200 spanned by the right-hand axis, making it easier to align the
horizontal grid lines on both sides. The left-hand axis does not show negative
values, because these make no sense for counts, by using a special number for-
mat, “#,##0;”. This number format says “put commas in numbers greater than or
equal to zero and don’t put anything for negative numbers.”

TI P When the left and right axes have different scales, make the horizontal
grids line up. This is easiest if the range on one axis is a multiple of the range
on the other axis.

What Happens as Customer Order Amounts Vary

The alternative viewpoint is to summarize the data by the difference in
TOTALPRICE between the later order and the earliest order. This summary
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works best when the difference is placed into bins. For this example, the bins
are the first number of the difference following by a sufficient number of
zeros, so the bins look like: $1, $2, $3, . . ., $8, $9, $10, $20, $30, . . . $90, $100,
$200, and so on. Formally, these bins are powers of ten times the first digit of
the difference. Other binning methods are possible, such as equal-sized bins.
However, binning by the first digit makes the bins easy to read and easy to
communicate what is happening.

The chart in Figure 8-13 shows the number of households in each bin and
the average time between orders. The number of households is quite spiky,
because of the binning process. Every power of ten, the size of the bin sud-
denly jumps by a factor of ten. The range of $90–$100 is in one bin. The next is
not $100–$110, it is instead $100–$200, which is ten times larger. One way to
eliminate the spikiness is to show the cumulative number of households,
rather than the number in the bin itself. This eliminates the spikiness but may
be less intuitive for people looking at the chart.

Figure 8-13: The span of time that customers make purchases is related to the average
difference in dollar amounts between the first and last orders.

The average time span tends to increase as the difference increases. This
suggests that the longer a customer is active, the more the customer is spend-
ing, on average. However, this effect is most pronounced for the most negative
differences. Customers whose purchases decrease dramatically are making
purchases during relatively short time spans.

The query that generates the data for this chart is similar to the previous
query, except for the GROUP BY clause:

SELECT (CASE WHEN pricediff = 0 THEN ‘$0’

WHEN pricediff BETWEEN -1 and 0 THEN ‘$-0’

WHEN pricediff BETWEEN 0 AND 1 THEN ‘$+0’

WHEN pricediff < 0

THEN ‘$-‘+LEFT(-pricediff, 1)+
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LEFT(‘000000000’, FLOOR(LOG(-pricediff)/LOG(10)))

ELSE ‘$’+LEFT(pricediff, 1)+

LEFT(‘000000000’, FLOOR(LOG(pricediff)/LOG(10)))

END) diffgroup,

COUNT(*) as numhh, AVG(daysdiff) as avgdaysdiff

FROM (<subquery>) ho

GROUP BY (CASE WHEN pricediff = 0 THEN ‘$0’

. . .

END)

ORDER BY MIN(pricediff)

The two notable features in the query are the CASE statement for binning the
difference in values and the ORDER BY statement. The bin definition uses 
the first digit of the difference and then turns the rest of the digits into zeros,
so “123” and “169” go into the “100” bin. The first digit is extracted using the
LEFT() function, which takes the first digit of a positive numeric argument.
The remaining digits are set to zero, by calculating the number of digits
using a particular mathematical expression. The number of zeros is the log in
base 10 of the difference, and the log in base 10 is the log in any base divided
by the log of 10 in that base (so the expression works even in databases
where LOG() calculates the natural log). The process is the same for negative
differences, except the absolute value is used and a negative sign prepended
to the result.

The purpose of the ORDER BY clause is to order the bins numerically. An
alphabetical order would order them as “$1,” “$10,” “$100,” “$1000,” and
these would be followed by “$2.” To get a numeric ordering, we extract one
value from the bin, the minimum value, and order by this. Actually, any value
would do, but the minimum is convenient.

Comparison of First Year Values and Last Year Values
The previous section compared the first order amount value to the last order
amount. This section makes a slightly different comparison: How does the aver-
age household’s purchase change from the first year they make a purchase to the most
recent year?

Table 8-10 contains the difference between the average order amount dur-
ing the earliest year and during the latest year. When the purchases are on
successive years, the difference is almost always negative. However, as the
time span grows, the difference becomes positive indicating that the order
sizes are growing, although this might be due to prices increasing during
this time.
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Table 8-10: Difference between Average First and Last Year Order Amounts

YEAR 2010 2011 2012 2013 2014 2015 2016

2009 $7.54 $2.29 $22.49 $34.83 $29.31 $47.24 $46.38

2010 -$17.44 $1.76 $24.59 $10.07 $17.08 $30.22

2011 -$0.02 $16.42 $12.63 $7.49 $27.44

2012 $1.49 -$1.66 $9.54 $45.75

2013 -$21.26 -$11.36 $36.26

2014 -$14.28 -$7.05

2015 -$41.56

Figure 8-14 shows these results as a scatter plot, where the horizontal axis is
the purchase amount on the earlier date and the vertical axis is the purchase
amount on the later date. The diagonal line divides the chart into two regions.
Below the line, purchases are decreasing over time and above the line, purchases
are increasing over time. The lowest point in the chart shows the households
whose earliest purchase was in 2009 and whose latest purchase was in 2011; the
earlier purchase average was about $35 and the later was about $37. An interest-
ing feature of the chart is that all the points below the line come from either one-
or two-year spans. The longer the time span, the larger the later purchases.

Figure 8-14: This scatter plot shows the average order amount for the earliest orders and
latest orders for households. Households below the diagonal line have decreasing orders;
those above have increasing orders.
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The query calculates the average purchase size for pairs of years, the first
and last years that households make purchases. Each row also contains the
average size of the purchase during the first year and the average size during
the second year:

SELECT minyear, maxyear, AVG (avgearliest) as avgearliest,

AVG(avglatest) as avglatest, COUNT(*) as numhh

FROM (SELECT hy.householdid, minyear, maxyear,

AVG(CASE WHEN hy.theyear = minyear THEN avgprice END

) as avgearliest,

AVG(CASE WHEN hy.theyear = maxyear THEN avgprice END

) as avglatest

FROM (SELECT householdid, MIN(YEAR(orderdate)) as minyear,

MAX(YEAR(orderdate)) as maxyear

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid

HAVING MIN(YEAR(orderdate)) < MAX(YEAR(orderdate)) 

) hminmax JOIN

(SELECT householdid, YEAR(orderdate) as theyear,

SUM(totalprice) as sumprice,

AVG(totalprice) as avgprice

FROM orders o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid, YEAR(orderdate) ) hy 

ON hy.householdid = hminmax.householdid AND

(hy.theyear = hminmax.minyear OR

hy.theyear = hminmax.maxyear)

GROUP BY hy.householdid, minyear, maxyear) h

GROUP BY minyear, maxyear

This query aggregates the orders data in two subqueries, as shown in the
dataflow diagram in Figure 8-15. The first is by HOUSEHOLDID to get the ear-
liest and latest years with orders. The second is by HOUSEHOLDID and the
year of the ORDERDATE to get the average order size in each year. These two
subqueries are joined together to get the average order size in the first and last
years, and this final result is again aggregated by the first and last year.

Trend from the Best Fit Line
This section goes one step further by calculating the slope of the line that best
fits the TOTALPRICE values. This calculation relies on some mathematical
manipulation, essentially implementing the equation for the slope in SQL. The
advantage to this approach is that it takes into account all the purchases over
time, instead of just the first and last ones.
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Figure 8-15: This dataflow diagram shows the processing necessary to get the average
household purchases during the first and last year of purchases.

Using the Slope

The purchases in this household have increased over time, although irregu-
larly. Figure 8-16 shows the purchases for two households over several years.
One household has seen their orders increase over time; the other has seen
them decrease. The chart also shows the best fit line for each household. The
household with increasing purchases has a line that goes up, so the slope is
positive. The other line decreases, so its slope is negative. Chapter 11 discusses
best fit lines in more detail.

The slope of the best fit line connecting the household with increasing pur-
chases is 0.464, which means that for each day, the expected value of an order
from the household increases by $0.46, or about $169 per year. The slope pro-
vides a simple summary of purchases over time. This summary can be useful
for reporting purposes, although it works better when there are more data
points. Slopes are better at summarizing data collected monthly, rather than at
irregular, highly spaced transactions. 

Calculating the Slope

The formula for any straight line is written in terms of its slope and Y-intercept.
If we knew the formula for the best fit line, the slope would fall out of it. Fortu-

OUTPUT 

APPEND
earliest = (case when year = minyear
                       then totalprice end)
latest = (case when year = maxyear

                   then totalprice end)

AGGREGATE 
group by householdid, minyear, maxyear 

 

AGGREGATE 
group by minyear, maxyear 

JOIN 
on householdid, 

(year = minyear or 
year = maxyear) 

JOIN 
on customerid 

AGGREGATE 
group by householdid, 

YEAR(orderdate) 

avgprice = avg(totalprice) 

READ 
customer 

READ 
orders 

JOIN 
on customerid 

AGGREGATE 
group by householdid 

READ 
customer 

READ 
orders 

FILTER 
minyear < maxyear 

ho 

avgearliest = avg(earliest) 
avglatest = avg(latest) 

avgearliest = avg(avgearliest) 
avglatest = avg(latest) 

minyear = MIN(YEAR(orderdate)) 
maxyear = MAX(YEAR(orderdate)) 

hminmax 
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nately, the best fit line is not difficult to calculate in SQL. Each data point —
each order — needs an X-coordinate and a Y-coordinate. The Y-coordinate is the
TOTALPRICE on the order at that point in time. The X-coordinate should be 
the date. However, dates do not work particularly well in mathematical calcu-
lations, so instead we’ll use the number of days since the beginning of 2000. The
idea is to use these X- and Y-coordinates to calculate the trend (slope) of the best
fit line.

Figure 8-16: These customers have different purchase trends over time.

The formula requires five aggregation columns:

■■ N: the number of data points

■■ SUMX: the sum of the X-values of the data points

■■ SUMXY: the sum of the product of the X-value times the Y-value

■■ SUMY: sum of the Y-values

■■ SUMYY: sum of the squares of the Y-values

The slope is then the ratio between two numbers. The numerator is n*SUMXY
– SUMX*SUMY; the denominator is n*SUMXX – SUMX*SUMX. The following query
does this calculation:

SELECT h.*, (1.0*n*sumxy - sumx*sumy)/(n*sumxx - sumx*sumx) as slope

FROM (SELECT householdid, COUNT(*) as n,

SUM(1.0*days) as sumx, SUM(1.0*days*days) as sumxx,

SUM(totalprice) as sumy, SUM(days*totalprice) as sumxy

FROM (SELECT o.*, DATEDIFF(dd, ‘2000-01-01’, orderdate) as days

FROM orders o

) o JOIN customer c ON o.customerid = c.customerid

GROUP BY householdid

HAVING MIN(orderdate) < MAX(orderdate) ) h

y = -0.4192x + 17665 
y = 0.4641x - 18627 
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The innermost subquery defines DAYS, which is the difference between the
order date and the beginning of 2000. Then the five variables are defined in
another subquery, and finally SLOPE in the outermost: 

The slope is defined only when a household has orders on more than one
day. So, this query also limits the calculation to households where the span
between the earliest date and the latest date is greater than zero. This elimi-
nates households with only one purchase, as well as those with multiple pur-
chases all on the same day.

Time to Next Event

The final topic in this chapter combines the ideas from survival analysis with
repeated events. This topic is quite deep, and this section introduces the ideas
as they can be implemented in SQL and Excel. The question is: How long until
a customer places another order?

Idea behind the Calculation
To apply survival analysis to repeated events, we need the date of the next
order in the household (if any) appended to every order. The order date and
next order date provide the basic information needed for time-to-event sur-
vival analysis, although the definitions for survival analysis are inverted from
the last two chapters:

■■ The “start” event is when a customer makes a purchase.

■■ The “end” event is either the next purchase date or the cutoff date.

This terminology is backwards. “Survival” ends up meaning the survival of
the customer’s “non-purchase” state. In fact, we are interested in the exact
opposite of survival, 100%-Survival, which is the cumulative probability that
customers have made a purchase up to some given point in time.

Figure 8-17 shows the overall time-to-next purchase curve for all house-
holds along with the daily “hazard” that a customer makes a purchase. The
first thing to note is that after three years, only about 20% of customers have
made another purchase. This is consistent with the fact that most households
have only one order.

The hazards show an interesting story. There are clearly peaks after one year
with echoes at two years and three years. These are customers making pur-
chases once per year, most likely holiday shoppers. It suggests that there is a
segment of such shoppers.

Chapter 8 ■ Customer Purchases and Other Repeated Events 395

99513c08.qxd:WileyRed  8/27/07  1:56 PM  Page 395



Figure 8-17: This chart shows the time to next order, both as a cumulative proportion 
of customers (1-Survival) and as a daily “risk” of making a purchase (hazard probability).

Calculating Next Purchase Date Using SQL
The hardest part of answering the question is appending the date of the next
order. Figure 8-18 shows a dataflow diagram of the logic for appending the
next date. First, the Orders table and Customer table are joined together to
append the HOUSEHOLDID to every order. This table is then joined to itself,
so every order in a household is paired with every other one. The resulting
self-joined table is aggregated by the original HOUSEHOLDID and ORDER-
DATE. The next order is the minimum of the order date that occurs after the
original ORDERDATE. The key idea here is to do a self-join and then aggrega-
tion to calculate the “next” date.

The following SQL accomplishes this:

SELECT o1.householdid, o1.orderdate as firstdate,

MIN(CASE WHEN o2.orderdate > o1.orderdate THEN o2.orderdate END

) as nextdate,

COUNT(*) as numords,

MAX(CASE WHEN o2.orderdate > o1.orderdate THEN 1 ELSE 0 END

) as hasnext

FROM (SELECT c.householdid, o.*

FROM orders o JOIN customer c ON o.customerid = c.customerid

) o1 LEFT OUTER JOIN

(SELECT c.householdid, o.*

FROM orders o JOIN customer c ON o.customerid = c.customerid) o2

ON o1.householdid = o2.householdid

GROUP BY o1.householdid, o1.orderdate

This SQL follows the same logic as the dataflow, joining Orders and Customer,
then doing a self-join, then the aggregation. This logic can be extended to do
other things, such as calculating the total number of orders and the number of
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orders before the first one. The total number of orders is simply COUNT(*). The
number of orders before the first one can also be calculated:

SUM(CASE WHEN o2.orderdate < o1.orderdate THEN 1
ELSE 0 END) as numbef

Doing a self-join and aggregation is quite powerful, because it provides the
means to calculate many different, interesting variables. However, it is prob-
ably not very efficient, and SQL extensions might be more efficient for the
same calculation.

Figure 8-18: This dataflow diagram shows the processing needed to append the next
order date to a specific order.

From Next Purchase Date to Time-to-Event
The time to next purchase is calculated as follows:

■■ The days to next purchase is the next order date minus the order date.

■■ When the next purchase date is NULL, use the cutoff date of Sep 20, 2016.

This is the duration in days. In addition, a flag is needed to specify whether the
event has occurred.

OUTPUT 

APPEND 

AGGREGATE 
group by tenure 

LEFT OUTER 
JOIN 

on householdid, 
o1.orderdate < 
o2.orderdate 

JOIN 
on customerid 

READ 
customer 

READ 
orders 

READ 
customer 

READ 
orders 

pop = COUNT(*) 
stops = SUM(isstop) 

AGGREGATE 
group by householdid, o1.orderdate 

nextdate = MIN(o2.orderdate) 

o1 

o2 

JOIN 
on customerid 

tenure = COALESCE(nextdate, <cutoffdate>-o1.orderdate 
isstop = (nextdate is NULL) 
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The following query aggregates by the days to the next purchase, summing
the number of orders with that date and the number of times when another
order occurs (as opposed to hitting the cutoff date):

SELECT DATEDIFF(dd, firstdate, ISNULL(nextdate, ‘2016-09-20’)) as days,

COUNT(*),

SUM(CASE WHEN numbef = 1 THEN 1 ELSE 0 END) as ord1,

. . . 

SUM(CASE WHEN numbef = 5 THEN 1 ELSE 0 END) as ord5,

SUM(hasnext) as hasnext,

SUM(CASE WHEN numbef = 1 THEN hasnext ELSE 0 END) as hasnext1,

. . .

SUM(CASE WHEN numbef = 5 THEN hasnext ELSE 0 END) as hasnext5

FROM (<subquery>) a

GROUP BY DATEDIFF(dd, firstdate, ISNULL(nextdate, ‘2016-09-20’))

ORDER BY 1

The calculation then proceeds by calculating the hazard, survival, and 1-S
values for the data in the same way used in the previous two chapters. In addi-
tion to survival, the spreadsheet also calculates 1-S, because this is the more
interesting number.

Stratifying Time-to-Event
As with the survival calculation, the time-to-event can be stratified. For
instance, Figure 8-19 shows the time-to-next-event stratified by the number of
orders that the customer has already made. These curves follow the expected
track: the more often that someone places orders, the sooner they make
another order.

Figure 8-19: This chart shows the time to next purchase stratified by the number of
previous purchases.
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Of course, the number of previous orders is only one variable we might
want to use. We can also stratify by anything that is known at the order time:

■■ Has the time-to-next order varied for orders placed in different years?

■■ Does the time-to-next order vary depending on the size of an order?

■■ Do customers make a repeat order sooner or later when a particular
item is in their basket?

All of these are simple extensions of the idea of doing a self-join and then
aggregating the data to get the next order date.

Lessons Learned

This chapter introduces repeated events, using the purchases data. Repeated
events are customer interactions that occur at irregular intervals.

The first challenge with repeated events is determining whether separate
transactions belong to the same customer. In this chapter, we learned that the
CUSTOMERID column is basically useless, because it is almost always unique.
A better column for identifying transactions over time is HOUSEHOLDID.

Matching customers on transactions using names and addresses is chal-
lenging and often outsourced. Even so, it is useful to be able to use SQL to val-
idate the results. Do the customers in the households make sense?

The classic way of analyzing repeated events is using RFM analysis, which
stands for recency, frequency, monetary. This analysis is feasible using SQL
and Excel, particularly when using the ranking functions in SQL. However,
RFM is inherently limited, because it focuses on only three dimensions of cus-
tomer relationships. It is a cell-based approach, where customers are placed
into cells and then tracked over time.

An important topic in looking at repeated events is whether the sizes of pur-
chases change over time. There are different ways of making the comparison,
including simply looking at the first and last order to see whether the size is
growing or shrinking. The most sophisticated way presented in this chapter is to
calculate the slope of the best fit line connecting the orders. When the slope is
positive, order sizes are increasing; when the slope is negative, order sizes are
decreasing.

The final topic in the chapter applies survival analysis to repeated events,
addressing the question of how long it takes a customer to make the next order.
This application is quite similar to survival analysis for stopped customers,
except that the important customers — the ones who make the purchase — are
the ones who do not survive.

The next chapter continues analysis of repeated events, but from a perspective
that is not covered in this chapter at all. It discusses the actual items purchased
in each order and what this tells us about the items and the customers.

Chapter 8 ■ Customer Purchases and Other Repeated Events 399

99513c08.qxd:WileyRed  8/27/07  1:56 PM  Page 399



99513c08.qxd:WileyRed  8/27/07  1:56 PM  Page 400



401

The previous chapter discussed everything about customer behavior — when,
where, how — with one notable exception: what customers purchase. This
chapter dives into the detail, looking at the specific products being purchased,
to learn both about the customers and the products they are buying. Market
basket analysis is the general name for understanding product purchase pat-
terns at the customer level.

Association rules form a big part of market basket analysis. An association
rule specifies that certain products are purchased with other products. Histor-
ically, the classical example is beer and diapers. The story goes that these are
purchased together as young families prepare for the weekend. Although this
is a classic example of market basket analysis, association rules were not used
to find this “unexpected” pattern, because retailers were already familiar with
the purchase trends of the two products.

Association rules can reduce millions of transactions on thousands of items
into easy-to-understand rules. This chapter introduces the techniques for dis-
covering association rules using SQL. The processing is rather complex, so the
queries in this chapter are advanced, sometimes making use of temporary
tables to hold intermediate results.

Some data mining software includes algorithms for association rules. How-
ever, such software does not provide the flexibility available when using SQL
directly. This chapter also improves on the basic algorithm by showing some
interesting variations on association rules, including heterogeneous associa-
tions and sequential associations.

What’s in a Shopping Cart?
Market Basket Analysis and

Association Rules

C H A P T E R
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Market basket analysis is not only association rules. The chapter starts with
exploratory analysis of purchases. Such analysis can help us understand which
products are most associated with the customers who spend lots of money,
which products are associated with one-time purchases, and similar questions.

Exploratory Market Basket Analysis

This section explores the purchases database from the perspective of under-
standing the products in the orders.

Scatter Plot of Products
There are about four thousand products in the Product table, which are classi-
fied into nine different product groups. Chapter 3 looked at product groups,
and pointed out that the most popular group is BOOK.

Two of the most interesting features of products are price and popularity.
Scatter plots are a good way to visualize this information, with different
groups having different shapes and colors. The following query extracts the
information for the scatter plot:

SELECT p.productid, p.productgroupname, p.fullprice, olp.numorders

FROM (SELECT ol.productid, COUNT(DISTINCT orderid) as numorders

FROM orderline ol

GROUP BY ol.productid) olp JOIN

product p ON olp.productid = p.productid

ORDER BY p.productid

The scatter plot in Figure 9-1 shows relationships among these three fea-
tures. Along the bottom of the chart are the few dozen products that have a
price of $0. Most of these are, appropriately, in the FREEBIE category, along
with a handful in the OTHER category. Although not obvious on the scatter
plot, all FREEBIE products do, indeed, have a price of zero.

The upper left-hand portion of the chart consists almost entirely of products
in the ARTWORK product group. These products are expensive and rarely pur-
chased. There are a few products in the ARTWORK group that are quite popu-
lar (purchased by over one thousand customers) and some that are quite
inexpensive (well under one hundred dollars), but these are exceptions within
the category.

The most popular product group is BOOK, as seen by the abundance of tri-
angles on the right part of the chart. Most are inexpensive, but one is among
the most expensive products. This is, perhaps, an example of misclassifica-
tion. The rest of the products tend to be in the middle, both in terms of pric-
ing and popularity.
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Figure 9-1: This scatter plot shows the relationship between product groups, price, and
number of purchases.

This scatter plot is a log-log plot, meaning that both the horizontal and ver-
tical axes are on a logarithmic scale where one unit on either axis increases by
a factor of ten. Log scales are useful when all values are positive and there is a
wide range of values.

Log-log plots are not able to plot zero (because the logarithm of zero is
undefined), and yet the chart shows the “0” value. The trick is that zero is
really 0.1, which, when formatted to have no decimal places, looks like “0”
instead of “0.1.” To make this work, the zeros in the data have to be replaced
by the value 0.1, either using SQL:

(CASE WHEN <value> = 0 THEN 0.1 ELSE <value> END) as <whatever>

Or using Excel:

=IF(<cellref>=0, 0.1, <cellref>)

The number format for the chart simply shows the value with no decimal
places.

TI P Use the log scale on axes where the values have a wide range and are all
positive. The log scale does not work when values are negative or zero; however,
it is possible to show zero values by changing them to a small value and then
using clever formatting.

Duplicate Products in Orders
Sometimes, the same product occurs multiple times in the same order. This is
an anomaly because such orders should be using the NUMUNITS column for
multiple products rather than replicating order lines. What is happening?

Chapter 9 ■ What’s in a Shopping Cart? 403

99513c09.qxd:WileyRed  8/27/07  1:17 PM  Page 403



Counting is a good place to start, as with the following query: 

SELECT numinorder, COUNT(*) as cnt, COUNT(DISTINCT productid) as numprods

FROM (SELECT ol.orderid, ol.productid, COUNT(*) as numinorder

FROM orderline ol

GROUP BY ol.orderid, ol.productid) olp

GROUP BY numinorder

ORDER BY 1

The query counts the number of orders that have a product on more than one
order line, and the number of different products that appear on those orders.

Table 9-1 shows that almost 98% of the time products appear on only one
order line, as expected. However, there are clearly exceptions. One possible
explanation is that some small group of products is to blame. Perhaps some
products just have a tendency to appear on multiple order lines. The following
query shows that there are, in fact, 1,343 such products:

SELECT COUNT(DISTINCT productid)

FROM (SELECT ol.orderid, ol.productid

FROM orderline ol

GROUP BY ol.orderid, ol.productid

HAVING COUNT(*) > 1) olp

Table 9-1: Number of Order Lines within an Order Having the Same Product

LINES IN ORDER NUMBER OF NUMBER OF 
WITH PRODUCT ORDERS PRODUCTS % OF ORDERS

1 272,824 3,684 97.9%

2 5,009 1,143 1.8%

3 686 344 0.2%

4 155 101 0.1%

5 51 40 0.0%

6 20 14 0.0%

7 1 1 0.0%

8 4 3 0.0%

9 1 1 0.0%

11 2 2 0.0%

12 1 1 0.0%

40 1 1 0.0%
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Because about one-third of the products occur on multiple order lines
within one order, the products do not seem to be the cause of order line dupli-
cation. A reasonable alternative hypothesis is that the duplicates come from a
particular period of time. Perhaps there was a period of time when NUMU-
NITS was not used. Looking at the date of the first order containing each
duplicate product sheds light on this:

SELECT YEAR(minshipdate) as year, COUNT(*) as cnt

FROM (SELECT ol.orderid, ol.productid, MIN(ol.shipdate) as minshipdate

FROM orderline ol

GROUP BY ol.orderid, ol.productid

HAVING COUNT(*) > 1) olp

GROUP BY YEAR(minshipdate)

ORDER BY 1

The query uses SHIPDATE instead of ORDERDATE simply to avoid joining in
the Orders table. The subquery finds orders with duplicate products by using the
HAVING clause to choose only those ORDERID and PRODUCTID pairs that
appear more than once.

Although some years have much higher occurrences of products on dupli-
cate order lines, the phenomenon has occurred in all years for which there is
data as shown in Table 9-2. The reason is not a short-term change in policy.

Table 9-2: Number of Orders with Duplicate Products by Year

YEAR NUMBER OF ORDERS WITH DUPLICATE PRODUCTS

2009 66

2010 186

2011 392

2012 181

2013 152

2014 1,433

2015 2,570

2016 951

The duplicates seem to be due neither to products nor time. Perhaps in des-
peration, the next thing to consider is other data within the Orderline table.
Two columns of interest are SHIPDATE and UNITPRICE. These columns sug-
gest the question: How often do multiple ship dates and unit prices occur for the
same product within an order?
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The idea behind answering this question is to classify each occurrence of
multiple lines into the following categories: 

■■ “ONE” or “SOME” unit prices.

■■ “ONE” or “SOME” shipping dates.

Table 9-3 shows the results from such a classification. Having multiple values
for SHIPDATE suggests an inventory issue. A customer orders multiple units
of a particular item, but there is not enough in stock. Part of the order ships
immediately, part ships at a later time.

Table 9-3: Classification of Duplicate Order Lines by Number of Shipping Dates and Prices
within Order

SHIP NUMBER OF NUMBER OF 
PRICES DATES PRODUCTS ORDERS

ONE ONE 262 1,649

ONE SOME 1,177 4,173

SOME ONE 33 44

SOME SOME 59 65

Having multiple values for UNITPRICE suggests that a customer may be
getting a discount on some of the units, but the discount is not available on all
of them. And, there are still over one thousand orders with duplicate products
that have the same ship date and unit price on all of them. These might be
errors. Or, they might be related to data that is unavailable such as orders
going to multiple shipping addresses.

The following query was used to generate the table:

SELECT prices, ships, COUNT(DISTINCT productid) as numprods,

COUNT(*) as numtimes

FROM (SELECT ol.orderid, ol.productid,

(CASE WHEN COUNT(DISTINCT unitprice) = 1 THEN ‘ONE’

ELSE ‘SOME’ END) as prices,

(CASE WHEN COUNT(DISTINCT shipdate) = 1 THEN ‘ONE’

ELSE ‘SOME’ END) as ships

FROM orderline ol

GROUP BY ol.orderid, ol.productid

HAVING COUNT(*) > 1) olp

GROUP BY prices, ships

Figure 9-2 shows the dataflow diagram for this query. The order lines for each
product are summarized, counting the number of different prices and ship
dates on the lines. These are then classified as “ONE” or “SOME” and aggre-
gated again. This query only uses GROUP BY to do the processing; it contains no
joins at all.
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Figure 9-2: This dataflow diagram shows the processing for calculating the number of
prices and of ship dates on order lines with the same product.

Histogram of Number of Units
What is the average number of units for products in a given order by product group?
It is tempting to answer this question using the following query:

SELECT productgroupname, AVG(numunits) as avgnumunits

FROM orderline ol JOIN product p ON ol.productid = p.productid

GROUP BY productgroupname

However, this query misses an important point: some products are split
among multiple order lines in the data. Adding up NUMUNITS for each
product in each order, and then taking the average solves this.

Both the correct average value and the incorrect value from the first query
are in Table 9-4. The table shows that some products, such as ARTWORK, are
less likely to have multiple units in the same order. Other products, such as
those in the OCCASION product group, are more likely to be ordered in
multiple quantities.

AGGREGATE 
group by orderid, productid 

 READ 
orderline 

FILTER 
numlines>1 

Order Line 
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4 
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7 
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1 
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$40 
$50 

$100 
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$100 
$100 
$100 

Order Product Ship Date Price 

OUTPUT 

AGGREGATE 
group by prices, ships 

Order 

1 
1 
2 
3 
4 
4 
4 

Product Nump Nums Num lines 

A 
B 
C 
D 
E 
F 
G 

2
1
1
2
1
1
1

1
2
1
2
1
1
1

2
2
1
2
1
1
1

Order Product Nump Nums Numlines Prices Ships 

1 
1 
2 
3 
4 
4 
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A 
B 
C 
D 
E 
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G 

2 
1 
1 
2 
1 
1 
1 

1 
2 
1 
2 
1 
1 
1 

2 
2 
1 
2 
1 
1 
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SOME 
ONE 
ONE 

SOME 
ONE 
ONE 
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ONE 
SOME 
ONE 
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Order Product Nump Nums Numlines Prices Ships

1
1
3

A
B
D

2
1
2

1
2
2

2
2
2

SOME
ONE

SOME

ONE
SOME
SOME

Prices Ships Numprods Numorders 

SOME 
ONE 

SOME 

ONE 
SOME 
SOME 

1 
1 
1 

1 
1 
1 

numprds = COUNT(DISTINCT productid) 
numorders = COUNT(*) 

nump = COUNT(DISTINCT unitprice) 
nums = COUNT(DISTINCT shipdate) 
numlines = COUNT(*) 

APPEND
prices = (case when nump = 1 then ‘ONE’
                       else ‘SOME’ end)
ships = (case when nump = 1 then ‘ONE’
else ‘SOME’ end)

Chapter 9 ■ What’s in a Shopping Cart? 407

99513c09.qxd:WileyRed  8/27/07  1:17 PM  Page 407



Table 9-4: Number of Units by Order and by Order Line

PRODUCT GROUP ORDER AVERAGE ORDERLINE AVERAGE

#N/A 1.00 1.00

APPAREL 1.42 1.39

ARTWORK 1.26 1.20

BOOK 1.59 1.56

CALENDAR 1.67 1.64

FREEBIE 1.53 1.51

GAME 1.49 1.46

OCCASION 1.82 1.79

OTHER 2.44 2.30

For most of the product groups, the first method undercounts the number
of units in an order by about 2%; this is consistent with the fact that about
2% of products in an order are on multiple lines. However, some categories
are affected more than others. The undercounting for ARTWORK is over
5%, for instance.

The following query generated the data for the table:

SELECT productgroupname, AVG(ol.numunits) as orderaverage,

SUM(ol.numunits) / SUM(ol.numlines) as orderlineaverage

FROM (SELECT ol.orderid, ol.productid, SUM(numunits)*1.0 as numunits,

COUNT(*)*1.0 as numlines

FROM orderline ol

GROUP BY ol.orderid, ol.productid) ol JOIN

product p ON ol.productid = p.productid

GROUP BY productgroupname

ORDER BY productgroupname

This query summarizes the Orderlines table, summing the NUMUNITS values
for a given product in each order, and then taking the average. This is the real
average of the number of products in an order. It is still possible to calculate
the average number of products per order line by counting the total number 
of order lines for the product, and doing the division at the outer level. Both
values can be calculated with a single query.

Products Associated with One-Time Customers
Some products may be bad in the sense that customers purchase them and
never purchase anything else. This suggests the question: How many products
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are purchased exactly once by a household that never purchases anything else? The
following query returns the fact that 2,461 products have one-time purchasers:

SELECT COUNT(DISTINCT productid)

FROM (SELECT householdid, MIN(productid) as productid

FROM customer c JOIN orders o ON c.customerid = o.customerid JOIN

orderline ol ON o.orderid = ol.orderid

GROUP BY householdid

HAVING COUNT(DISTINCT ol.productid) = 1 AND

COUNT(DISTINCT o.orderid) = 1) h

Much of the work in this query occurs in the HAVING clause. Of course, the Cus-
tomer, Orders, and Orderline tables all need to be joined together. Then, the
HAVING clause chooses only those households that have exactly one order and
exactly one product. The HAVING clause counts the number of products by
counting the number of distinct values of PRODUCTID and the number of
orders by counting the number of distinct values of ORDERID.

TI P When bringing together data from different tables that have a one-to-
many relationship, such as products, orders, and households, COUNT DISTINCT
correctly counts the values at different levels. Use COUNT(DISTINCT orderid)
rather than COUNT(orderid) to get the number of orders.

There are quite a few one-time products. More interesting are products that
tend to be associated with one-time household purchasers: Which products have
a high proportion of their purchases associated with one-order households? The
answer to this question is the ratio of two numbers:

■■ The number of households where the product is the only product the
household ever buys.

■■ The total number of households that purchase the product.

Both these numbers can be summarized from the data.
The following query performs the two calculations for each product:

SELECT p.productid, numhouseholds, COALESCE(numuniques, 0) as numuniques,

COALESCE(numuniques*1.0, 0.0) / numhouseholds as prodratio

FROM (SELECT productid, COUNT(*) as numhouseholds

FROM (SELECT c.householdid, ol.productid

FROM customer c JOIN

orders o ON c.customerid = o.customerid JOIN

orderline ol ON o.orderid = ol.orderid

GROUP BY c.householdid, ol.productid) hp

GROUP BY productid) p LEFT OUTER JOIN

(SELECT productid, COUNT(*) as numuniques

FROM (SELECT householdid, MIN(productid) as productid

FROM customer c JOIN

(continued)
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orders o ON c.customerid = o.customerid JOIN

orderline ol ON o.orderid = ol.orderid

GROUP BY householdid

HAVING COUNT(DISTINCT ol.productid) = 1 AND

COUNT(DISTINCT o.orderid) = 1) h

GROUP BY productid) hp

ON hp.productid = p.productid

ORDER BY 4 DESC

This query aggregates the product and household information two ways. The
first subquery calculates the total number of households that purchase each
product. The second subquery calculates the total number of households
whose only order is a one-time purchase of the product.

The results are somewhat expected. The products that have the highest ratios
are the products that have only one order. In fact, of the 419 products where
every order is the only household order, only one has more than ten purchases.
The results do highlight the fact that products have different behavior with
respect to bringing in one-time households. The category of the product makes
a difference. Of the 419 products that bring in exclusively one-time purchasers,
416 of them are in the ARTWORK category.

This suggests a follow-up question: For the different product groups, what is
the proportion of one-time purchasing households? The following query answers
this question:

SELECT productgroupname, COUNT(*) as numprods,

SUM(numhouseholds) as numhh, SUM(numuniques) as numuniques,

SUM(numuniques*1.0)/SUM(numhouseholds) as ratio

FROM  (<previous-query-without-order-by>) hp JOIN

product p ON hp.productid = p.productid

GROUP BY productgroupname

ORDER BY 5 DESC

This query uses the previous query (without the ORDER BY clause) as a sub-
query and joins it to the Product table to get the product group:

Figure 9-3 shows number of households that have made a purchase and the
proportion that are one-time-only within each category. By this measure, the
worst product group is APPAREL, where over half the purchasers are one-
time only. The best is FREEBIE, with less than 1%. That is presumably because
the FREEBIE products are typically included in bundles with other products.

Products Associated with the Best Customers
Once upon a time, in the 1990s, when bill paying services were very expensive
(because banks actually had to write and send checks), Fidelity Investments con-
sidered canceling its bill paying service. Then someone in its special projects
group noticed that customers who used the service had the largest balances and
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best retention. There is a similar story about a manager wanting to remove
gourmet mustard from shelves in a food market to make room for other, faster
moving items. Then further analysis showed that customers who purchase
gourmet mustard do so in very large purchases. Without the mustard, the store
feared losing the sales of everything else in those customers’ carts.

Figure 9-3: The proportion of households that purchase only one product varies
considerably by product group. Some groups such as APPAREL are associated with 
such unique purchasers.

Such insights (as well as most people’s personal experiences) illustrate that
customers might make purchase decisions based on particular products. This
leads to the question: What products have the largest remaining average value in the
orders where they appear? Remaining value, also called residual value, is the value
that remains in the order after said products are removed. An order containing
only one product contributes no residual value for that product.

This section discusses an approach to residual value calculations, as well as
certain biases in the calculation that are difficult to remove. The following
query calculates the average residual value for each product; that is, it calcu-
lates the average remaining value in orders that contain the product:

SELECT op.productid, COUNT(*) as numorders, AVG(ototal) as avgorder,

AVG(prodprice) as avgprod, AVG(ototal-prodprice) as avgresidual

FROM (SELECT orderid, SUM(ol.totalprice) as ototal

FROM orderline ol

GROUP BY orderid

HAVING COUNT(DISTINCT productid) > 1) o JOIN

(SELECT o.orderid, ol.productid, SUM(ol.totalprice) as prodprice

FROM orderline ol JOIN orders o ON ol.orderid = o.orderid

GROUP BY o.orderid, ol.productid

) op

ON op.orderid = o.orderid

GROUP BY op.productid

ORDER BY AVG(o.ototal - prodprice) DESC
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The innermost subquery summarizes orders with more than one product by
product, thereby treating multiple order lines with the same product as a single
product. The residual value for each product is the order total minus the
amount for each product in the order (so an order contributes to the residual
values of all products in it). The average of the residual is then calculated for
each product.

Summarizing by product group uses the previous query as a subquery
(without the ORDER BY clause):

SELECT p.productgroupname, COUNT(*) as numproducts,

SUM(numorders) as numorders, AVG(avgresidual) as avgresidual

FROM (<previous-query-without-order-by>) o JOIN

product p ON p.productid = o.productid

GROUP BY productgroupname

ORDER BY 1

This query calculates the average residual for each product and then returns
the average for all products within a product group. This is different from
calculating the average residual for a product group, which would require
modifying the previous query to be at the product group level rather than
the product level.

Table 9-5 shows the average residual value for a market basket as well as
the average price of items. Not surprisingly, the most expensive products —
ARTWORK — have, by far, the highest residual value. This suggests that cus-
tomers are purchasing multiple expensive items at the same time, rather than
mixing and matching less expensive items with more expensive ones.

Table 9-5: Average Residual Value by Product Group

AVERAGE AVERAGE
PRODUCT NUMBER OF NUMBER OF ORDER HOUSEHOLD

GROUP PRODUCTS ORDERS RESIDUAL RESIDUAL

#N/A 1 9 $868.72 $658.40

APPAREL 85 4,030 $39.01 $618.88

ARTWORK 2,576 21,456 $1,032.24 $1,212.27

BOOK 236 48,852 $67.94 $365.06

CALENDAR 31 3,211 $37.01 $387.74

FREEBIE 25 27,708 $28.27 $1,584.93

GAME 230 12,844 $133.50 $732.72

OCCASION 71 16,757 $41.98 $719.87

OTHER 53 3,100 $36.49 $1,123.14
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Calculating the average residual at the household level requires joining in
the household ID, using the Customer and Orders tables. The household aver-
age residual is larger than the residual at the order level, even though most
households are one-time purchasers. The reason points to a challenge when
working with market basket data.

There happen to be a few households with very many orders. These house-
holds have very large residual values for any product they purchase, and, they
have purchased products from all product groups. In short, the problem is that
large households dominate the residual value calculation for households. One
way to remove the bias is to limit the calculations to households with only two
purchases. Another way is to randomly choose one pair of products in each
household, but such a technique is outside the scope of this book. The effect
exists at the order level, but because there are many fewer humongous orders,
the bias is smaller.

WARN I NG When analyzing market basket data, the size of orders (or of
households) can introduce unexpected biases in results.

Changes in Price
Some products have different prices within an order. More products have dif-
ferent prices throughout the historical data. What is the number of different prices
that products have? Actually, this question is interesting, but it is more feasible
to ask a slightly simpler question: What proportion of products in each product
group has more than one price? The following query answers this question:

SELECT productgroupname, COUNT(*) as allproducts,

SUM(CASE WHEN numprices > 1 THEN 1 ELSE 0 END) as morethan1price,

SUM(CASE WHEN numol > 1 THEN 1 ELSE 0 END) as morethan1orderline

FROM (SELECT ol.productid, productgroupname, COUNT(*) as numol,

COUNT(DISTINCT unitprice) as numprices 

FROM orderline ol JOIN product p ON ol.productid = p.productid

GROUP BY ol.productid, productgroupname) a

GROUP BY productgroupname

ORDER BY 1

Products must appear in more than one order line to have more than one
price. Table 9-6 shows that 74.9% of products appearing more than once have
multiple prices. In some product groups, such as APPAREL and CALEN-
DARS, almost all the products have more than one price. Perhaps this is due to
inventory control. Calendars, by their very nature, become outdated, so once
the year covered by the calendar begins, the value decreases. APPAREL is also
quite seasonal, with the same effect.
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Table 9-6: Products by Product Groups That Have More Than One Price

PRODUCT PRODUCTS WITH 2 PRODUCTS WITH 2
GROUP OR MORE ORDERS OR MORE PRICES PROPORTION

#N/A 0 1 0.0%

APPAREL 79 84 94.0%

ARTWORK 2,145 2,402 89.3%

BOOK 230 236 97.5%

CALENDAR 30 30 100.0%

FREEBIE 0 23 0.0%

GAME 176 211 83.4%

OCCASION 53 70 75.7%

OTHER 37 50 74.0%

TOTAL 2,750 3,107 88.5%

Figure 9-4 shows the average price by month for CALENDARs compared to
BOOKs, for products costing less than $100 (expensive products appear for
short periods confusing the results). For most years, the average unit price for
calendars increases in the late summer, and then decreases over the next few
months. By contrast, books tend to have their lowest price of the year in Janu-
ary, presumably during after-holiday sales. Such charts suggest questions
about price elasticity (whether changes in price for a product affects demand),
which we’ll investigate in Chapter 11.

The query used to create this is:

SELECT YEAR(orderdate) as yr, MONTH(orderdate) as mon,

AVG(CASE WHEN productgroupname = ‘CALENDAR’ AND fullprice < 100

THEN unitprice END) as avgcallt100,

AVG(CASE WHEN productgroupname = ‘BOOK’ AND fullprice < 100

THEN unitprice END) as avgbooklt100

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid JOIN

product p ON ol.productid = p.productid

WHERE productgroupname IN (‘CALENDAR’, ‘BOOK’)

GROUP BY YEAR(orderdate), MONTH(orderdate)

ORDER BY 1, 2

This query selects appropriate product groups and then does the conditional
aggregation using a CASE statement. The CASE statement does not have an ELSE
clause, intentionally. Non-matching rows get NULL values, so they do not affect
the average.
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Figure 9-4: The average prices of calendars and books sold change during the year 
by month.

Combinations (Item Sets)

Combinations, also called item sets, are groups of products that appear
together within an order. This section looks at two-way combinations, show-
ing how to use SQL to generate all such combinations. It then moves to some
interesting variations, especially combinations of products at the household
level rather than the order level. The next sections apply these ideas to gener-
ating association rules. Because the queries are starting to get more compli-
cated, it can be useful to think about query performance, as discussed in the
aside “Some SQL Efficiency Tips.”

Combinations of Two Products
Combinations of one product are not particularly interesting, so this section
starts by looking at combinations of two products. A combination is of a set of
items. The combination consisting of products A and B is the same as B and A.
This section counts the number of product pairs in orders and shows how to
use SQL to generate them.

Number of Two-Way Combinations

If an order contains one product, how many two-way combinations of prod-
ucts does it have? The answer is easy. There are none, because there is only one
product. If there are two products, then there is one, because A and B is the
same as B and A.

And three-way combinations? The answer happens to be three, but the situa-
tion is starting to get more complicated. There is, however, an easy formula.
Understanding it starts with the observation that the number of pairs of products
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is the number of products squared. Because pairs where the same product occurs
twice are not interesting, subtract out the pairs that consist of identical products.
And, because pairs are being counted twice this way (A and B as well as B and A),
the difference needs to be divided in two. The number of two-way combinations
in an order is half the difference between the number of products in the order and
that number squared.

SOME SQL EFFICIENCY TIPS

Many of the queries involving item sets and association rules are complicated.
The purpose of a database engine is to run queries accurately and quickly.
Sometimes, we can help the engine do a better job.

One important thing is ensuring that columns being joined together have 
the same types. So, the ORDERID should always be an INTEGER (or whatever)
regardless of the table where it appears.

Creating appropriate indexes is also important for enhancing performance. In
a database that has lots of updating, indexes slow things down. However, in a
database that is primarily query-only, indexes usually speed things up. Here are
three tips for creating indexes:

1. Create an index on the primary keys of tables that are often used for joins,
such as PRODUCT.PRODUCTID. Some databases do this automatically, if
the column is declared as a primary key when the table is created.

2. Create an index on columns often used in COUNT(DISTINCT) expressions.
These are often primary keys, so are covered by (1).

3. Create more than one index on a table if appropriate. Also, create indexes
with multi-part keys if appropriate.

The normal syntax for creating an index is:

CREATE INDEX <name> ON <table>.<column>

And more than one column can be added for composite index keys.
The way the database engine runs a query is called a query plan. Sometimes,

indexes confuse the database and there are circumstances where removing an
index makes queries run faster. Alas, resolving these situations requires
detailed knowledge of the particular database and particular query; when such
situations arise, it is usually because the database engine needs to read all the
rows in a table anyway and using the index to read all the rows slows it down.

Another trick is using intermediate tables. These result in simpler queries,
which are easier to optimize. They also provide an opportunity to add indexes
that may help to improve performance. On the other hand, intermediate tables
can make SQL less readable and less maintainable, so they should not be
overused and when used, should be given clear, understandable names.

One final comment is: do not to be afraid to try different things to see which
combinations work best.
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The following query calculates the number of two-way combinations
among all orders in Orderline:

SELECT SUM(numprods * (numprods - 1)/2) as numcombo2

FROM (SELECT orderid, COUNT(DISTINCT productid) as numprods

FROM orderline ol

GROUP BY orderid) o

Notice that this query counts distinct products rather than order lines, so
orders with the same product on multiple lines do not affect the count.

The number of two-way combinations is 185,791. This is useful because the
number of combinations pretty much determines how quickly the query gen-
erating them runs. A single order with a large number of products can seri-
ously degrade performance. For instance, if one order contains a thousand
products, there would be about five hundred thousand two-way combinations
in just that one order — versus 185,791 in all the orders data. As the number of
products in the largest order increases, the number of combinations increases
much faster.

WARN I NG Large orders that contain many items can seriously slow down
queries for combinations and association rules. A particularly dangerous
situation is when there is a “default” order id, such as 0 or NULL, that
corresponds to many purchases.

Generating All Two-Way Combinations

The approach for calculating the combinations is to do a self-join on the Order-
line table, with duplicate product pairs removed. The goal is to get all pairs of
products, subject to the conditions:

■■ The two products in the pair are different.

■■ No two combinations have the same two products.

The first condition is easily met by filtering out any pairs where the two prod-
ucts are equal. The second condition is also easily met, by requiring that the
first product id be smaller than the second product id. The following query
generates all the combinations in a subquery and counts the number of orders
containing each one:

SELECT p1, p2, COUNT(*) as numorders

FROM (SELECT op1.orderid, op1.productid as p1, op2.productid as p2

FROM (SELECT DISTINCT orderid, productid FROM orderline) op1 JOIN

(SELECT DISTINCT orderid, productid FROM orderline) op2

ON op1.orderid = op2.orderid AND

op1.productid < op2.productid

) combinations

GROUP BY p1, p2
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Figure 9-5 shows the data flow for this query. The innermost subqueries,
OP1 and OP2, are joined together (actually this is a self-join) to generate all
pairs of products within each order. The JOIN condition restricts these pairs to
those having different products, with the first smaller than the second. The
outer query aggregates each pair of products, counting the number of orders
along the way.

Figure 9-5: This dataflow generates all the two-way combinations of products in the
Orders table.

Sometimes, we do not want to include all orders. The most common reason
is to limit the combinations to reasonable market baskets, such as those with
between two and ten products. Other reasons are to use orders from a particu-
lar source, or a particular geographic region, or a particular time frame.
Because the preceding query works directly on the Orderline table, it is diffi-
cult to filter by conditions on the orders. The solution is to join in another sub-
query that selects the desired orders:

SELECT p1, p2, COUNT(*) as numorders

FROM (SELECT op1.orderid, op1.productid as p1, op2.productid as p2

FROM (SELECT orderid FROM orderline GROUP BY orderid

HAVING COUNT(DISTINCT productid) BETWEEN 2 and 10

) filter JOIN

(SELECT DISTINCT orderid, productid FROM orderline) op1 

ON filter.orderid = op1.orderid JOIN

(SELECT DISTINCT orderid, productid FROM orderline) op2

ON op1.orderid = op2.orderid AND

op1.productid < op2.productid

) combinations

GROUP BY p1, p2

The additional subquery chooses orders that have between two and ten
orders. Here the subquery is really just an aggregation of the Orderline table,
but it could also be choosing orders based on characteristics in the Orders
table, or even other tables such as Customer or Campaign.
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Examples of Combinations

Generating thousands of combinations is interesting. Looking at a few examples
is informative. The following query fetches the top ten pairs of products in
orders with two to ten products, along with the associated product groups:

SELECT top 10 *, p1.productgroupname, p2.productgroupname

FROM (<combos-subquery>) combos JOIN

product p1 ON combos.p1 = p1.productid JOIN

product p2 ON combos.p2 = p2.productid

ORDER BY numorders DESC

This query uses the previous query as a subquery. Notice that SQL does not
care that the alias for the Product table (P1 and P2) is the same as the name of
a column in the Combos subquery. Although SQL does not care, people read-
ing the query might get confused, and this is not an example of a best practice.

The ten most common product pairs are in Table 9-7. Of the ten, seven
include FREEBIE products, which are usually part of promotions associated
with one particular product. Sometimes there is more than one FREEBIE
included in the promotion.

Table 9-7: Pairs of Products Appearing Together in the Most Orders

NUMBER PRODUCT PRODUCT
PRODUCT 1 PRODUCT 2 OF ORDERS GROUP 1 GROUP 2

12820 13190 2,580 FREEBIE FREEBIE

12819 12820 1,839 FREEBIE FREEBIE

11048 11196 1,822 ARTWORK BOOK

10956 12139 1,481 FREEBIE OCCASION

12139 12820 1,239 OCCASION FREEBIE

12820 12851 1,084 FREEBIE OCCASION

11196 11197 667 BOOK BOOK

12820 13254 592 FREEBIE OCCASION

12820 12826 589 FREEBIE ARTWORK

11053 11088 584 ARTWORK OCCASION

The three combinations that do not have a FREEBIE in them have ARTWORK
and BOOK, BOOK and BOOK, and ARTWORK and OCCASION. These may be
examples of product bundles, two or more products that are marketed together.
The product-level combinations have reconstructed the bundles. In fact, this is
something that commonly happens when looking at combinations of products. 
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Variations on Combinations
This section looks at two useful variations on the idea of combinations. The first
uses the product hierarchy to look at combinations of product groups. The sec-
ond looks at adding more items into the combinations, moving beyond two-way
combinations.

Combinations of Product Groups

This example shows combinations of product groups, rather than products,
to illustrate extending market basket analysis beyond products to product
features. The idea is to treat each order as a collection of product groups,
rather than a collection of products. An order with three books on three order
lines becomes an order with one product group, BOOK. An order that has a
CALENDAR and a BOOK has two product groups.

Because there are many fewer product groups than products, there are not
going to be as many combinations, just a few dozen. The following query
generates the two-way product group combinations, as well as the number
of orders having the combination:

SELECT pg1, pg2, COUNT(*) as cnt

FROM (SELECT op1.orderid, op1.productgroupname as pg1,

op2.productgroupname as pg2

FROM (SELECT orderid, productgroupname FROM orderline ol JOIN

product p ON ol.productid = p.productid

GROUP BY orderid, productgroupname) op1 JOIN

(SELECT orderid, productgroupname FROM orderline ol JOIN

product p ON ol.productid = p.productid

GROUP BY orderid, productgroupname) op2

ON op1.orderid = op2.orderid AND

op1.productgroupname < op2.productgroupname

) combinations

GROUP BY pg1, pg2

This query is very similar to the query for products. The difference is that the
innermost subqueries look up the product group name, aggregating by that
instead of the product id.

Figure 9-6 shows a bubble chart of the results. The two most common product
group pairs are FREEBIE with BOOK and FREEBIE with OCCASION. This is
not surprising, because FREEBIE products are used as marketing incentives.

The two axes in the bubble chart are the two types of product groups in an
order. Creating this bubble chart is challenging, because Excel charting does
not allow the axes of scatter plots and bubble charts to be names. The technical
aside “Bubble Charts and Scatter Plots with Non-Numeric Axes” explains how
to get around this limitation.
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Figure 9-6: This bubble chart shows the most common product pairs. One product is along
each dimension, with the bubble showing the number of orders containing the product.

BUBBLE CHARTS AND SCATTER PLOTS WITH NON-NUMERIC AXES

Unfortunately, bubble charts and scatter plots only allow numbers for the X-
and Y-coordinates. Fortunately, using the XY-labeler introduced in Chapter 4, we
can make scatter plots and bubble plots with non-numeric dimensions, such 
as product group names. As a reminder, the XY chart labeler is not part of 
Excel. It uses an add-in, written by Rob Bovey, and available for download at
http://www.appspro.com/Utilities/ChartLabeler.htm.

The idea is to transform the data to make the dimensions numbers. Then,
two additional series are added to the chart along each dimension. These are
given labels using the XY-labeler, which are the labels on the axes.

Assume that the data is in three columns, the first two are the X- and Y-values,
the third is the bubble size, and the first two are names, rather than numbers.
The example in Figure 9-6 has product group names in these columns. The
bubble chart is created using the following steps:

1. Create a lookup table for the values in each dimension to map each value
to a sequence of integers, the new dimension.

2. Look up the new dimensions for these two new columns.

3. Insert the chart, using the new dimensions rather than the names.

4. Insert two new series, for use as the X-labels and the Y-labels.

5. Format the new series so they are invisible.

6. Use the XY-labeler to label the points with strings.

7. Format the chart as you wish.

Continued on next page
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BUBBLE CHARTS AND SCATTER PLOTS WITH NON-NUMERIC AXES
(CONTINUED)

This process starts by creating the lookup table. An alternative to manually
typing it in is to take all the distinct values in the columns, sort them, and
create the new dimension value in an adjacent column using the formula
“=<prev cell>+1“. To get the distinct values, copy both columns of product
group names into one column, below the data. Filter out duplicates using the
Data ➪ Filter ➪ Advanced menu option, and choose “Unique Records Only.”
Highlight the values using the mouse. To select only the visible values, use the
Edit➪Goto menu option, and click “Special” and then “Visible Cells Only”
(toward the bottom in the left column). Now copy the values in the cells
(<control>-C) and paste them into another column (<control>-V).
Remember to go the Data ➪ Filter ➪ Show All menu selection to undo the
filtering, so you can see all the distinct values.

The next step is to lookup the values in the desired X- and Y-columns to get
their lookup dimensions. Use VLOOKUP() to look up the appropriate values:

VLOOKUP(<column cell>, <lookup table>, 2, 0)

This provides the number data accepted by the bubble chart. Labeling the axes
requires more information, so add two more columns to the lookup table, the
first with values set to zero and the second with values set to 1000. The first is
the coordinate position of the labels; the second is the width of the bubbles.

The axis labels are attached to two new series. Add the series by right-clicking
in the chart and choosing “Source Data.” Then choose “Add” and give it the name
“X-labels.” The X-values for this are the second column in the lookup table, the 
Y-values are the third column (which is all zeros), and the sizes are the fourth
column (all 1000). Repeat for the Y-values, reversing the X- and Y-coordinates. 
To make the series invisible, left-click each one and select “None” for both the
“Border” and “Area” on the “Patterns” tab.

Now, choose the menu option Tools ➪ XY Chart Labels ➪ Add Chart Labels. The 
“X-labels” are the data series and the label range is the first column of the lookup
table. Place the X-labels “Below” the data bubbles. Repeat for the “Y-labels,”
placing them to the “Left.” The labels appear in the chart and can be formatted to
any font or rotated by clicking them. It is also a good idea to adjust the scale of
the axes to go from 0 to 9 in this case.

Multi-Way Combinations

Although two-way combinations are often sufficient, multi-way combinations
are also useful. Generating larger combinations in SQL requires adding addi-
tional JOINs for each item in the combination. To keep the combinations dis-
tinct (that is, to avoid listing A, B, C and A, C, B as two different combinations),
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an additional less than condition needs to be added for each product. The fol-
lowing query is an example for three items:

SELECT p1, p2, p3, COUNT(*) as cnt

FROM (SELECT op1.orderid, op1.productid as p1,

op2.productid as p2, op3.productid as p3

FROM (SELECT orderid, COUNT(DISTINCT productid) as numprods

FROM orderline GROUP BY orderid

HAVING COUNT(DISTINCT productid) > 2) o JOIN

(SELECT DISTINCT orderid, productid FROM orderline) op1

ON o.orderid = op1.orderid JOIN

(SELECT DISTINCT orderid, productid FROM orderline) op2

ON op1.orderid = op2.orderid AND

op1.productid < op2.productid JOIN

(SELECT DISTINCT orderid, productid FROM orderline) op3

ON op2.orderid = op3.orderid AND

op2.productid < op3.productid

) combinations

GROUP BY p1, p2, p3

This query has three subqueries that provide, respectively, the first, second,
and third products in the combination. These subqueries use the DISTINCT
keyword instead of a GROUP BY to eliminate duplicates; the two methods are
equivalent. Because there can be a very large number of combinations, the first
subquery limits the orders to those having at least three products.

Table 9-8 shows the top ten combinations of three products. The three-way
combinations have lower counts than the two-way combinations. For instance,
the top two-way combinations appeared in over two thousand orders. The top
three-way combinations occur in fewer than four hundred. This is typical,
because the more products in the order, the fewer the customers who have
ordered all of them at once.

Table 9-8: Top Ten Combinations of Three Products

PROD- PROD- PROD-
UCT 1 UCT 2 UCT 3 COUNT GROUP 1 GROUP 2 GROUP 3

12506 12820 12830 399 FREEBIE FREEBIE GAME

12820 13144 13190 329 FREEBIE APPAREL FREEBIE

11052 11196 11197 275 ARTWORK BOOK BOOK

12139 12819 12820 253 OCCASION FREEBIE FREEBIE

12820 12823 12951 194 FREEBIE OTHER FREEBIE

10939 10940 10943 170 BOOK BOOK BOOK

12820 12851 13190 154 FREEBIE OCCASION FREEBIE

Continued on next page
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Table 9-8  (continued)

PROD- PROD- PROD-
UCT 1 UCT 2 UCT 3 COUNT GROUP 1 GROUP 2 GROUP 3

11093 12820 13190 142 OCCASION FREEBIE FREEBIE

12819 12820 12851 137 FREEBIE FREEBIE OCCASION

12005 12820 13190 125 BOOK FREEBIE FREEBIE

Households Not Orders
There is no reason to look at combinations only in orders. Another possibility
is to look at products within households. One application is particularly inter-
esting, looking at combinations that occur within a household but not within a
particular order.

Combinations within a Household

The following query extends two-way combinations to products in the same
household:

SELECT p1, p2, COUNT(*) as cnt

FROM (SELECT op1.householdid, op1.productid as p1, op2.productid as p2

FROM (SELECT householdid, COUNT(DISTINCT productid) as numprods

FROM orderline ol JOIN orders o ON o.orderid = ol.orderid JOIN

customer c ON o.customerid = c.customerid

GROUP BY householdid) o JOIN

(SELECT DISTINCT householdid, productid

FROM orderline ol JOIN orders o ON o.orderid = ol.orderid JOIN

customer c ON o.customerid = c.customerid) op1

ON o.householdid = op1.householdid AND

o.numprods BETWEEN 2 AND 10 JOIN

(SELECT DISTINCT householdid, productid

FROM orderline ol JOIN orders o ON o.orderid = ol.orderid JOIN

customer c ON o.customerid = c.customerid) op2

ON op1.householdid = op2.householdid AND

op1.productid < op2.productid

) combinations

GROUP BY p1, p2

This query looks more complicated than the earlier two-way combination
query, because the two subqueries look up each order’s HOUSEHOLDID. The
structure of the query remains the same, with the only difference being the
innermost subqueries.

Because few households have repeated purchases, the results within a
household are quite similar to the results within orders.
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Investigating Products within Households but Not within Orders

At this point, we can ask a more complicated question that illustrates the power
of doing this work in SQL: What pairs of products occur frequently among household
purchases but do not appear in the same purchase? Such a question can provide very
valuable information on potential cross-selling opportunities, because such
product pairs indicate affinities among products at different times.

Answering this question requires some minor modifications to the house-
hold query. This query had the following conditions:

■■ The household has two to ten products.

■■ Both products appear within the household.

■■ The first product in the pair has a lower product id than the second
product.

One more condition is needed:

■■ The products are in the same household but not in the same order.

The following query adds this condition:

SELECT p1, p2, COUNT(*) as cnt

FROM (SELECT op1.householdid, op1.productid as p1, op2.productid as p2

FROM (SELECT householdid, COUNT(DISTINCT productid) as numprods

FROM orderline ol JOIN orders o ON o.orderid = ol.orderid JOIN

customer c ON o.customerid = c.customerid

GROUP BY householdid) o JOIN

(SELECT DISTINCT householdid, o.orderid, productid

FROM orderline ol JOIN orders o ON o.orderid = ol.orderid JOIN

customer c ON o.customerid = c.customerid) op1

ON o.householdid = op1.householdid AND

o.numprods BETWEEN 2 AND 10 JOIN

(SELECT DISTINCT householdid, o.orderid, productid

FROM orderline ol JOIN orders o ON o.orderid = ol.orderid JOIN

customer c ON o.customerid = c.customerid) op2

ON op1.householdid = op2.householdid AND

op1.orderid <> op2.orderid AND

op1.productid < op2.productid

GROUP BY op1.householdid, op1.productid, op2.productid

) o

GROUP BY p1, p2

Now, the innermost queries obtain triples of order id, product id, and date.
There is a slight complication. Previously, the aggregation ensured that a
product only occurs once in each household. This condition is no longer true
when a household purchases the same product on multiple occasions. To
remove potential duplicates, there is an additional aggregation at the
ORDERID, PRODUCTID1, PRODUCTID2 level.

Chapter 9 ■ What’s in a Shopping Cart? 425

99513c09.qxd:WileyRed  8/27/07  1:17 PM  Page 425



Table 9-9 shows the top ten results from this query. These results differ from
the products within an order because the FREEBIE product group is much less
common. Some of the combinations are not particularly surprising. For
instance, customers who purchase calendars one year are probably likely to
purchase calendars in another year. This combination occurs three times in the
top ten products.

Table 9-9: Top Ten Pairs of Products Purchased by Households in Different Orders

PRODUCT1 PRODUCT2 COUNT PRODUCT PRODUCT

11196 11197 462 BOOK BOOK

11111 11196 313 BOOK BOOK

12139 12820 312 OCCASION FREEBIE

12015 12176 299 CALENDAR CALENDAR

11048 11196 294 ARTWORK BOOK

12176 13298 279 CALENDAR CALENDAR

10863 12015 255 CALENDAR CALENDAR

11048 11052 253 ARTWORK ARTWORK

11111 11197 246 BOOK BOOK

11048 11197 232 ARTWORK BOOK

Multiple Purchases of the Same Product

The previous example suggests another interesting question, although one that is
not directly related to product combinations: How often does a household purchase
the same product in multiple orders? The following query answers this question:

SELECT numprodinhh, COUNT(*) as numhouseholds

FROM (SELECT householdid, productid,

COUNT(DISTINCT o.orderid) as numprodinhh

FROM customer c JOIN orders o ON c.customerid = o.customerid JOIN

orderline ol ON o.orderid = ol.orderid

GROUP BY householdid, productid

) h

GROUP BY numprodinhh

ORDER BY 1

The subquery aggregates the order lines by household id and product, using
COUNT(DISTINCT) to count the number of orders containing the product within
a household. The outer query then creates a histogram of the counts.
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Over eight thousand households have purchased the same product more
than once. The most frequent ones purchase the same product over fifty times.
These very frequent purchases are anomalous, due to businesses purchasing
the same product multiple times.

This question leads to another. What are the top products appearing in these
orders? The following query answers a related question about product groups:

SELECT p.productgroupname, COUNT(*) as numhouseholds

FROM (SELECT householdid, productid,

COUNT(DISTINCT o.orderid) as numorders

FROM customer c JOIN orders o ON c.customerid = o.customerid JOIN

orderline ol ON o.orderid = ol.orderid

GROUP BY householdid, productid

) h JOIN

product p ON h.productid = p.productid

WHERE numorders > 1

GROUP BY p.productgroupname

ORDER BY 2 DESC

This query is quite similar to the previous query, except the product informa-
tion is being joined in, and then the outer query is aggregating by PRODUCT-
GROUPNAME.

Table 9-10 shows that the top three product groups are BOOK, ARTWORK,
and OCCASION. This differs from the common combinations, which always
include FREEBIE products. In fact, one FREEBIE product, whose id is 12820, is
the top product that appears in multiple orders within a household. Without
this product, the FREEBIE category would have only 210 occurrences of the
same product appearing in multiple orders, and would fall to the bottom of
the table. This product, the 12820 product, is a catalog included in all ship-
ments during a period of time. Customers who place multiple orders during
this period of time received the catalog with each purchase.

Table 9-10: Products that Appear in More Than One Order, by Product Group

PRODUCT GROUP NUMBER OF HOUSEHOLDS

BOOK 2,709

ARTWORK 2,101

OCCASION 1,212

FREEBIE 935

GAME 384

CALENDAR 353

APPAREL 309

OTHER 210
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The Simplest Association Rules

This section starts the discussion of association rules by calculating the propor-
tion of orders that have a given product. These are the simplest, most basic type
of association rule, one where the “if” clause is empty and the “then” clause
contains one product: given no information, what is the probability that a given
product is an order? This idea of “zero-way” association rules is useful for two
reasons. First, it provides a simple introduction to the ideas and terminology.
Second, this overall probability is important for assessing more complex rules.

Associations and Rules
An association is a group of products that appear together in one or more
orders. The word “association” implies that the products have a relationship
with each other based on the fact that they are found together in an order. An
association rule has the form:

■■ <left-hand side> ➪ <right-hand side>

The arrow in the rule means “implies,” so this is read as “the presence of the
products on the left-hand side implies the presence of the products on the
right-hand side in the same order.” Of course, a rule is not always true, so there
is a probability associated with it. There can be any number of products on
either side, although the right-hand side typically consists of one product. In
more formal terminology, the left-and right-hand sides are item sets. The term
item is a more general idea than product; and later in this chapter we’ll see the
power of such generalization.

The automatic generation of association rules demonstrates the power of
using detailed data. It must be admitted that the resulting rules are not always
necessarily interesting. One early example, published in the 1990s, comes from
Sears after the company had invested millions of dollars in a data warehous-
ing system. They learned that customers who buy large appliance warranties
are very likely to buy large appliances. Maybe there is an affinity, because war-
ranties are almost always added onto large appliance purchases.

WARN I NG Association rules are not necessarily interesting. They are
sometimes trivial, telling us something we should already know.

Such a rule is trivial, because we should have known. Although trivial rules
are not useful from a business perspective, they are resounding successes for the
computer — because the pattern is undeniably in the data. An interesting use of
trivial rules is to look at the exceptions, which might point to data quality or
operational issues.
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Zero-Way Association Rules
The zero-way association is the probability that an order contains a given
product. It is the probability that the following rule is true:

■■ <nothing> ➪ <product id>

It is “zero” way because the left-hand side has no products. The probability, in
turn, is the number of orders containing a product divided by the total num-
ber of orders:

SELECT productid, COUNT(*)/MAX(numorders) as p

FROM (SELECT DISTINCT orderid, productid FROM orderline) op CROSS JOIN

(SELECT COUNT(*)*1.0 as numorders FROM orders o) o

GROUP BY productid

ORDER BY 2 DESC

This query counts up the number of orders having a product and removes
duplicate order lines using SELECT DISTINCT (although this could also be
accomplished with a GROUP BY, the SELECT DISTINCT is more succinct). The
number of orders with the product is then divided by the total number of
orders. A subquery, joined in using CROSS JOIN, calculates the total number,
which is converted to a real number by multiplying by 1.0.

The result is each product with the proportion of orders containing the
product. For instance, the most popular product is product id 12820, which is
a FREEBIE product that occurs in about 9.6% of the orders. 

What Is the Distribution of Probabilities?
There are over 4,000 products so looking at all the probabilities individually
is cumbersome. What do these probabilities look like? The following query
provides some information about the values:

SELECT COUNT(*) as numprods, MIN(p) as minp, MAX(p) as maxp,

AVG(p) as avgp, COUNT(DISTINCT p) as nump

FROM (SELECT ol.productid,

(COUNT(DISTINCT orderid)*1.0/

(SELECT COUNT(DISTINCT orderid) FROM orderline) ) as p

FROM orderline ol

GROUP BY ol.productid) op

Notice that this query calculates the total number of orders using an in-line
query, rather than the CROSS JOIN. Both methods work equally well, but the
CROSS JOIN makes it possible to add several variables at once and give them
informative names.
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These probabilities have the following characteristics:

■■ The minimum value is 0.0005%.

■■ The maximum value is 9.6%.

■■ The average value is 0.036%.

■■ There are 385 different values.

Why are there only a few hundred distinct values when there are thousands of
products? The probabilities are ratios between two numbers, the number of times
that a product appears, and the number of orders. For all products, the number of
orders is the same, so the number of different probabilities is the number of dif-
ferent frequencies of products. There is much overlap, especially because over
one thousand products appear only once.

With just a few hundred values, plotting them individually is possible as in
Figure 9-7, which has both the histogram and the cumulative histogram. The
histogram is on the left-hand axis. However, this histogram is visually mis-
leading, because the points are not equally spaced.

Figure 9-7: This chart shows the distribution of probabilities of an order containing 
a product.

The cumulative distribution is the other curve on the chart, and it provides
more information. For instance, it says that half the products have a probability
of less than about 0.0015%, so many products are quite rare indeed. Only half a
percent of the products (23) occur in more than one percent of the orders.

What Do Zero-Way Associations Tell Us?
Zero-way association rules provide basic information about products. Given
no other information about purchases, such rules give the probability of a
given product being in an order. For instance, the top product, with id 12820,
occurs in about 9.6% of the orders. This is a FREEBIE product, which is not
so interesting.
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The second product is a book that occurs in 4.9% of orders; its product id is
11168. An association rule predicting it has the form:

■■ <LHS> ➪ <product 11168>

If this rule is accurate 50% of the time, then it is useful. If it is accurate 10% of
the time, then it is useful. However, if it is accurate 4.8% of the time, the rule
does worse than a random guess. Such a rule is not useful. The overall proba-
bility is a minimum level required for a rule to be useful. This comparison is an
important measure for the effectiveness of association rules.

One-Way Association Rules

This section moves from combinations of products to rules suggesting that the
presence of one product implies the presence of another. For many purposes,
finding combinations of products that occur together is quite useful. However,
these are still combinations, not rules.

This section starts with simple association rules, where both sides consist of
a single product. Calculating such one-way rules is possible using a single
query. However, the next section, which covers building more complex rules,
needs to use intermediate tables to store information.

Example of One-Way Association Rules
The two most common products have product ids 12820 and 13190, suggesting
the rule:

■■ Product 12820 ➪ Product 13190

This section looks at the traditional ways of evaluating such a rule. The place
to begin is by gathering the following information:

■■ The total number of orders;

■■ The number of orders that contain the left-hand side of the rule;

■■ The number of orders that contain the right-hand side of the rule; and,

■■ The number of orders that contain both the left- and right-hand sides.

The following query calculates these values:

SELECT COUNT(*) as numorders, SUM(lhs) as numlhs, SUM(rhs) as numrhs,

SUM(lhs*rhs) as numlhsrhs

FROM (SELECT orderid,

MAX(CASE WHEN productid = 12820 THEN 1 ELSE 0 END) as lhs,

MAX(CASE WHEN productid = 13190 THEN 1 ELSE 0 END) as rhs

FROM orderline ol

GROUP BY orderid) o
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Notice that this query calculates the presence of the left-hand-side and right-
hand-side products using MAX(CASE WHEN . . .). Because the maximum func-
tion is used, the calculation only counts the presence of these products,
ignoring NUMUNITS as well as the number of order lines containing the products.

Support is the first measure in Table 9-11 for evaluating the rule. This is the
proportion of orders where the rule is true. In other words, support is the num-
ber of orders that have both the left side and right side divided by the total
number of orders. For this rule, the support is 1.3% = 2,588 / 192,983. Rules
with higher support are more useful because they apply to more orders.

Table 9-11: Measures for the Rule Product 12820 ➪ Product 13190

MEASURE VALUE

Number of Orders 192,983

Number of Orders with Left-Hand Side 18,441

Number of Orders with Right-Hand Side 3,404

Number of Orders with Both Sides 2,588

Support 1.3%

Confidence 14.0%

Lift 8.0

A second measure is confidence, which is how often the rule is true, given
that the left-hand side is true. For this rule, it is the ratio of orders that have
both products to those that have product 12820. The confidence is 14.0% =
2,588/18,441.

The third important measure is lift, which tells us how much better the rule
does rather than just guessing. Without the rule, 1.8% of the orders have prod-
uct 13190 (this is the zero-way association rule for the product). With the rule,
14.0% have it. The rule does about eight times better than just guessing, so the
rule has a high lift.

The following query calculates these values for this rule:

SELECT numlhsrhs/numorders as support, numlhsrhs/numlhs as confidence,

(numlhsrhs/numlhs)/(numrhs/numorders) as lift

FROM (SELECT 1.0*COUNT(*) as numorders, 1.0*SUM(lhs) as numlhs,

1.0*SUM(rhs) as numrhs, 1.0*SUM(lhs*rhs) as numlhsrhs

FROM (SELECT orderid,

MAX(CASE WHEN productid = 12820 THEN 1 END) as lhs,

MAX(CASE WHEN productid = 13190 THEN 1 END) as rhs

FROM orderline ol

GROUP BY orderid) o

) a
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This query does the calculation for only one rule. The challenge in this section
is to calculate these values for all possible rules. 

Before looking at all rules, let’s look at just one other, the inverse rule:

■■ Product 13190 ➪ Product 12820

The support for the inverse rule is exactly the same as the support for the orig-
inal rule, because the two rules have the same combination of products. Per-
haps more surprising, the lift for the two rules is the same as well. This is not a
coincidence; it comes from the definition of lift. The formula simplifies to:

(numlhsrsh * numorders) / (numlhs * numrhs)

Both the rule and its inverse have the same values of NUMLHSRHS and
NUMORDERS, so the numerator is the same. The values of NUMLHS 
and NUMRHS are swapped, but the product remains the same. As a result the
lift is the same for any rule and its inverse.

The confidence values for a rule and its inverse are different. However, there
is a simple relationship between them. The product of the confidence values is
the same as the product of the support and the lift. So, given the confidence,
support, and lift for one rule, it is simple to calculate the confidence for the
inverse rule.

Generating All One-Way Rules
The query to generate one-way association rules is similar to the query to cal-
culate combinations, in that both involve self-joins on Orderline. The query
starts by enumerating all the possible rule combinations:

SELECT (CAST(lhs as VARCHAR)+’ --> ‘+ CAST(rhs as VARCHAR)) as therule,

lhs, rhs, COUNT(*) as numlhsrhs

FROM (SELECT item_lhs.orderid, item_lhs.lhs, item_rhs.rhs

FROM (SELECT orderid, productid as lhs FROM orderline

GROUP BY orderid, productid) item_lhs JOIN

(SELECT orderid, productid as rhs FROM orderline

GROUP BY orderid, productid) item_rhs

ON item_lhs.orderid = item_rhs.orderid AND

item_lhs.lhs <> item_rhs.rhs

) rules

GROUP BY lhs, rhs

The order lines are aggregated to remove duplicates. This query carefully
names the innermost subqueries, as Item_LHS and Item_RHS, with columns
LHS and RHS. These names emphasize the roles of the subqueries and
columns. Throughout this chapter, the association rule queries use these
naming conventions.

Chapter 9 ■ What’s in a Shopping Cart? 433

99513c09.qxd:WileyRed  8/27/07  1:17 PM  Page 433



Another difference from the combination query is that all pairs of products
are being considered, rather than only unique pairs, because A ➪ B and B ➪ A
are two different rules. The join condition uses item_lhs.lhs <> item_rhs.rhs
rather than item_lhs.lhs < item_rhs.rhs. The subquery Rules generates all
candidate rules in the Orders tables

This query returns the products in the rule as separate columns. In addition,
it creates a text representation of the rule, by converting the product ids to
characters and putting an arrow between the two sides.

This form of the query does not restrict the orders, say, to orders that have
between two and ten products. This condition can be added using the filter
subquery used for the same purpose in the combination query.

One-Way Rules with Evaluation Information
The previous query generates all the possible one-way rules. This section dis-
cusses methods of evaluating them, by calculating support, confidence, and
lift. The idea is similar to the calculation for an individual rule, but the details
are quite different.

Figure 9-8 shows the dataflow diagram for the computation. The query
starts by generating all the possible rules using the Rules subquery, which also
calculates NUMLHSRHS. The challenge is to calculate NUMLHS, NUMRHS,
and NUMORDERS for each rule. NUMLHS is the number of times that the
left-hand side appears in an order. This is simply the number of orders con-
taining the product in the left-hand side. The query that calculates this is:

SELECT productid, COUNT(DISTINCT orderid) as numlhs

FROM orderline

GROUP BY productid

Similar logic works for NUMRHS and NUMLHSRHS.
Combining these into a single query requires four subqueries:

SELECT lhsrhs.*, numorders, numlhs, numrhs,

numlhsrhs*1.0/numorders as support,

numlhsrhs*1.0/numlhs as confidence,

numlhsrhs * numorders * 1.0/(numlhs * numrhs) as lift

FROM (SELECT lhs, rhs, COUNT(*) as numlhsrhs

FROM (<rules>) rules GROUP BY lhs, rhs) lhsrhs JOIN

(SELECT productid as lhs, COUNT(DISTINCT orderid) as numlhs

FROM orderline GROUP BY productid) sumlhs

ON lhsrhs.lhs = sumlhs.lhs JOIN

(SELECT productid as rhs, COUNT(DISTINCT orderid) as numrhs

FROM orderline GROUP BY productid) sumrhs

ON lhsrhs.rhs = sumrhs.rhs CROSS JOIN

(SELECT COUNT(DISTINCT orderid) as numorders FROM orderline) a
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Figure 9-8: This dataflow generates all possible one-way rules with evaluation
information.

There is one subquery for each item in the rules. The outer query calculates the
support, confidence, and lift for each rule. The additional columns for
NUMLHS, NUMRHS, and NUMORDERS are added by joining in summary
queries. With these columns, the outer query calculates values for support,
confidence, and lift.

Table 9-12 shows the top few rules with the highest lift. These are interesting
though useless. The highest lift rules are the ones where two products appear
together and the two products never appear without the other. This tends to
occur somewhat randomly for the least common products.
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Table 9-12: Top One-Way Rules with Highest Lift

LHS- # SUP- CONFI-
RULE RHS LHS RHS ORDERS PORT DENCE LIFT

10874 ➪ 10879 1 1 1 192,983 0.0% 100% 192,983

12665 ➪ 10705 1 1 1 192,983 0.0% 100% 192,983

12935 ➪ 12190 1 1 1 192,983 0.0% 100% 192,983

13224 ➪ 13859 1 1 1 192,983 0.0% 100% 192,983

13779 ➪ 13232 1 1 1 192,983 0.0% 100% 192,983

10878 ➪ 10892 1 1 1 192,983 0.0% 100% 192,983

13495 ➪ 12353 1 1 1 192,983 0.0% 100% 192,983

12717 ➪ 11786 1 1 1 192,983 0.0% 100% 192,983

13238 ➪ 13752 1 1 1 192,983 0.0% 100% 192,983

11902 ➪ 11915 1 1 1 192,983 0.0% 100% 192,983

One way to fix this is by putting in a threshold value for support. For
instance, to consider only rules that are valid in at least 0.1% of the orders, use
a WHERE clause:

WHERE numlhsrhs * 1.0/numorders >= 0.001

There are 126 rules that meet this restriction. Almost all of them have a lift
greater than one, but there are a small number that have a lift less than one.
There is no reason to expect generated rules with high support to have good
lift as well.

One-Way Rules on Product Groups
As another example of one-way association rules, let’s consider rules about
product groups. This requires changing the inner query used to calculate
NUMLHSRHS to:

SELECT item_lhs.orderid, item_lhs.lhs, item_rhs.rhs 

FROM (SELECT orderid, productgroupname as lhs

FROM orderline ol JOIN product p ON ol.productid = p.productid

GROUP BY orderid, productgroupname) item_lhs JOIN

(SELECT orderid, productgroupname as rhs

FROM orderline ol JOIN product p ON ol.productid = p.productid

GROUP BY orderid, productgroupname) item_rhs

ON item_lhs.orderid = item_rhs.orderid AND

item_lhs.lhs <> item_rhs.rhs
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In addition, the subqueries for NUMLHS and NUMRHS need to be modified
to extract information about product groups, rather than products:

SELECT lhsrhs.*, numlhs, numrhs, numorders,

numlhsrhs * 1.0/numorders as support,

numlhsrhs * 1.0/numlhs as confidence,

numlhsrhs * numorders * 1.0/(1.0*numlhs * numrhs) as lift

FROM (SELECT lhs, rhs, COUNT(*) as numlhsrhs

FROM (<previous-query>) rules

GROUP BY) lhsrhs JOIN

(SELECT productgroupname as lhs, COUNT(DISTINCT orderid) as numlhs

FROM orderline ol JOIN product p ON ol.productid = p.productid

GROUP BY productgroupname) sumlhs

ON lhsrhs.lhs = sumlhs.lhs JOIN

(SELECT productgroupname as rhs, COUNT(DISTINCT orderid) as numrhs

FROM orderline ol JOIN product p ON ol.productid = p.productid

GROUP BY productgroupname) sumrhs

ON lhsrhs.rhs = sumrhs.rhs CROSS JOIN

(SELECT COUNT(DISTINCT orderid) as numorders FROM orderline) a

ORDER BY 9 DESC

Otherwise, this query follows the same form as the query for products.
Figure 9-9 shows the results as a bubble plot. The bubble plot contains two

series. One consists of pretty good rules where the lift is greater than 1. The rest
are grouped into not-good rules. This bubble chart uses the same tricks for
labeling the axes that were discussed earlier.

Figure 9-9: The good rules and not-so-good rules are shown in this bubble plot.
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Not many of these rules have a good lift. One reason is that most orders
have only one product and hence only one product group. These orders inflate
the values of NUMLHS and NUMRHS, without contributing to the value of
NUMLHSRHS.

Naively modifying the query to use only orders that have more than one
product is complicated, because all four subqueries have to be modified. Such
an approach is not only complicated, but making the same change in four
places makes the resulting query more prone to error. The next two sections
discuss two other approaches, one that uses an intermediate table and one that
uses the window functions (introduced in Chapter 8).

Calculating Product Group Rules Using an Intermediate Table

The product group rules are essentially finding all the LHS and RHS combina-
tions, and then calculating the following values NUMLHSRHS, NUMLHS,
NUMRHS, and NUMORDERS. The previous query does this calculation using
four separate queries for each value. However, these could all be calculated
from a single table that contains all the generated rules. The following query
creates the Assoc_Rules_PG2PG table with products only from orders that
have more than one product group in them:

SELECT item_lhs.orderid, item_lhs.lhs, item_rhs.rhs

INTO assoc_rules_pg2pg

FROM (SELECT orderid

FROM orderline ol JOIN product p ON ol.productid = p.productid

GROUP BY orderid

HAVING COUNT(DISTINCT productgroupname) > 1) filter JOIN

(SELECT orderid, productgroupname as lhs

FROM orderline ol JOIN product p ON ol.productid = p.productid

GROUP BY orderid, productgroupname) item_lhs

ON filter.orderid = item_lhs.orderid JOIN

(SELECT orderid, productgroupname as rhs

FROM orderline ol JOIN product p ON ol.productid = p.productid

GROUP BY orderid, productgroupname) item_rhs

ON item_lhs.orderid = item_rhs.orderid AND

item_lhs.lhs <> item_rhs.rhs

(The specific syntax for creating an intermediate table differs from database to
database, although CREATE TABLE AS and SELECT INTO are common methods.)
This query is similar to the Rules subquery used earlier. However, it has an addi-
tional join that selects the orders with more than one product group. Because all
potential rules are in this table for every order where they appear, the table is
rather large, having 80,148 rows. This type of query generates all the candidate
rules for two-way association rules.

The rules in the intermediate table can now be used to calculate the remain-
ing variables. The key is to count distinct order ids for the different items. So,
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NUMORDERS is the number of distinct order ids in this table. NUMLHS is the
number of distinct order ids among the left-hand products, and NUMRHS is
the number of distinct orders among the right-hand products. The following
query calculates these numbers along with support, confidence, and lift:

SELECT lhsrhs.*, numorders, numlhs, numrhs,

numlhsrhs*1.0/numorders as support,

numlhsrhs*1.0/numlhs as confidence,

numorders*numlhsrhs*1.0/(1.0*numlhs*numrhs) as lift

FROM (SELECT lhs, rhs, COUNT(*) as numlhsrhs

FROM assoc_rules_pg2pg GROUP BY lhs, rhs) lhsrhs JOIN

(SELECT lhs, COUNT(DISTINCT orderid) as numlhs

FROM assoc_rules_pg2pg GROUP BY lhs) sumlhs

ON lhsrhs.lhs = sumlhs.lhs JOIN

(SELECT rhs, COUNT(DISTINCT orderid) as numrhs

FROM assoc_rules_pg2pg GROUP BY rhs) sumrhs

ON lhsrhs.rhs = sumrhs.rhs CROSS JOIN

(SELECT COUNT(DISTINCT orderid) as numorders

FROM assoc_rules_pg2pg) a

ORDER BY lift DESC

The advantage of this approach is that the four values are guaranteed to be
based on the same set of orders; eliminating one source of error — repeated
complex subqueries.

The same basic intermediate table works in general. The idea is that the
table contains all instances of rules, rather than a summary of the rules. Gen-
erating association rules at the household level is a simple modification:

SELECT item_lhs.householdid, item_lhs.lhs, item_rhs.rhs

INTO assoc_rules_h_pg2pg

FROM (SELECT householdid

FROM orderline ol JOIN

product p ON ol.productid = p.productid JOIN

orders o ON ol.orderid = o.orderid JOIN

customer c ON o.customerid = c.customerid

GROUP BY householdid

HAVING COUNT(DISTINCT productgroupname) > 1) filter JOIN

(SELECT DISTINCT householdid, productgroupname as lhs

FROM orderline ol JOIN

product p ON ol.productid = p.productid JOIN

orders o ON ol.orderid = o.orderid JOIN

customer c ON o.customerid = c.customerid) item_lhs

ON filter.householdid = item_lhs.householdid JOIN

(SELECT DISTINCT householdid, productgroupname as rhs

FROM orderline ol JOIN

product p ON ol.productid = p.productid JOIN

orders o ON ol.orderid = o.orderid JOIN

customer c ON o.customerid = c.customerid) item_rhs

ON item_lhs.householdid = item_rhs.householdid AND

item_lhs.lhs <> item_rhs.rhs
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This query is a bit more complicated only because it needs additional joins to 
the Orders and Customer tables to get the HOUSEHOLDID. However, it has the
same structure as the earlier one, and the query that calculates the rule measures
is almost the same as shown earlier; the only difference is that COUNT(DISTINCT
orderid) becomes COUNT(DISTINCT householdid).

Calculating Product Group Rules Using Window Functions

A second possible approach for calculating the product group rules is to use
window functions. These make it possible to do all the aggregations conve-
niently in one query, without creating an intermediate table. Of course, this is
only possible in databases that support this functionality.

The window functions approach is like using an intermediate table and
putting all the calculations in one query. In fact, it can be illustrated on the
intermediate table. Instead of using four subqueries to calculate the four val-
ues, these can all be calculated in a single query:

SELECT lhsrhs.*, numlhsrhs * 1.0/numorders as support,

numlhsrhs * 1.0/numlhs as confidence,

numlhsrhs * numorders * 1.0/(1.0*numlhs * numrhs) as lift

FROM (SELECT lhs, rhs, MIN(numlhsrhs) as numlhsrhs, MIN(numlhs) as numlhs,

MIN(numorders) as numorders, MIN(numrhs) as numrhs

FROM (SELECT orderid, lhs, rhs,

COUNT(DISTINCT orderid) OVER

(PARTITION BY lhs, rhs) as numlhsrhs,

COUNT(DISTINCT orderid) OVER

(PARTITION BY lhs) as numlhs,

COUNT(DISTINCT orderid) OVER

(PARTITION BY rhs) as numrhs,

COUNT(DISTINCT orderid) OVER

(PARTITION BY NULL) as numorders

FROM assoc_rules_pg2pg

) o

GROUP BY lhs, rhs 

) lhsrhs

ORDER BY 9 DESC

This query follows very similar logic to the query that uses the intermediate
table. The calculation of NUMLHSRHS, NUMLHS, NUMRHS, and
NUMORDERS takes place in one subquery and then the aggregation on
these values takes place in another, because window functions and aggrega-
tions do not mix. Replacing the table Assoc_Rules_PG2PG with the query
that generates the data would put the whole result in one query.

The query has just one flaw, which is perchance fatal. SQL Server does not
support COUNT(DISTINCT) as a window aggregation function. So this form of the
query generates a syntax error in SQL Server, although it does work in Oracle.
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WARN I NG SQL Server does not support COUNT(DISTINCT) as a window
function. Unfortunately, if you need this functionality, you have to use an
intermediate table or subquery.

Two-Way Associations

The calculation for two-way association rules follows the same logic as for the
one-way rules. This section looks at the SQL for generating such rules, as well
as some interesting extensions by widening the idea of item.

Calculating Two-Way Associations
The basic query for calculating two-way associations is quite similar to the query
for one-way associations. The difference is that there are now two products on the
left-hand side rather than one. Because the following two rules are equivalent:

■■ A and B ➪ C

■■ B and A ➪ C

the products on the left-hand side do not need to be repeated. This query
includes the requirement that the first product id be smaller than the second
on the left-hand side, as a way to eliminate duplicate equivalent rules.

The query that generates all two-way association rules looks like:

SELECT item_lhs1.orderid,

(CAST(item_lhs1.lhs as VARCHAR)+’, ‘+

CAST(item_lhs2.lhs as VARCHAR)) as lhs, item_rhs.rhs

INTO assoc_rules_pp2p

FROM (SELECT orderid FROM orderline GROUP BY orderid

HAVING COUNT(DISTINCT productid) > 2) filter JOIN

(SELECT orderid, productid as lhs FROM orderline

GROUP BY orderid, productid) item_lhs1

ON filter.orderid = item_lhs1.orderid JOIN

(SELECT orderid, productid as lhs FROM orderline

GROUP BY orderid, productid) item_lhs2

ON item_lhs1.orderid = item_lhs2.orderid AND

item_lhs1.lhs < item_lhs2.lhs JOIN

(SELECT orderid, productid as rhs FROM orderline

GROUP BY orderid, productid) item_rhs

ON item_lhs1.orderid = item_rhs.orderid AND

item_rhs.rhs NOT IN (item_lhs1.lhs, item_lhs2.lhs)

This query has an extra join to capture the additional product on the left-hand
side. Because two-way association rules contain three different products (two
on the left and one on the right), the query only needs to consider orders that
have at least three products.
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The calculation of support, confidence, and lift follows a similar pattern to
the one-way association method. The following query does this work:

SELECT lhsrhs.*, numlhs, numrhs, numorders,

numlhsrhs * 1.0/numorders as support,

numlhsrhs * 1.0/numlhs as confidence,

numlhsrhs * numorders * 1.0/(numlhs * numrhs) as lift

FROM (SELECT lhs, rhs, COUNT(*) as numlhsrhs

FROM assoc_rules_pp2p GROUP BY lhs, rhs) lhsrhs JOIN

(SELECT lhs, COUNT(DISTINCT orderid) as numlhs

FROM assoc_rules_pp2p GROUP BY lhs) sumlhs

ON lhsrhs.lhs = sumlhs.lhs JOIN

(SELECT rhs, COUNT(DISTINCT orderid) as numrhs

FROM assoc_rules_pp2p GROUP BY rhs) sumrhs

ON lhsrhs.rhs = sumrhs.rhs CROSS JOIN

(SELECT COUNT(DISTINCT orderid) as numorders FROM assoc_rules_pp2p) a

ORDER BY 9 DESC

With the exception of the name of the intermediate table, this query is exactly
the same as the query for one-way association rules. This is very useful. The
query to evaluate different types of rules can be the same, by using well-
thought-out naming conventions.

TI P By using careful naming conventions in the intermediate table, the same
query can calculate support, confidence, and lift for one-way association rules
and two-way association rules.

The results from this query are also rather similar to the results for the one-
way associations. The rules with the highest lift are ones with three products 
that are extremely rare. By the measure of lift, the best rules seem to be those that
have products that only occur together and never separately.

Using Chi-Square to Find the Best Rules
Lift provides one measure of “best,” but perhaps it is not the most practical
because it seems to choose the least common products. The typical way to get
around this is by requiring a certain level of support for the rule. However, the
rules with the highest lift are often still the ones with the rarest products that
meet the support criterion. This section discusses an alternative measure, the
chi-square measure, because it produces a better subjective ordering of the rules.

Applying Chi-Square to Rules

The chi-square measure was introduced in Chapter 3 as a way of measuring
whether particular splits in data across multiple dimensions are due to chance.
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The higher the chi-square value for a particular set of splits, the less likely that
observed data is happening due to chance. The measure can be used directly
or it can be converted to a p-value using the chi-square distribution.

Chi-square can also be applied to rules, and it provides a single value that
determines whether or not the rule is reasonable. Lift, confidence, and support
all measure how good a rule is, but they are three different measures. One
warning, though. Chi-square does not work unless all cells have a minimum
count; typically at least five.

To apply chi-square to rules, start by considering a general rule:

■■ LHS ➪ RHS

This rule divides all the orders into four discrete groups:

■■ LHS is TRUE and RHS is TRUE

■■ LHS is TRUE and RHS is FALSE

■■ LHS is FALSE and RHS is TRUE

■■ LHS is FALSE and RHS is FALSE

Table 9-13 shows the counts of orders that fall into each of these groups for the
rule 12820 ➪ 13190. The rows indicate whether the orders contain the left-hand
side of the rule. The columns are whether they contain the right-hand side. The
upper-left cell, for instance, contains all orders where the rule is true.

Table 9-13: Counts of Orders for Chi-Square Calculation for Rule 12820 ➪ 13190

RHS TRUE RHS FALSE

LHS TRUE 816 15,853

LHS FALSE 2,588 173,726

This matrix is the chi-square matrix discussed in Chapter 3. Calculating
the chi-square values is not difficult in Excel. Sum the rows and columns and
then create an expected value matrix using these sums. The expected value is
the product of the row sum times the column sum divided by the total num-
ber of orders. The observed value minus the expected value is the variance.
The chi-square value is the sum of the variances squared divided by the
expected values.

Chi-square has some nice properties compared to lift. It provides a mea-
sure of how unexpected the rule is in the data, rather than the improvement
from using it. In one measure, it takes into account how large the rule is as
well as how good it is. The standard measures of support and lift address
these issues separately.
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Applying Chi-Square to Rules in SQL

For one rule, the chi-square calculation is quite feasible in Excel. However, for
thousands or millions of rules, Excel is not sufficiently powerful. As shown in
Chapter 3, it is possible to do the chi-square calculation in SQL.

There have been four counts used for calculating support, confidence, and lift:

■■ NUMLHSRHS is the number of orders where the entire rule is true.

■■ NUMLHS is the number of orders where the left-hand side is true.

■■ NUMRHS is the number of orders where the right-hand side is true.

■■ NUMORDERS is the total number of orders.

The chi-square calculation, on the other hand, uses four slightly different values,
based on the values in the chi-square matrix. The chi-square values are related to
these counts:

■■ LHS true, RHS true: NUMLHSRHS

■■ LHS true, RHS false: NUMLHS – NUMLHSRHS

■■ LHS false, RHS true: NUMRHS – NUMLHSRHS

■■ LHS false, RHS false: NUMORDERS – NUMLHS – NUMRHS +
NUMLHSRHS

With these values, the chi-square calculation is just a bunch of arithmetic in
a couple of nested subqueries, as shown for the two-way rules in Assoc_PP2P:

SELECT (SQUARE(explhsrhs - numlhsrhs)/explhsrhs +

SQUARE(explhsnorhs - numlhsnorhs)/explhsnorhs +

SQUARE(expnolhsrhs - numnolhsrhs)/expnolhsrhs +

SQUARE(expnolhsnorhs - numnolhsnorhs)/expnolhsnorhs

) as chisquare, b.*

FROM (SELECT lhsrhs.*, numlhs, numrhs, numorders,

numlhs - numlhsrhs as numlhsnorhs,

numrhs - numlhsrhs as numnolhsrhs,

numorders - numlhs - numrhs + numlhsrhs as numnolhsnorhs,

numlhs*numrhs*1.0/numorders as explhsrhs,

numlhs*(1.*numorders-numrhs)*1.0/numorders as explhsnorhs,

(1.0*numorders-numlhs)*numrhs*1.0/numorders as expnolhsrhs,

((1.0*numorders-numlhs)*(1.0*numorders-numrhs)/numorders

) as expnolhsnorhs,

numlhsrhs*1.0/numorders as support,

numlhsrhs*1.0/numlhs as confidence,

numlhsrhs*numorders*1.0/(numlhs*numrhs) as lift

FROM (SELECT lhs, rhs, COUNT(DISTINCT orderid) as numlhsrhs

FROM assoc_rules_pp2p GROUP BY lhs, rhs) lhsrhs JOIN

(SELECT lhs, COUNT(DISTINCT orderid) as numlhs

FROM assoc_rules_pp2p GROUP BY lhs) sumlhs

ON lhsrhs.lhs = sumlhs.lhs JOIN

(SELECT rhs, COUNT(DISTINCT orderid) as numrhs
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FROM assoc_rules_pp2p GROUP BY rhs) sumrhs 

ON lhsrhs.rhs = sumrhs.rhs CROSS JOIN

(SELECT COUNT(DISTINCT orderid) as numorders

FROM assoc_rules_pp2p) a

) b

The innermost subqueries calculate the counts for the various components 
of each rule. The next level calculates the intermediate values needed for the
chi-square calculation. And the outermost query combines these values into
the chi-square value.

Comparing Chi-Square Rules to Lift

At first glance, the rules with the highest chi-square values are the same as the
rules with the highest lift. These are the rules consisting of products that
appear in only one order. However, one of the conditions of the chi-square cal-
culation is that every cell should have at least five orders. This condition is
expressed as a WHERE condition:

numlhsrhs > 4 AND numlhs – numlhsrhs > 4 AND numrhs – numlhsrhs > 4

As a performance note, adding this WHERE clause is an example where SQL
Server might fail to optimize the query correctly; with the WHERE clause, the
query plan might be much less efficient. To get around this, create a summary
table with the results and use a query to select rules from the summary table.

Table 9-14 shows the top ten rules with the highest chi-square values and the
highest lift values. The first thing to notice is that there is no overlap between
the two sets. The rules with the highest lift are quite different from the rules
with the best chi-square.

Table 9-14: Top Rules by Lift and by Chi-Square Measures

BEST CHI-SQUARE SUPPORT CHI-SQUARE LIFT

12820 + 12830 ➪ 12506 2.09% 14,044.9 35.5

12506 + 12820 ➪ 12830 2.09% 12,842.8 32.5

11070 + 11072 ➪ 11074 0.38% 10,812.5 148.6

11052 + 11197 ➪ 11196 1.44% 9,745.7 36.0

11072 + 11074 ➪ 11070 0.38% 9,144.6 125.9

11070 + 11074 ➪ 11072 0.38% 9,088.0 125.1

11196 + 11197 ➪ 11052 1.44% 8,880.6 32.9

Continued on next page
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Table 9-14  (continued)

BEST CHI-SQUARE SUPPORT CHI-SQUARE LIFT

11157 + 11158 ➪ 11156 0.29% 8,260.1 148.2

11985 + 11988 ➪ 11987 0.52% 8,222.0 82.8

12810 + 12820 ➪ 13017 0.52% 8,146.7 83.0

BEST LIFT

13947 + 13949 ➪ 13948 0.04% 6,476.5 926.0

13944 + 13947 ➪ 13945 0.04% 7,208.0 901.8

10969 + 10971 ➪ 11086 0.03% 4,324.3 865.9

13945 + 13950 ➪ 13948 0.03% 5,189.7 865.9

13946 + 13997 ➪ 13948 0.04% 5,977.5 854.8

13947 + 13949 ➪ 13945 0.04% 5,977.5 854.8

13944 + 13947 ➪ 13948 0.04% 5,977.5 854.8

13948 + 13950 ➪ 13945 0.03% 4,789.8 799.3

10069 + 10082 ➪ 10078 0.03% 3,963.3 793.8

13946 + 13997 ➪ 13945 0.04% 5,516.9 789.1

The rules with the highest lift are all similar. They all have low support and
the products in the rules are quite rare. These rules do have reasonable confi-
dence levels. What makes them good, though, is that the products are rare, so
seeing them together in an order is very, very unlikely. Most of the top rules by
lift are about ARTWORK, which has lots of expensive products with very low
sales volumes.

The rules with the highest chi-square values look much more sensible. The
top rule here has a support of over 2%. The smallest of the top ten rules has a
support of 0.3%, about eight times the support of any of the lift rules. The sup-
port is much better, and the confidence is also much larger. Many of these rules
involve FREEBIE products, which makes intuitive sense, because FREEBIE
products are included in so many orders.

TI P The chi-square measure is better than support, confidence, or lift for
choosing a good set of association rules.

The chi-square values and lift values are not totally independent. Figure 9-10
shows a bubble plot comparing decile values of chi-square with decile values of
lift. The large bubbles along the axis show that there is a lot of overlap between

446 Chapter 9 ■ What’s in a Shopping Cart?

99513c09.qxd:WileyRed  8/27/07  1:17 PM  Page 446



the values; overall, they put the rules in a similar order. However, there are many
examples of smaller bubbles, indicating that chi-square and lift are disagreeing
on how good some rules are.

Figure 9-10: This bubble plot compares the values of lift and chi-square, by decile.

Calculating the deciles for the lift and chi-square uses the window functions:

SELECT chisquaredecile, liftdecile, COUNT(*), AVG(chisquare), AVG(lift)

FROM (SELECT NTILE(10) OVER (ORDER BY chisquare) as chisquaredecile,

NTILE(10) OVER (ORDER BY lift) as liftdecile, a.*

FROM (<previous-query>) a

WHERE numlhsrhs >= 5 and numlhsnorhs >= 5 and numnolhsrhs >= 5) a

GROUP BY chisquaredecile, liftdecile

Notice that this query requires a subquery because windows functions cannot
be mixed with aggregation functions. The results are plotted as a bubble chart
in Excel.

Chi-Square for Negative Rules

The chi-square value measures how unexpected the rule is.  However, a rule
can be unexpected in two ways.  It could be unexpected because the right-
hand side occurs much more often when the left-hand side appears.  Or, it
could be unexpected because the right-hand side occurs much less often.
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In the previous example, all the rules with the highest chi-square values
have a lift greater than one (as seen in Table 9.14). In this case, the lift is saying
that the right hand size occurs more frequently than expected. For these rules,
the chi-square value is indeed saying that the rule is a good rule.

What happens when the lift is less than one? There are no examples in
Table 9.14. However, this situation can occur. In this case, we need to consider
the negative rule:

■■ LHS ➪ NOT RHS

The chi-square value for this rule is the same as the chi-square value for the
original rule. On the other hand, the lift changes so the lift for this rule is greater
than one when the lift for the original rule is less than one (and vice versa).

The chi-square value and lift can be used together. When the chi-square is
high and the lift greater than one, then the resulting rule is the positive rule.
When the chi-square value is high and the lift less than one, then the resulting
rule is the negative rule. Using these values together makes it possible to look
for both types of rules at the same time.

Heterogeneous Associations
All the rules so far have either been about the products or the product groups,
with the same items on both the left-hand and right-hand sides. This is tradi-
tional association rule analysis. Because we are building the rules ourselves, it
is possible and feasible to extend the rules to include additional types of items.

The idea is to add other features about the order, or customer, or household
as items into the rules. This section discusses two ways of doing this. The first
is a “hard” approach, which generates rules where the left-hand side consists
of two specific types of items in specific positions. The second is a “soft”
approach, where the definition of item mixes different things together, allow-
ing any item anywhere in the rule. The steps for calculating the measures, such
as chi-square, are the same regardless of what is in the item sets.

Rules of the Form “State Plus Product”

The first approach is to form rules with two different types of items on the left-
hand side, such as an attribute of the order or customer followed by a product.
The right-hand side is still a product. A typical rule is:

■■ NY + productid 11197 ➪ productid 11196

The rules generated by this method are always of the form:

■■ state plus product ➪ product

These types of rules require only a slight modification to the rule genera-
tion query. In this case, the first item is the STATE column from Orders, rather
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than PRODUCTID from Orderline. The following query generates the candi-
date rules:

SELECT item_lhs1.orderid,

(item_lhs1.lhs+’, ‘+CAST(item_lhs2.lhs as VARCHAR)) as lhs,

item_rhs.rhs

INTO assoc_rules_sp2p

FROM (SELECT orderid FROM orderline GROUP BY orderid

HAVING COUNT(DISTINCT productid) > 2) filter JOIN

(SELECT orderid, state as lhs FROM orders ol) item_lhs1

ON filter.orderid = item_lhs1.orderid JOIN

(SELECT DISTINCT orderid, productid as lhs

FROM orderline ol) item_lhs2

ON item_lhs1.orderid = item_lhs2.orderid JOIN

(SELECT DISTINCT orderid, productid as rhs

FROM orderline ol) item_rhs

ON item_lhs1.orderid = item_rhs.orderid AND

item_lhs2.lhs <> item_rhs.rhs

This query has a couple tweaks. The two items on the left-hand side are never
the same, because one is a state and the other a product id. There is no need to
eliminate duplicates by insisting that the first be alphabetically before the sec-
ond. Similarly, the right-hand side cannot be equal to the state (the first item),
so that condition has been removed.

The resulting table has the same format as the earlier rule tables, so the same
chi-square query can be used for choosing rules. Table 9-15 shows the top 
ten rules. 

Table 9-15: Top Ten Rules with State and Product on Left-Hand Side

RULE COUNTS
RULE LHS RHS LHSRHS CHI-SQUARE LIFT

NY + 11197 ➪ 11196 232 499 184 5,415.3 30.3

NY + 11196 ➪ 11197 248 480 184 5,255.3 29.4

NY + 11076 ➪ 11090 10 10 5 4,757.5 952.5

NY + 11051 ➪ 11050 16 31 11 4,636.7 422.5

NY + 11197 ➪ 11052 232 436 155 4,372.0 29.2

NY + 11052 ➪ 11197 211 480 155 4,371.6 29.2

NY + 10970 ➪ 11086 10 11 5 4,324.3 865.9

NY + 10968 ➪ 11086 10 11 5 4,324.3 865.9

NY + 11072 ➪ 11074 55 120 38 4,130.1 109.7

NY + 11074 ➪ 11072 48 139 38 4,087.3 108.5
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Rules Mixing Different Types of Products

Another method for adding different types of items is to expand the notion
of item. By adding the state into the products, any of the following rules are
possible:

■■ product plus product ➪ product

■■ product plus product ➪ state

■■ product plus state ➪ product

■■ state plus product ➪ product

In addition, the following rules are conceivable, but not possible, because there
is only one state associated with each order:

■■ state plus state ➪ state

■■ state plus state ➪ product

■■ state plus product ➪ state

■■ product plus state ➪ state

This method would produce rules such as these if there were more than 
one state.

Creating such rules is a simple matter of modifying the item subqueries to
include the state item, using the UNION ALL operator. The only tricky part is
handling the data types, because PRODUCTID is an integer and the state a
string, so PRODUCTID needs to be cast to a character:

SELECT item_lhs1.orderid, item_lhs1.lhs+’, ‘+item_lhs2.lhs as lhs, rhs

INTO assoc_rules_spsp2p

FROM (SELECT orderid FROM orderline GROUP BY orderid

HAVING COUNT(DISTINCT productid) > 2) filter JOIN

(SELECT orderid, CAST(productid as VARCHAR) as lhs

FROM orderline ol GROUP BY orderid, productid UNION ALL

SELECT orderid, state as productid FROM orders) item_lhs1

ON filter.orderid = item_lhs1.orderid JOIN

(SELECT orderid, CAST(productid as VARCHAR) as lhs

FROM orderline ol GROUP BY orderid, productid UNION ALL

SELECT orderid, state as lhs FROM orders) item_lhs2

ON item_lhs1.orderid = item_lhs2.orderid AND

item_lhs1.lhs < item_lhs2.lhs JOIN

(SELECT orderid, CAST(productid as VARCHAR) as rhs

FROM orderline ol GROUP BY orderid, productid UNION ALL

SELECT orderid, state as product FROM orders) item_rhs

ON item_lhs1.orderid = item_rhs.orderid AND

item_rhs.rhs NOT IN (item_lhs1.lhs, item_lhs2.lhs)

The best rules have no states, so they are the same as the ones in Table 9-14.
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Extending Association Rules

The association rule methods can be extended in several different ways. The
most obvious extension is adding additional items on the left-hand side.
Another extension is to have entirely different sets of items on the left-hand
side and the right-hand side. And, perhaps the most interesting extension is
the creation of sequential association rules, which look for patterns of items
purchased in a particular order.

Multi-Way Associations
Association rule queries handle more than two items on the left-hand side. The
mechanism is to continue adding in joins for every possible item, similar to the
method for going from one item on the left-hand side to two items. However,
as the number of items grows, the size of the intermediate table storing the
candidate rules can get unmanageably large and take a long, long time to cre-
ate. The way to handle this is by adding restrictions so fewer candidate rules
are considered.

TI P As the number of items in association rules gets larger, query performance
can get much and much worse. Be sure to use a filter table to limit the orders
you are working on.

One obvious restriction is to consider only orders having at least as many
items as are in the rule. Several examples in this chapter have used this restric-
tion. A second restriction is to require a minimum support for the rule. This is
used to filter out products that have less than the minimum support. A rule
having a given level of support implies that each product in the rule have at
least that level of support as well.

The third restriction is to remove the largest orders, because large orders
have many products, which results in very large numbers of combinations.
These orders typically add very little information, because there are few of
them. However, they contribute to the vast bulk of processing time.

The following query combines these together for three-way combinations,
with a minimum support of twenty and using orders with no more than ten
products:

SELECT item_lhs1.orderid,

(CAST(item_lhs1.lhs as VARCHAR)+’,’+

CAST(item_lhs2.lhs as VARCHAR)+’,’+

CAST(item_lhs3.lhs as VARCHAR)) as lhs, item_rhs.rhs

INTO assoc_rules_ppp2p

FROM (SELECT orderid FROM orderline GROUP BY orderid

HAVING COUNT(DISTINCT productid) BETWEEN 4 AND 10) filter JOIN

(continued)
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(SELECT DISTINCT orderid, productid as lhs FROM orderline ol

WHERE productid IN

(SELECT productid FROM orderline GROUP BY productid

HAVING COUNT(DISTINCT orderid) >= 20) ) item_lhs1

ON filter.orderid = item_lhs1.orderid JOIN

(SELECT DISTINCT orderid, productid as lhs FROM orderline ol

WHERE productid IN

(SELECT productid FROM orderline GROUP BY productid

HAVING COUNT(DISTINCT orderid) >= 20) ) item_lhs2

ON item_lhs1.orderid = item_lhs2.orderid AND

item_lhs1.lhs < item_lhs2.lhs JOIN

(SELECT DISTINCT orderid, productid as lhs FROM orderline ol

WHERE productid IN

(SELECT productid FROM orderline GROUP BY productid

HAVING COUNT(DISTINCT orderid) >= 20) ) item_lhs3

ON item_lhs1.orderid = item_lhs3.orderid AND

item_lhs2.lhs < item_lhs3.lhs JOIN

(SELECT DISTINCT orderid, productid as rhs FROM orderline ol

WHERE productid IN

(SELECT productid FROM orderline GROUP BY productid

HAVING COUNT(DISTINCT orderid) >= 20) ) item_rhs

ON item_lhs1.orderid = item_rhs.orderid AND

item_rhs.rhs NOT IN (item_lhs1.lhs, item_lhs2.lhs, item_lhs3.lhs)

The different restrictions appear in different places. The limit on the number of
products in an order is placed in the first subquery, which chooses the orders
being processed. The restriction on products is placed in each of the item sub-
queries. The particular limit is using only products that appear in at least 20
orders. Multi-way associations are feasible, but it is important to pay attention to
query performance.

Rules Using Attributes of Products
So far, all the rules have been based on products or one attribute of products,
the product group. Products could have different attributes assigned to them,
such as:

■■ Whether the product is being discounted in the order;

■■ The manufacturer of the product;

■■ The “subject” of the product, such as whether art is photography or
painting, whether books are fiction or non-fiction; and,

■■ The target of the product (kids, adults, left-handers).

The idea is that products could have one or more categories that can be used in
rules. Adjusting the SQL to handle this is not difficult. It simply requires join-
ing in the table containing the categories when generating the item sets.
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There is another problem, though. Each product probably has the same set of
categories, wherever it appears. So, categories are going to co-occur with each
order, simply because they describe the same product, and occurring together
may simply mean that a particular product is present. This is not what we want,
because we don’t want rules on categories to tell us what we already know.

Earlier, the section on combinations discussed a particular method for find-
ing products that households purchase in different orders. The same idea can
be used for categories. The approach is to find categories that are in the same
order, but not in the same product, in order to find the strength of affinities
among categories.

Rules with Different Left- and Right-Hand Sides
Another variation on association rules is to include different types of items on
different sides of the rule. A small example of this was having the state
included as a product on the left-hand side, but not included on the right-hand
side. The implementation in SQL is a simple modification to the association
rule query to generate the right item set for items on the left-hand side and the
right-hand side.

Why would this be a good idea? One application is when customers are
doing a variety of different things. For instance, customers may be visiting
web pages and then clicking advertisements; or they may be visiting web
pages and then making a purchase, or they may be receiving multiple market-
ing messages through different channels and then responding. In these cases,
the left-hand side of the rule could be the advertising pages exposed, the web
pages visited, or the campaigns sent out. The right-hand side could be the
clicks or purchases or responses. The rules then describe what combinations of
actions are associated with the desired action.

This idea has other applications as well. When customizing banner ads or
catalogs for particular types of products, the question might arise: What items
have customers purchased that suggest they are interested in these products? Using
association rules with purchases or visits on the left-hand side and banner
clicks on the right-hand side is one possible way of approaching this question.

Such heterogeneous rules do bring up one technical issue. The question is
whether to include customers that have no events on the right-hand side. Con-
sider the situation where the left-hand side has pages on a web site and the
right-hand side has products purchased by customers. The purpose of the rules
is to find which web pages lead to the purchase of particular products. Should
the data used to generate these rules include customers who have never made
a purchase?

This is an interesting question, and there is no right answer.  Using only cus-
tomers who make purchases reduces the size of the data (since, presumably,
many people do not make purchases). Perhaps the first step in approaching
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the problem is to ask which web pages lead to any purchase at all. The second
step is to then find the product affinity based on the web pages.

Before and After: Sequential Associations
Sequential associations are quite similar to simple product associations. The
difference is that the rule enforces that purchases be in a particular order. So, a
typical rule is:

■■ Product 12175 implies that Product 13297 will later be purchased

Such sequences can prove interesting, particularly when many customers
have purchase histories. However, sequential rules cannot be found within a
single order, because all the products within an order are purchased at the
same time. Instead, sequential rules need to consider all orders of products
within a household.

The basic structure for association rules applies to sequential rules. The dif-
ference is to include the condition on time when creating the candidate rules,
as in the following:

SELECT item_lhs.householdid, item_lhs.lhs, item_rhs.rhs

INTO assocs_seqrules_p2p

FROM (SELECT householdid

FROM orderline ol JOIN orders o ON ol.orderid = o.orderid JOIN

customer c on c.customerid = o.customerid

GROUP BY householdid

HAVING COUNT(DISTINCT productid) > 1) filter JOIN

(SELECT householdid, orderdate as lhsdate, productid as lhs

FROM orderline ol JOIN orders o ON ol.orderid = o.orderid JOIN

customer c on c.customerid = o.customerid

GROUP BY householdid, orderdate, productid) item_lhs

ON filter.householdid = item_lhs.householdid JOIN

(SELECT householdid, orderdate as rhsdate, productid as rhs

FROM orderline ol JOIN orders o ON ol.orderid = o.orderid JOIN

customer c on c.customerid = o.customerid

GROUP BY householdid, orderdate, productid) item_rhs

ON item_lhs.householdid = item_rhs.householdid AND

item_lhs.lhsdate < item_rhs.rhsdate AND

item_rhs.rhs <> item_lhs.lhs

This query is similar to the one that generates combinations of products within
a household but not within an order. The subqueries get the household id and
then aggregate by the household id, product id, and order date. The date is
needed to enforce the sequencing. For customers who purchase the same
product at different times, candidate rules include each purchase. If this fre-
quently happens, using the minimum order date for the left-hand side and the
maximum for the right-hand side also works.
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Table 9-16 shows the resulting sequential association rules. These are bliss-
fully interesting, because they are intuitively obvious. Nine of the ten top rules
(by the chi-square measure) are for calendars. That is, customers who purchase
calendars at one point in time are likely to purchase calendars later in time,
probably about a year later.

Table 9-16: Top Ten Sequential Association Rules

RULE PRODUCT GROUPS SUPPORT LIFT CHI-SQUARE

12175 ➪ 13297 CALENDAR ➪ CALENDAR 0.54% 126.3 12,721.7

12176 ➪ 13298 CALENDAR ➪ CALENDAR 1.62% 41.4 12,391.3

12014 ➪ 12175 CALENDAR ➪ CALENDAR 0.52% 126.4 12,096.9

12015 ➪ 12176 CALENDAR ➪ CALENDAR 1.76% 34.8 11,262.5

10003 ➪ 12014 CALENDAR ➪ CALENDAR 0.36% 146.6 9,785.0

10863 ➪ 12015 CALENDAR ➪ CALENDAR 1.47% 34.8 9,385.7

10862 ➪ 10863 CALENDAR ➪ CALENDAR 1.22% 41.0 9,125.2

10002 ➪ 10003 CALENDAR ➪ CALENDAR 0.28% 163.0 8,440.8

12014 ➪ 13297 CALENDAR ➪ CALENDAR 0.45% 88.8 7,311.9

12488 ➪ 13628 BOOK ➪ BOOK 0.30% 127.9 6,991.3

Lessons Learned

This chapter looks at what customers purchase, rather than when or how they
purchase. The contents of market baskets can be very interesting, providing
information about both customers and products.

The chapter starts with exploratory analysis of products in purchases. A
good way to look at products is by using scatter plots and bubble charts to
visualize relationships. There is a useful Excel trick that makes it possible to
see products along the X- and Y-axes for bubble charts and scatter plots.

Investigating products includes finding the products associated with the
best customers, and finding the ones associated with the worst customers
(those who only make one purchase). It is also interesting to explore other
facets of products, such as the number of times a product changes price, the
number of units in each order, the number of times products are repeated
within an order, and how often customers purchase the same product again.

Simple association rules specify that when a customer purchases one product
(the left-hand side), then the customer is likely to purchase another product (the
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right-hand side) in the same order. The traditional way of measuring the good-
ness of these rules is with support, confidence, and lift. Support measures the
proportion of orders where the rule is true. Confidence measures how confi-
dent the rule is when it applies. And lift specifies how much better the rule
works rather than just guessing.

A better measure for association rules, however, is based on the chi-square
value discussed in Chapter 3. This gives an indication of how likely it is that
the rule is based on something significant, as opposed to random chance.

Association rules are very powerful and extensible. Using SQL, the simple
one-way associations can be extended to two-ways and beyond. Non-product
items, such as the state where the customer resides and other customer attrib-
utes, can be incorporated into the rules. With a relatively simple modification,
the same mechanism can generate sequential rules, where products occur in a
specific order.

With association rules we have dived into the finest details of customer
interactions. The next chapter moves back to the customer level, by using SQL
to build basic models on customers.
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457

Data mining is the process of finding meaningful patterns in large quantities of
data. Traditionally, the subject is introduced through statistics and statistical
modeling. This chapter takes an alternative approach that introduces data
mining concepts using databases. This perspective presents the important con-
cepts, sidestepping the rigor of theoretical statistics to focus instead on the
most important practical aspect: data.

The next two chapters extend the discussion begun in this chapter. Chapter 11
explains linear regression, a more traditional starting point for modeling, from
the perspective of data mining. The final chapter focuses on data preparation.
Whether the modeling techniques are within a database or in another tool, data
preparation is often the most challenging part of a data mining endeavor.

Although earlier chapters have already shown the powerful techniques that
are possible using SQL, snobs may feel that data mining is more advanced
than mere querying of databases. Such a sentiment downplays the importance
of data manipulation, which lies at the heart of even the most advanced tech-
niques. Some powerful techniques adapt well to databases, and learning how
they work — both in terms of their application to business problems and their
implementation on real data — provides a good foundation for understanding
modeling. Some techniques do not adapt as well to databases, so they require
more specialized software. However, the fundamental ideas on using models
and evaluating the results remain the same regardless of the sophistication of
the modeling technique.

Data Mining Models in SQL

C H A P T E R

10
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Earlier chapters contain examples of models, without describing them as
such. The RFM methodology introduced in Chapter 8 assigns an RFM bin to
each customer; the estimated response rate of the RFM bin is a model score
that estimates response. The expected remaining lifetime from a survival
model is a model score. Even the expected value from the chi-square test is an
example of a model score, produced by a basic statistics formula. What these
have in common is that they all find patterns in data that can be applied back
to the original data or to new data, producing a meaningful result.

The first type of model in this chapter is the look-alike model, which takes an
example — typically of something particularly good or bad — and finds other
rows that are similar to the example. Look-alike models use a definition of sim-
ilarity. Nearest neighbor techniques are an extension of look-alike models that
estimate a value by combining information from neighbors where the value is
already known.

The next type of model in the chapter is the lookup model, which summa-
rizes data along various dimensions to create a lookup table. These models are
quite powerful and fit naturally in any discussion of data mining and data-
bases. However, they are limited to at most a few dimensions. Lookup models
lead to naïve Bayesian models, a powerful technique that combines informa-
tion along any number of dimensions, using some interesting ideas from the
area of probability.

Before talking about these techniques, the chapter introduces important
data mining concepts and the processes of building and using models. There is
an interesting analogy between these processes and SQL. Building models is
analogous to aggregation, because both are about bringing data together to
identify patterns. Scoring models is like joining tables — applying the patterns
to new rows of data.

Introduction to Directed Data Mining

Directed data mining is the most common type of data mining. “Directed”
means that target values are known in the historical data, so the data mining
techniques have examples to learn from. Directed data mining makes the
assumption that the patterns in historical data are applicable in the future.

Another type of data mining is undirected data mining, which uses sophis-
ticated techniques to find groups in the data seemingly unrelated to each
other. Undirected data mining does not have a target, so the groups may or
may not be meaningful. Association rules are one example of undirected data
mining. Other undirected techniques are typically more specialized, so this
chapter and the next two focus on directed techniques.

TI P The purpose of a directed model may be to apply model scores to new data
or to gain better understanding of customers and what’s happening in the data.
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Directed Models
A directed model finds patterns in historical data using examples where the
answer is known. The process of finding the patterns is called training or build-
ing the model. The most common way to use the model is by scoring data to
append a model score.

Sometimes, understanding gleaned from a model is more important than the
model scores. The models discussed in this book lend themselves to under-
standing, so they can contribute to exploratory data analysis as well as directed
modeling. Other types of models, such as neural networks, are so complicated
that they cannot explain how they arrive at their results. Such “black-box”
models might do a good job of estimating values, but people cannot peek in
and understand how they work or use them to learn about the data.

TI P If it is important to know how a model is working (which variables it is
choosing, which variables are more important, and so on), then use a technique
that produces understandable models. The techniques discussed in this book
fall in this category.

The models themselves take the form of formulas and auxiliary tables that
can be used to generate scores. The process of training the model generates the
information needed for scoring. This section explains important facets of mod-
eling, in the areas of data and evaluation.

As a note, the word “model” has another sense in databases. As discussed in
Chapter 1, a data model describes the contents of a database, the way that the
data is structured. A data mining model, on the other hand, is a process that
analyzes data and produces useful information about the business. Both types
of model are about patterns, one about the structure of the database and the
other about patterns in the content of the data.

The Data in Modeling
Data is central to the data mining process. Data is used to build models. Data
is used to assess models, and data is used for scoring models. This section dis-
cusses the different uses of data in modeling.

Model Set

The model set, which is sometimes also called the training set, consists of histor-
ical data with known outcomes. It has the form of a table, with rows for each
example. Typically, each row is the granularity of what is being modeled, such
as a customer.
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The target is what we are looking for; this is typically a value in a column. The
target is known for all the rows in the model set. Most of the remaining columns
consist of input columns. Figure 10-1 illustrates data in a possible model set.

Figure 10-1: A model set consists of records with data where the outcome is already
known. The process of training a model assigns a score or educated guess, estimating 
the target.

The goal of modeling is to intelligently and automatically “guess” the values
in the target column using the values in the input columns. The specific tech-
niques used for this depend on the nature of the data in the input and target
columns, and the data mining algorithm. From the perspective of modeling,
each column contains values that are one of a handful of types.

Binary columns (also called flags) contain one of two values. These typically
describe specific aspects about a customer or a product. For instance, the sub-
scription data consists of customers who are active (on the cutoff date) or
stopped. This would lend itself naturally to a binary column.

Category columns contain one of multiple, known values. The subscrip-
tion data, for instance, has several examples, including market, channel,
and rate plan.

Numeric columns contain numbers, such as dollar amounts or tenures. Tra-
ditional statistical techniques work best on such columns.

Date-time columns contain dates and times stamps. These are often the most
challenging type of data to work with. They are often converted to tenures and
durations for data mining purposes.
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discussed in this chapter. 
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This column is an id field that 
identifies the rows. 

These columns are input columns. 

This column is the target, 
what we want to predict. 

These rows have 
invalid customer ids, 
so they are ignored. 
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Text columns (and other complex data types) contain important informa-
tion. However, these are not used directly in the process of modeling. Instead,
features of one of the other types are extracted, such as extracting the zip code
from an address column.

Most of the techniques discussed in this chapter can handle missing values
(represented as NULL). However, not all statistical and data mining techniques
are able to handle missing values.

Score Set

After a model is built, it can be applied to a score set, which has the same input
columns as the model set, but does not necessarily have the target column.
When the model is applied to the score set, the model processes the inputs to
calculate the value of the target column, using formulas and auxiliary tables.

If the score set also has a target column, it is possible to determine how well
the model is performing. So, the model set itself can be used as a score set.
However, models almost always perform better on the data used to build them
than on unseen data.

WARN I NG A model almost always works best on the model set. Do not
expect the performance on this data to match performance on other data.

Prediction Model Sets versus Profiling Model Sets

One very important distinction in data mining is the difference between pro-
filing and prediction. This is a subtle concept, because the process of building
models is the same for the two. The difference is in the data.

Each column describing a customer has a time frame associated with it,
which is the “as-of” date when the data becomes known. For some columns,
such as market and channel in the subscription data, the “as-of” date is when
the customer starts. For other columns, such as the stop date and stop type
columns, the “as-of” date is when the customer stops. For other data, such as
the total amount spent, the “as-of” date may be some cutoff date. Unfortu-
nately, the “as-of” date is not stored in the database, although it can usually be
imputed from knowledge about how data is loaded into the database.

In a profiling model set, the input and target columns come from the same
time period. That is, the target has an as-of date similar to some of the inputs.
For a prediction model set, the input columns have an as-of date earlier than
the target. The input columns are a “before” view of the customer and the tar-
get is the “after” view. 

The upper part of Figure 10-2 shows a model set for prediction, because the
inputs come from an earlier time period than the target. The target might con-
sist of customers who stopped during July or who purchased a particular
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product in July. The lower part of the chart shows a model set for profiling,
because the inputs and target all come from the same time period. The cus-
tomers stopped during the same time period that the data comes from.

Figure 10-2: In a model set used for prediction, the target column represents data from
a time frame strictly after the input columns. For a model set used for profiling, the target
comes from the same time frame.

Building a model set for profiling, rather than for prediction, is usually eas-
ier because profiling does not care about the as-of date. However, because of
the “before” and “after” structure of the data, models built on prediction
model sets do a better job of finding patterns related to actual causes rather
than spurious correlations. One easy way to make prediction models is to limit
the input columns to what is known when customers start, although such
inputs are not as descriptive as customer behavior variables that use informa-
tion after customers start.

To illustrate the distinction between profiling and prediction, consider the
case of a bank that was building a model to estimate the probability of cus-
tomers responding to an offer to open an investment account. The bank sum-
marized customers in a table with various input columns describing the
banking relationship — the balances in accounts of different types, dates when
the accounts were opened, and so on. The bank also had a target column spec-
ifying which customers had an investment account.

The data contains at least one very strong pattern regarding investment
accounts. Customers with investment accounts almost always have low sav-
ings account balances. On reflection, this is not so surprising. Such customers
usually prefer to put their money in the higher yielding accounts. However,
the reverse is not true. Targeting customers with low savings account balances
to open investment accounts is a bad idea. Most such customers have few
financial resources.
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Model Set for Prediction: Target comes from after the input columns 

Model Set for Profiling: Target comes from same time frame as input columns 
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The problem is that the values in the input columns came from the same
period of time as the target, so the model was a profiling model. It would have
been better to take a snapshot of the customers before they opened an invest-
ment account, and to use this snapshot for the input columns. The target
would then be customers who opened an investment account after the cutoff
date. The better approach uses a prediction model set, rather than a profiling
model set.

Examples of Modeling Tasks
This section discusses several types of tasks that models might be used for.

Similarity Models

Sometimes, the problem is to find more instances similar to a given target
instance. In this case, an entire row is the target, and the score represents the
similarity between any given row and the target instance.

The target may be a made up ideal, or it might be an actual example. For
instance, the highest penetration zip code for the purchase data is 10007, a
wealthy zip code in Manhattan. A similarity model might use census demo-
graphics to find similar zip codes from the perspective of the census data. The
assumption is that what works in one wealthy zip code might work well in
another, so marketing efforts can be focused on similar areas.

Yes-or-No Models (Binary Response Classification)

Perhaps the most common type of modeling situation is assigning a “yes” or
“no.” The historical data contains both “yes” and “no” examples. This might
be used to determine:

■■ Who is likely to respond to a particular marketing promotion;

■■ Who is likely to leave in the next three months;

■■ Who is likely to purchase a particular product;

■■ Who is likely to go bankrupt in the next year; or,

■■ Which transactions are likely to be fraud.

Each of these scenarios involves placing customers into one of two categories.
Such a model can be used for:

■■ Saving money by contacting customers likely to respond to an offer;

■■ Saving customers by offering an incentive to those likely to stop;
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■■ Optimizing campaigns by sending marketing messages to those likely
to purchase a particular product;

■■ Reducing risk by lowering the credit limit for those likely to go bank-
rupt; or,

■■ Reducing loses by investigating transactions likely to be fraud.

Yes-or-no models are also called binary response models, because they are often
used for determining the customers who are more likely to respond to a par-
ticular campaign.

Yes-or-No Models with Propensity Scores

A very useful variation on yes-or-no models assigns a propensity to each cus-
tomer, rather than a specific classification. Everyone gets a “yes” score that
varies, say, from zero (definitely “no”) to one (definitely “yes”). One reason
why a propensity score is more useful is that any particular number of cus-
tomers can be chosen for a campaign, by adjusting the threshold value. Values
on one side of the threshold are “no” and values on the other side are “yes.”
The model can choose the top one percent, or the top forty percent, by choos-
ing an appropriate threshold.

Often, the propensity score is actually a probability estimate. This is even
more useful, because the probability can be combined with financial informa-
tion to calculate an expected dollar amount. With such information, a cam-
paign can be optimized to achieve particular financial and business results. 

Consider a company that is sending customers an offer in the mail for a new
product. From previous experience, the company knows that the product
should generate an additional $200 in revenue during the first year. Each item
of direct mail costs $1 to print, mail out, and process. How can the company
use modeling to optimize its business?

Let’s assume that the company wants to invest in expanding its customer
relationships, but not lose money during the first year. The campaign then
needs to meet the following conditions:

■■ Every customer contacted costs $1.

■■ Every customer who responds is worth $200 during the first year.

■■ The company wants to break even during the first year.

One responsive customer generates an excess of $199 in the first year, which is
enough money to contact an additional 199 customers. So, if one out of two
hundred customers (0.5%) respond, the campaign breaks even. To do this, the
company looks at previous, similar campaigns and builds a model estimating
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the probability of response. The goal is to contact the customers whose
expected response exceeds the break-even point of 0.5%.

Multiple Categories

Sometimes, two categories (“yes” and “no”) are not enough. For instance, con-
sider the next offer to make to each customer. Should this offer be in books or
apparel or calendars or something else?

When there are a handful of categories, building a separate propensity
model for each category is a good way to handle this. For each customer, the
product with the highest propensity among the models can then be assigned
as the one with the highest affinity. Another approach is to multiply the
propensity probabilities by the value of the product, and choose the product
that has the highest expected value.

When there are many values in the category, association rules are probably
a better place to start. Some of the most interesting information may be the
products that are purchased together.

Estimating Numeric Values

The final category is the traditional statistical problem of estimating numeric
values. This might be a number at an aggregated level, such as the penetration
within a particular area. Another example is the expected value of a customer
over the next year. And yet another is tenure related, such as the number of
days we expect a customer to be active over the next year.

There are many different methods to estimate real values, including regres-
sion and survival analysis.

Model Evaluation
Model evaluation is the process of measuring how well a model works. The
best way to do this is to compare the results of the model to actual results. How
this comparison is made depends on the type of model. Later in this chapter,
we will see three different methods, one for models that predict categories, one
for models that estimate numbers, and one for yes-or-no models.

When evaluating models, the choice of data used for the evaluation is very
important. Models almost always perform better on the model set, the data
used to build the model in the first place. So, it is misleading to assume that per-
formance on the model set generalizes to other data. It is better to use a hold-
out sample, called a test set, for model evaluation. For models built on
prediction model sets, the best test set is an out-of-time sample; that is, data that
is a bit more recent than the model set. However, such an out-of-time sample is
often not available.
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TI P Evaluating models on the data used to build the model is cheating. Use a
hold-out sample for evaluation purposes.

Look-Alike Models

The first modeling technique is look-alike models, which are used to measure
similarity to known good or bad instances.

What Is the Model?
The look-alike model produces a similarity score. The model itself is a formula
that describes the similarity, and this formula can be applied to new data. Typ-
ically, the purpose of a look-alike model is to choose some groups of customers
or zip codes for further analysis or for a marketing effort.

The similarity measure cannot really be validated quantitatively. However, we
can qualitatively evaluate the model by seeing if the rankings look reasonable.

What Is the Best Zip Code?
This example starts with the question: Which zip codes have the highest penetra-
tion of orders and what are some of their demographic characteristics? For practical
purposes, the zip codes are limited to those with one thousand or more house-
holds. The following query answers this question:

SELECT TOP 10 o.zipcode, zco.state, zco.poname,

COUNT(DISTINCT householdid) / MAX(zc.hh*1.0) as penetration,

MAX(zc.hh) as hh, MAX(hhmedincome) as hhmedincome,

MAX(popedubach + popedumast + popeduprofdoct) as collegep

FROM orders o JOIN customer c ON o.customerid = c.customerid JOIN

zipcensus zc ON o.zipcode = zc.zipcode JOIN

zipcounty zco ON zc.zipcode = zco.zipcode

WHERE zc.hh >= 1000

GROUP BY o.zipcode, zco.state, zco.poname

ORDER BY 4 DESC

Penetration is defined at the household level, by counting distinct values of
HOUSEHOLDID within a zip code. The proportion of college graduates is the
sum of three of the education variables.

The top ten zip codes by penetration are all well-educated and wealthy (see
Table 10-1). Which zip codes are similar to the zip code with the highest penetration?
This question suggests a look-alike model.
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Table 10-1: Ten Zip Codes with Highest Penetration

HOUSEHOLD
ZIP PO NAME PENE- HOUSE- MEDIAN

CODE AND STATE TRATION HOLDS INCOME COLLEGE %

10007 New York, NY 5.9% 1,283 $112,947 56.9%

10504 Armonk, NY 5.2% 2,315 $130,789 60.7%

10514 Chappaqua, NY 5.1% 3,820 $173,368 79.4%

07078 Short Hills, NJ 5.0% 4,279 $185,466 79.2%

10576 Pound Ridge, NY 4.9% 1,648 $152,863 70.5%

10018 New York, NY 4.9% 2,205 $48,705 51.3%

10510 Briarcliff Manor, NY 4.9% 3,227 $131,402 70.8%

07043 Montclair, NJ 4.8% 4,255 $115,498 73.6%

10538 Larchmont, NY 4.7% 6,375 $111,492 71.0%

90067 Los Angeles, CA 4.7% 1,553 $74,830 46.4%

The first decision with a look-alike model is to decide on the dimensions
used for the comparison. For the statistically inclined, one interesting method
might be to use something called principal components. However, using the
raw data has an advantage, because the distance can be understood by humans.

Instead, the approach described in this section uses only two attributes of
the zip codes, the median household income and the proportion of the popu-
lation with a college education. The limit to two is for didactic reasons. Two
dimensions can be plotted on a scatter plot. In practice, using more attributes
is a good idea.

Figure 10-3 shows a scatter plot of the almost ten thousand largish zip codes
that have orders. There are three symbols on the scatter plot. The diamonds are
the zip codes with the highest number of orders, the squares are in the middle,
and the triangles have the fewest orders. This scatter plot confirms that the
highest penetration zip codes also have high median household incomes and
are well educated.

Alas, this scatter plot is potentially misleading, because the three groups
seem to differ in size. Many of the zip codes are in the big blob on the lower
left-hand side of the chart — median income between $20,000 and $70,000 and
college proportion between 20% and 50%. The three groups overlap signifi-
cantly in this region. Because Excel draws one series at a time, a later series
may hide the points on an earlier series, even when the symbols are hollow.
The order of the series can affect the look of the chart. To change the order,
select any of the series, right-click, and bring up the “Format Data Series” dia-
log box. The order can be changed under the “Series Order Tab.”
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Figure 10-3: This scatter plot shows that the zip codes with the highest penetration 
do seem to have a higher median household income and higher education levels.

WARN I NG When plotting multiple series on a scatter plot, one series may
overlap another, hiding some or many points. Use the “Series Order” option to
rearrange the series and see the hidden points. Of course, changing the order
may cause other points to be hidden.

A Basic Look-Alike Model
Zip code 10007 has the highest penetration and the following characteristics:

■■ Median household income is $112,947; and,

■■ College rate is 56.7%.

The first attempt at a look-alike model simply calculates the distance from
each zip code to these values using the Euclidean distance formula:

SQRT(SQUARE(hhmedincome – 112947)+SQUARE(collegep - 0.567))

This formula is the model. And, this model can be used to assign a similarity
measure to all zip codes, as in the following query:

SELECT TOP 10 oz.*,

SQRT(SQUARE(hhmedincome - 112947.)+

SQUARE(collegep - 0.5689)) as dist

FROM (SELECT o.zipcode, MAX(hhmedincome) as hhmedincome,

MAX(popedubach + popedumast + popeduprofdoct) as collegep

FROM orders o JOIN customer c ON o.customerid = c.customerid JOIN

zipcensus zc ON o.zipcode = zc.zipcode

WHERE zc.hh >= 1000

GROUP BY o.zipcode) oz

ORDER BY 1 ASC
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This query hardwires the values for zip code 10007 directly into the SELECT
statement.

Table 10-2 shows the ten closest zip codes by this measure. The median
income for all these is right on the money, being very close to the value for
10007. On the other hand, the education levels vary rather widely. This is
because the median income is measured in units of dollars with values going
into the hundreds of thousands. The proportion college educated is always
less than one. The median household income dominates the calculation.

Table 10-2: Ten Zip Codes Most Similar to 10007 (First Similarity Measure)

HOUSEHOLD
ZIP PENE- HOUSE- MEDIAN

DISTANCE CODE TRATION HOLDS INCOME COLLEGE %

0.0 10007 5.9% 1,283 $112,947 56.9%

29.0 06490 2.1% 1,597 $112,976 61.7%

51.0 92679 0.1% 9,966 $112,998 52.5%

138.0 48374 0.1% 3,576 $112,809 59.0%

265.0 01921 0.2% 2,560 $113,212 62.8%

375.0 90210 1.8% 8,690 $112,572 55.5%

579.0 21029 0.2% 2,323 $113,526 64.2%

647.0 46814 0.2% 2,512 $112,300 56.5%

692.0 08836 1.0% 1,348 $113,639 55.6%

841.0 20817 1.3% 13,252 $113,788 77.4%

There are several ways to fix this. One way is to normalize values by sub-
tracting the minimum from each value and dividing by the range (the differ-
ence between the maximum and the minimum). A better approach borrows an
idea from Chapter 3.

Look-Alike Using Z-Scores
Z-scores replace numeric values that have wildly different ranges with values
on the same scale. The z-score is the number of standard deviations that a
value differs from the average value.

The following query calculates the standard deviation and average value for
the household median income and the proportion of college graduates:

SELECT AVG(hhmedincome) as avghhmedinc, STDEV(hhmedincome) as stdhhmedinc,

AVG(collegep) as avgcollegep, STDEV(collegep) as stdcollegep

(continued)
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FROM (SELECT o.zipcode, MAX(hhmedincome) as hhmedincome,

MAX(popedubach + popedumast + popeduprofdoct) as collegep

FROM orders o JOIN customer c ON o.customerid = c.customerid JOIN

zipcensus zc ON o.zipcode = zc.zipcode

WHERE zc.hh >= 1000

GROUP BY o.zipcode) oz

Because the model is restricted to zip codes that have at least one thousand
households, the z-scores are restricted to this group of zip codes, resulting in
the following values:

■■ HH median income: average is $48,672; standard deviation is $19,273.

■■ Proportion College Grads: average is 27.8%; standard deviation is 15.6%.

A scatter plot using the z-scores instead of the original values would look
almost exactly the same as the scatter plot already seen in Figure 10-3; the only
difference is that the X- and Y-axes would have different scales on them. Instead
of going from $0 to $200,000, the range for median household income would go
from about –3 to +8. For the proportion of college graduates, the z-scores would
go from about –1.8 to 4.7, rather than from 0% to 100%.

In order to apply the z-score to a look-alike model, the comparison values
need to be transformed into z-score values as well as the values in the score set.
Figure 10-4 shows the dataflow diagram for this processing. The following
query uses this same logic to calculate the similarity score:

SELECT SQRT(POWER((hhmedincome-hhmedincome10007)/stdhhmedincome, 2) +

POWER((collegep-collegep10007)/stdcollegep, 2)) as dist, oz.*

FROM (SELECT o.zipcode, MAX(hhmedincome) as hhmedincome,

MAX(popedubach + popedumast + popeduprofdoct) as collegep

FROM orders o JOIN customer c ON o.customerid = c.customerid JOIN

zipcensus zc ON o.zipcode = zc.zipcode

WHERE zc.hh >= 1000

GROUP BY o.zipcode) oz CROSS JOIN

(SELECT AVG(hhmedincome) as avghhmedincome,

STDEV(hhmedincome) as stdhhmedincome,

AVG(popedubach + popedumast + popeduprofdoct) as avgcollegep,

STDEV(popedubach + popedumast + popeduprofdoct

) as stdcollegep,

MAX(CASE WHEN o.zipcode = ‘10007’ THEN hhmedincome END

) as hhmedincome10007,

MAX(CASE WHEN o.zipcode = ‘10007’

THEN popedubach + popedumast + popeduprofdoct

END) as collegep10007

FROM (SELECT DISTINCT zipcode

FROM orders o JOIN customer c

ON o.customerid = c.customerid) o JOIN

zipcensus zc ON o.zipcode = zc.zipcode

WHERE zc.hh >= 1000) vals

ORDER BY 1 ASC
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Figure 10-4: This dataflow calculation scores a look-alike model using z-scores rather
than the original values.

There are several things to point out about this query. First, the subqueries, Oz
and Vals, use a very similar set of joins to ensure that the z-score calculation
uses the same set of rows for both the target instance and the score set. The dif-
ference between the two queries arises because zip codes can have multiple
orders, so the join between Orders and Zipcensus results in duplicate zip
codes. These duplicates do not affect Oz, because duplicates do not affect the
value of the MAX() function.

On the other hand, Vals uses AVG() and STDEV(), which duplicates do affect.
Vals only needs the zip codes that have orders. For this purpose, it uses the
DISTINCT keyword in the innermost subquery to remove duplicate zip codes.

READ
orders

READ
zipcensus

READ 
customer 

JOIN 
on customerid 

OUTPUT 

FILTER 
hh >= 1000 

JOIN 
on zipcode 

READ 
orders 

READ
zipcensus

READ 
customer 

JOIN 
on customerid 

FILTER 
hh >= 1000 

JOIN
on zipcode

AGGREGATE
group by zipcode

    minorderidd = MIN(orderid) 

APPEND 
dist = SQRT(((hhmedincome – hhmedincome10007)/ 

stdhhmedincome)^2)+ 
((collegep – collegep10007)/stdcollegep)^2)) 

oz 

AGGREGATE 
group by zipcode 

penetration = COUNT(DISTINCT householdid) / MAX(zc.hh*1.0) 
hh = MAX(zc.hh as hh 
hhmedincome = MAX(hhmedincome) 
collegep = MAX(popedubach + popedumast + popeduprofdoct) 

vals 

AGGREGATE 

CROSSJOIN 

avghhmedincome = AVG(hhmedincome), 
stdhhmedincome = STDEV(hhmedincome) 
avgcollegep = AVG(popedubach+popedumast+popeduprofdoct), 
stdcollegep = STDEV(popedubach+popedumast+popeduprofdoct) 
hhmedincome10007 = MAX(CASE WHEN o.zipcode = ‘10007’ THEN hhmedincome 

collegep10007 = MAX(CASE WHEN o.zipcode = ‘10007’
                                              THEN popedubach+popedumast+popeduprofdoct
                                    END) as collegep10007

END) as hhmedincome10007, 
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TI P When calculating summary statistics on tables connected by complex sets
of joins, be sure that none of the joins inadvertently change the number of rows.

The second subquery calculates the statistics for all zip codes. It also calculates
the values for 10007, using a trick: the CASE statement converts all the values in
non-10007 zip codes values to NULL, so the maximum returns the value for 10007.

The outermost SELECT calculates the difference of two z-scores, using the
fact that the following two operations are equivalent:

■■ Taking the difference of two z-scores.

■■ Taking the difference of two values and converting the difference to a z-
score, using the average and standard deviation of the original values.

The query uses the second approach, because it results in a simpler expression.
By the way, window functions can be used instead of analytic functions, as

in the following version:

SELECT TOP 10

SQRT(SQUARE((hhmedincome-hhmedincome10007)/stdhhmedinc) +

SQUARE((collegep-collegep10007)/stdcollegep)) as dist, oz.*

FROM (SELECT oz.*,

STDEV(hhmedincome) OVER () as stdhhmedinc,

STDEV(collegep) OVER () as stdcollegep,

MAX(CASE WHEN zipcode = ‘10007’ THEN hhmedincome END) OVER

() as hhmedincome10007,

MAX(CASE WHEN zipcode = ‘10007’ THEN collegep END) OVER

() as collegep10007

FROM (SELECT o.zipcode,

COUNT(DISTINCT householdid)/MAX(zc.hh*1.0) as penetrat,

MAX(zc.hh) as hh,

MAX(hhmedincome) as hhmedincome,

MAX(popedubach+popedumast+popeduprofdoct) as collegep

FROM orders o JOIN customer c

ON o.customerid = c.customerid JOIN

zipcensus zc ON o.zipcode = zc.zipcode

WHERE zc.hh >= 1000

GROUP BY o.zipcode) oz

) oz

ORDER BY 1 ASC

This version of the query is simpler is several respects. First, COLLEGEP is cal-
culated only once, eliminating problems caused by code duplication. Second,
the average and standard deviations needed for the z-scores are calculated
after the aggregation by zip code, so there are no duplicates. Using the win-
dow functions also ensures that the same rows are used for all calculations.
Notice that the window functions have an empty OVER clause, which means to
do the calculation over all rows. An equivalent formulation would be OVER
(PARTITION BY NULL).
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TI P When calculating statistics on a set of rows (such as the average and
standard deviation for calculating z-scores), the window functions have an
advantage because they reduce the amount of duplicated code in the query.

Table 10-3 shows the ten closest zip codes. All the zip codes in this table have
similar median incomes and proportions of college graduates. The college pro-
portion now varies from 55.5% to 59.1%, rather than from 52.5% to 77.4%. The
household median incomes still cluster around the value for 10007.

Table 10-3: Ten Zip Codes Most Similar to 10007 (Z-Score Measure)

HOUSEHOLD
PENE- HOUSE- MEDIAN

DISTANCE ZIP TRATION HOLDS INCOME COLLEGE %

0.000 10007 5.9% 1,283 $112,947 56.9%

0.042 46814 0.2% 2,512 $112,300 56.5%

0.089 08836 1.0% 1,348 $113,639 55.6%

0.094 90210 1.8% 8,690 $112,572 55.5%

0.131 07733 1.7% 4,832 $114,985 55.7%

0.133 48374 0.1% 3,576 $112,809 59.0%

0.181 94526 0.3% 12,116 $109,771 58.1%

0.191 60010 0.4% 14,102 $110,470 59.1%

0.199 92861 0.1% 1,925 $116,658 57.7%

0.204 10536 2.8% 3,441 $109,542 58.5%

The look-alike model now finds the zip codes that look like 10007 along both
these dimensions, so the results are much more reasonable. However, the pen-
etrations for similar zip codes vary from 0.1% to 2.8%. All these values are on
the high side for household penetration. However, the wide range suggests
that look-alike zip codes may not be similar in terms of penetration. On the
other hand, perhaps the look-alike zip codes should be similar, and these other
zip codes represent lost opportunity.

Example of Nearest Neighbor Model
Nearest neighbor models are a variation on look-alike models. They use the
measure of similarity to define a neighborhood of similar cases, and then sum-
marize the cases to assign an estimated value.
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As an example, the following query estimates the penetration for zip code
10007, using the similarity measure by median income and college proportion:

SELECT AVG(pen) as estpenetration

FROM (SELECT TOP 5

SQRT(SQUARE((collegep - collegep10007)/stdcollp) + 

SQUARE((hhmi - hhmi10007)/stdhhmi)) as dist, oz.*

FROM (SELECT oz.*, AVG(hhmi) OVER () as avghhmi,

STDEV(hhmi) OVER () as stdhhmi,

AVG(collegep) OVER () as avgcollegep,

STDEV(collegep) OVER () as stdcollp,

MAX(CASE WHEN zipcode = ‘10007’ THEN hhmi END

) OVER () as hhmi10007,

MAX(CASE WHEN zipcode = ‘10007’ THEN collegep END

) OVER () as collegep10007

FROM (SELECT o.zipcode, MAX(hhmedincome) as hhmi,

MAX(popedubach + popedumast + popeduprofdoct

) as collegep,

COUNT(DISTINCT householdid)/MAX(hh*1.0) as pen

FROM orders o JOIN customer c

ON o.customerid = c.customerid JOIN

zipcensus zc ON o.zipcode = zc.zipcode

WHERE zc.hh >= 1000

GROUP BY o.zipcode) oz

) oz

WHERE zipcode <> ‘10007’

ORDER BY 1) score

This query uses a scoring subquery that is quite similar to the one used for the
look-alike model. There are a handful of differences:

■■ The subquery excludes zip code 10007, because it is being scored.

■■ The subquery chooses the top five neighbors.

■■ The subquery defines the penetration variable, PEN.

The outermost query simply takes the average of PEN from the five most 
similar zip codes and uses this as the estimate for penetration in 10007.

This is only an example of using the nearest neighbor technique. In this
case, the actual penetration in zip code 10007 is already known. However,
the technique itself can be used in other situations for scoring new, unknown
examples.

The model itself is the table of known instances along with the formula for
calculating distance. It is reasonably efficient for scoring one row at a time.
However, for scoring large numbers of rows, every row in the score set has 
to be compared to every row in the training set, which can result in long-
running queries.
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Lookup Model for Most Popular Product

A lookup model partitions the data into non-overlapping groups, and then
assigns a constant value within each group. Lookup models do not look like
fancy statistical models, because they pre-calculate all the possible scores,
rather than estimating coefficients for a complicated equation. Nevertheless,
the language of statistics has a name for them, contingency tables.

The first example of a lookup model finds the most popular product group
in a zip code using the purchases data. This model provides a good example
of profiling.

Most Popular Product
The most popular product group in a zip code is easy to calculate and to use. The
model itself is a lookup table with two columns: a zip code and a product group.
Using the model simply requires looking up the appropriate value in the table,
using the customer’s zip code.

Once upon a time, a company was customizing its email offers. One of the
things known about prospects was their zip codes. The marketing idea was to
customize each email by including information about products that would be
of interest. Lacking other information, the geographic information proved use-
ful. Prospects were indeed more interested in the most popular product in
their neighborhood (as defined by zip code) than in random products.

Calculating Most Popular Product Group
An earlier chapter noted that BOOKS is the most popular product group. The
following query is one way to determine this information:

SELECT productgroupname

FROM (SELECT productgroupname, cnt, MAX(cnt) OVER () as maxcnt

FROM (SELECT productgroupname, COUNT(*) as cnt

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid JOIN

product p

ON ol.productid = p.productid and

p.productgroupname <> ‘FREEBIE’

GROUP BY productgroupname

) pg

) a

WHERE cnt = maxcnt

This query has two levels of subqueries. The innermost calculates the order fre-
quency for product groups. This subquery does not include FREEBIE products,
because they are not interesting for cross-selling purposes. The next level then
calculates the maximum of the frequency (the second subquery is needed
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because window functions cannot be used with GROUP BY). The outermost then
chooses the product group whose count is the maximum. Instead of window
functions, the query could also use another subquery to calculate the maximum.

The most popular product is, in itself, a very simple model. However, we
want to refine the model by zip code, resulting in the rather similar query:

SELECT zipcode, productgroupname

FROM (SELECT zipcode, productgroupname, cnt,

MAX(cnt) OVER (PARTITION BY zipcode) as maxcnt

FROM (SELECT zipcode, productgroupname, COUNT(*) as cnt

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid JOIN

product p

ON ol.productid = p.productid and

p.productgroupname <> ‘FREEBIE’

GROUP BY zipcode, productgroupname

) pg

) a

WHERE cnt = maxcnt

Notice that the only thing that changes between the two queries is the 
PARTITION BY clause. In this version, it partitions by the zip code, to return 
the maximum count within the zip code. The query then returns the product
groups whose counts match the maximum.

TI P When finding rows containing the minimum and maximum values in a
table, always consider that there might be more than one matching row.

There is a slight problem with this approach. Some zip codes might have
multiple product groups all having the maximum frequency. Where there are
ties, the query needs to choose one product group (any will do), or else the
results will have duplicate zip codes. One way to choose is by calculating 
the minimum product group name that has a given count in each zip code, as
in the following variation: 

SELECT zipcode, productgroupname

FROM (SELECT zipcode, productgroupname, cnt,

MAX(cnt) OVER (PARTITION BY zipcode) as maxcnt,

MIN(productgroupname) OVER (PARTITION BY zipcode, cnt

) as minpg

FROM (SELECT zipcode, productgroupname, COUNT(*) as cnt

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid JOIN

product p

ON ol.productid = p.productid and

p.productgroupname <> ‘FREEBIE’

GROUP BY zipcode, productgroupname

) pg

) a

WHERE cnt = maxcnt AND

productgroupname = minpg
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This query uses the window functions to break ties by choosing the first prod-
uct group name alphabetically.

The result contains two columns: the zip code and the most popular product
group. This is the lookup model by zip code for the most popular product group.
This model is a profiling model because the zip code and product group come
from the same time frame. There is no “before” and “after.” Here the most popu-
lar product group has been defined as the one with the most orders. Other defin-
itions are possible, such as the one with the most households purchasing it or the
largest dollar amount per household.

Table 10-4 shows each product group and the number of zip codes where
that group is the most popular. Not surprisingly, BOOKS win in over half the
zip codes, as shown by the following query:

SELECT productgroupname, COUNT(*) as numzips

FROM (<zipcode-productgroupname-subquery>) subquery

GROUP BY productgroupname

ORDER BY 2 DESC

This query uses the previous query as a subquery. It then aggregates by prod-
uct group name and counts the number of zip codes where that product group
is the most popular.

Table 10-4: Number of Zip Codes Where Product Groups Are Most Popular

PRODUCT GROUP NUMBER OF ZIPS % OF ALL ZIPS

BOOK 8,402 53.9%

ARTWORK 2,917 18.7%

OCCASION 2,064 13.2%

GAME 899 5.8%

APPAREL 771 4.9%

CALENDAR 403 2.6%

OTHER 123 0.8%

Evaluating the Lookup Model
This model uses all the zip codes for determining the most popular product.
There is no data left over to quantify how good it is.

One idea for testing it would be to partition the data into two parts, one for
determining the most popular product and the other for testing it. This strategy
of testing a model on a separate set of data is a good idea and important to data
mining. However, the next section describes an alternative approach that is
often more useful.
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Using a Profiling Lookup Model for Prediction
This model is a profiling model because the target (the most popular product
group) comes from the same time frame as the input (the zip code). This is the
nature of the model and the model set used to create it. However, it is possible
to use a profiling model for prediction by making a small assumption.

The assumption is that the most popular product group prior to 2016 is the
most popular after 2016. This assumption also requires building the model —
still a profile model because of the dataset — using data prior to 2016. The
only modification to the query is to add the following WHERE clause to the
innermost subquery:

WHERE order_date < ‘2016-01-01’

The model now finds the most popular product group prior to the cutoff date.
A classification matrix is used to evaluate a model that classifies customers. It is

simply a table where the modeled values are on the rows and the correct values
are across the columns (or vice versa). Each cell in the table consists of the count
(or proportion) of rows in the score set that have that particular combination of
model prediction and actual result.

Table 10-5 shows a classification matrix, where the rows contain the pre-
dicted product group (the most popular group prior to 2016) and the
columns contain the actual product group (the most popular after 2016).
Each cell contains the number of zip codes with that particular combination
of predicted and actual product groups. All the zip codes in the table have
orders in the model set (prior to 2016) and the score set (after 2016). There are
1,406 zip codes where BOOK is predicted to be the most popular product and
it is actually BOOK. However, there are an additional 1,941 zip codes
(483+938+303+149+30+38) where BOOK is predicted to be the most popular
and it is not.

Figure 10-5: This classification matrix shows the number of zip codes by the predicted
and actual most popular product group in 2016. The highlighted cells are where the
prediction is correct.
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The cells in the table where the row and the column have the same value are
shaded using Excel’s conditional formatting capability. This is explained in the
aside “Conditional Formatting in Excel.”

Although BOOK is still the most popular product group in 2016, its popu-
larity is waning. If we totaled the values across the rows, BOOK consists of
about 70% of the predicted values. However, if we total the rows across the
columns, BOOK accounts for only about 40% of the actual values.

How well is the model doing? In this case, not so well. The model does well
when its prediction agrees with what actually happens. So, there are 1,406 + 89
+ 227 + 25 + 16 + 4 + 1 = 1,768 zip codes where the prediction matches what
actually happened. This comes to 37.4% of the zip codes. This is much better
than randomly guessing one out of seven categories. However, it is doing
worse than just guessing that BOOK is going to be the most popular.

CONDITIONAL FORMATTING IN EXCEL

Excel has the ability to format cells individually based on the values in the cells.
That is, the border, color, and font in the cell can be controlled by the contents
of the cell or even by a formula that refers to other cells. This conditional
formatting can be used to highlight cells as shown in Table 10-5.

Conditional formatting comes in two flavors, formatting by the value in the
cell or by a formula. For both flavors, the “Conditional Formatting” dialog box is
accessed using the Format ➪ Conditional Formatting menu option (or using the
key sequence <alt>-O<alt>-D).

Use formatting by a value to highlight cells with particular values. For instance,
in a table showing chi-square values, the cells with a chi-square value exceeding
a threshold can be given a different color. To do this, bring up the “Conditional
Formatting” dialog box, choose the “Cell Value Is” option, and set the condition.
Click the “Format” button to define the desired format.

Using a formula provides even more power. A formula can describe whether
the formatting gets applied, which occurs when the formula evaluates to TRUE.
For instance, the shaded format in Table 10-5 is when the name of the row and
the name of the header have the same value. The formula for this is:

=($I42=J$41)

Where row 41 has the column names and column “I” has the row names. The
formula uses “$” to ensure that the formula is correct when copied. When
copied, cell references in a conditional formatting formula change the same
way that cell references for a regular formula do.

Conditional formatting can be used for many things. For instance, to color
every other row, use:

=MOD(ROW(), 2) = 0

Continued on next page
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CONDITIONAL FORMATTING IN EXCEL (CONTINUED)

To color every other column, use:

=MOD(COLUMN(), 2) = 0

To create a checkerboard pattern, use:

=MOD(ROW()+COLUMN(), 2) = 0

These formulas use the ROW() and COLUMN() functions, which return the
current row and current column of the cell.

Conditional formatting can also be used to put borders around regions in a
table. Say column C has a key in a table that takes on repeated values and then
changes. To put a line between blocks of similar values, use the following
condition in the cells on row 10:

=($C10<>$C11)

This says to apply the formatting when cell C11 has a different value from C10.
Make the formatting the bottom border. When this formatting is copied to the
rest of the table, horizontal lines appear between the different groups.

Using the paintbrush copies the conditional formatting as well as the overall
formatting, so it is easy to copy formats from one cell to a group of cells.

Using Binary Classification Instead
BOOK is so popular that we might tweak the model a bit, to look just for BOOK
or NOT-BOOK as the most popular category, grouping all the non-book products
together into a single group. To do this in SQL, replace the innermost references
to product group with the following CASE statement:

(CASE WHEN productgroupname = ‘BOOK’ THEN ‘BOOK’

ELSE ‘NOT-BOOK’ END) as productgroupname

This model performs better than the categorical model, as shown in the clas-
sification matrix in Table 10-5. Now, there are 805+1,812 zip codes where the
model is correct (55.4% versus 37.4%). In particular, the model is working bet-
ter on predicting NOT-BOOK, where it is correct 63.4% of the time versus only
43.1% when it predicts BOOK.

Table 10-5: Classification Matrix for BOOK or NOT-BOOK

BOOK NOT-BOOK

BOOK 805 1,048

NOT-BOOK 1,062 1,812
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Notice that the number of zip codes where BOOK is the most popular before
and after has dropped from 1,406 to 805. These 805 zip codes are where the
majority of orders are in BOOK. The rest are where BOOK has the most orders,
but not over 50%.

This example shows a modeling challenge. When working with two cate-
gories of about the same size, binary models do a good job of distinguishing
between them. When working with multiple categories, a single model often
works less well.

Another challenge in building a model is the fact that BOOK is becoming
less popular as a category over time, relative to the other categories. There is a
big word to describe this situation, nonstationarity, which means that patterns
in the data change over time. Nonstationarity is the bane of modeling, but is,
alas, quite common in the real world.

TI P When building models, we are assuming that the data used to build the
model is representative of the data used when scoring the model. This is not
always the case, due to changes in the market, in the customer base, in the
economy, and so on.

Lookup Model for Order Size

The previous model was a lookup model for classification, both for multiple
classification and binary classification. The lookup itself was along a single
dimension. This section uses lookup models for estimating a real number. It
starts with the very simplest case, no dimensions, and builds the model up
from there.

Most Basic Example: No Dimensions
Another basic example of a lookup model is assigning an overall average
value. For instance, we might ask the question: Based on purchases in 2015, what
do we expect the average order size to be in 2016? The following query answers this
question, by using the average of all purchases in 2015:

SELECT YEAR(o.orderdate) as year, AVG(totalprice) as avgsize

FROM orders o

WHERE YEAR(o.orderdate) in (2015, 2016)

GROUP BY YEAR(o.orderdate)

ORDER BY 1

Chapter 10 ■ Data Mining Models in SQL 481

99513c10.qxd:WileyRed  8/27/07  1:24 PM  Page 481



This query gives the estimate of $85.51. This is a reasonable estimate, but it is a
bit off the mark, because the actual average in 2016 is $112.64.

This example is a predictive model. The average from 2015 is being used to
estimate the value in 2016. This is a big assumption, but not unreasonable.

Adding One Dimension
The next step is to add a dimension, as in the following query that calculates
the average by state:

SELECT state,

AVG(CASE WHEN YEAR(orderdate)=2015 THEN totalprice END) as avg2015,

AVG(CASE WHEN YEAR(orderdate)=2016 THEN totalprice END) as avg2016

FROM orders o

WHERE YEAR(o.orderdate) in (2015, 2016)

GROUP BY state

This query calculates the average order sizes in 2015 and 2016 using the AVG()
function with a CASE statement that quite intentionally does not have an ELSE
clause. Rows that do not match the year are given a NULL value rather than the
TOTALPRICE. The NULL values are ignored when SQL takes the average. Of
course, we could get the same effect by including ELSE NULL in the statement.
The results from this query are a lookup table.

Evaluating the results requires applying the model to data that was not
used to create it. A good score set is orders in 2016. Applying the model
means joining the score set to the lookup table by state. One caveat is that
some customers may be in states that did not place orders in 2015. These cus-
tomers need a default value, and a suitable value is the overall average order
size in 2015. 

The following query attaches the estimated order size for 2016 onto each
row in the score set:

SELECT o.*, COALESCE(statelu.avgamount, defaultlu.avgamount) as predamount

FROM (SELECT o.*

FROM orders o

WHERE YEAR(o.orderdate) = 2016) o LEFT OUTER JOIN

(SELECT state, AVG(totalprice) as avgamount

FROM orders o

GROUP BY state) statelu

ON o.state = statelu.state CROSS JOIN

(SELECT AVG(totalprice) as avgamount

FROM orders o

WHERE YEAR(o.orderdate) = 2015) defaultlu

Figure 10-6 shows the dataflow diagram for this query. There are three 
subqueries. The first is for the score set that chooses orders from 2016. The
second two are the lookup tables, one for state and one for the default value

482 Chapter 10 ■ Data Mining Models in SQL

99513c10.qxd:WileyRed  8/27/07  1:24 PM  Page 482



(when no state matches). These lookup tables use the orders from 2015 to cal-
culate values.

Figure 10-6: This dataflow diagram shows the processing needed for scoring a lookup
model with one dimension.

Comparing the average predicted amount to the average actual amount is
an overall measure of how good the model is doing:

SELECT AVG(predamount) as avgpred, AVG(totalprice) as avgactual

FROM (<lookup-score-subquery>) subquery

This query uses the previous lookup score query as a subquery.
This model actually produces basically the same overall results as before.

However, this structure makes it easy to evaluate different dimensions by
replacing state with another column name. Table 10-6 shows the average
amounts for various different dimensions, including channel, zip code, pay-
ment type, and month of order.

READ
orders

OUTPUT 

FILTER 
YEAR(orderdate) = 2015 

JOIN 
on zipcode 

READ
orders

FILTER 
YEAR(orderdate) = 2015 

READ
orders

APPEND 

predamount = COALESCE(statelu.avgamount, defaultlu.avgamount) 

defaultlu

AGGREGATE 

avgtotalprice = AVG(totalprice) 

statelu

AGGREGATE 
group by state 

avgtotalprice = AVG(totalprice) 

score 

FILTER 
YEAR(orderdate) = 2016 

CROSSJOIN 
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Table 10-6: Performance of Various One-Dimensional Lookup Models

DIMENSION PREDICTED 2016 ACTUAL 2016

State $85.33 $112.64

Zip Code $87.65 $112.64

Channel $85.92 $112.64

Month $87.50 $112.64

Payment Type $85.42 $112.64

Adding More Dimensions
Adding more dimensions is a simple modification to the basic query. The fol-
lowing query uses month and zip code as the dimensions:

SELECT AVG(predamount) as avgpred, AVG(totalprice) as avgactual

FROM (SELECT o.*,

COALESCE(dim1lu.avgamount, defaultlu.avgamount) as predamount

FROM (SELECT o.*, c.channel, MONTH(orderdate) as mon

FROM orders o JOIN campaign c on o.campaignid = c.campaignid

WHERE YEAR(o.orderdate) = 2016) o LEFT OUTER JOIN

(SELECT MONTH(orderdate) as mon, zipcode,

AVG(totalprice) as avgamount

FROM orders o JOIN campaign c on o.campaignid = c.campaignid

WHERE YEAR(o.orderdate) = 2015

GROUP BY MONTH(orderdate), zipcode) dim1lu

ON o.mon = dim1lu.mon AND

o.zipcode = dim1lu.zipcode CROSS JOIN

(SELECT AVG(totalprice) as avgamount

FROM orders o

WHERE YEAR(o.orderdate) = 2015) defaultlu) a

The structure of the query is the same as the query for one dimension. The only
difference is the additional column in the Dim1lu subquery and the join.

With the lookup table, the average rises to a bit over $90. The two-dimensional
lookup table is doing a better job, but the average is still off from the 
actual value.

Examining Nonstationarity
As shown in Table 10-7, the average order size is increasing from year to year.
Without taking into account this yearly increase, estimates based on the past
are not going to work so well. This is another example of nonstationarity.
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Table 10-7: Average Order Size Varies Over Time

YEAR AVERAGE ORDER SIZE CHANGE YEAR OVER YEAR

2009 $33.63

2010 $51.90 54.3%

2011 $50.98 -1.8%

2012 $67.94 33.3%

2013 $74.50 9.7%

2014 $70.08 -5.9%

2015 $85.51 22.0%

2016 $112.64 31.7%

What is causing this change is perhaps a mystery. Perhaps prices increase
from year to year. Perhaps the product mix changes from year to year. Perhaps
customers’ initial orders are smaller than repeat orders, and the number of
repeat orders (as a proportion of the total) increases from year to year. There
are many possible reasons for orders increasing in size.

We could make an adjustment. For instance, note that the average purchase
size increased by 22% from 2014 to 2015. If we increased the 2015 estimate by
the same amount, the result would be much closer to the actual value.

Of course, to choose the appropriate increase it helps to understand what
is happening. This requires additional understanding of the data and of the
business.

Evaluating the Model Using an Average Value Chart
An average value chart is used to visualize model performance for a model
with a numeric target. The average value chart breaks customers into equal
sized groups, by ordering them by the customers’ predicted values. For
instance, it might break the customers into ten equal sized groups called
deciles, with the first decile consisting of customers with the highest predicted
order amounts, and the next highest in the second decile, and so on. The chart
then shows the average of the predicted value and the average of the actual
value for each decile.

Figure 10-7 shows an example for the lookup model using month and zip
code as dimensions. The dotted line is the predicted average amount in each
decile. It starts high and then decreases, although the values for deciles two
through seven are flat.
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The actual values look quite different. They are basically a horizontal line,
meaning that there is no relationship between the predicted amount and the
actual amount. The model is doing a poor job.

Figure 10-7: This average value chart is for a model that does not work for predicting the
size of 2016 orders. This is apparent because the actual values are a horizontal line.

The goal in the average value chart is for the actual values to correspond to
the predicted values. Figure 10-8 shows a better model, which uses channel,
payment type, and customer gender. In this case, the actual values are higher
when the predicted values are higher and lower when the predicted values are
lower. There are some anomalies, such as the third decile doing better than the
second, but overall, this model is doing a better job than the previous one.

One observation about both models is that the actual values are almost
always higher than the predicted values. This is a result of the fact that order
sizes in 2016 are larger than in 2015.

Figure 10-8: This average value chart uses channel, payment type, and customer 
gender. Here the model is working better, because the actual values are decreasing 
as the predicted values decrease.
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Creating an average value chart starts by assigning a decile to customers in
the score set, based on the predicted amount. For each decile, the averages of the
predicted value and of the actual value are calculated, as in the following query:

SELECT decile, AVG(predamount) as avgpred, AVG(totalprice) as avgactual

FROM (SELECT lss.*, NTILE(10) OVER (ORDER BY predamount DESC) as decile

FROM (<lookup-score-subquery>) lss

) b

GROUP BY decile

ORDER BY 1

This query uses the scoring subquery to get the predicted amount. The middle
level uses the NTILE() window function to divide the scores into ten equal sized
groups. The outermost level calculates the average for the predicted amount and
average amount for each of the groups.

Lookup Model for Probability of Response

This section looks at a different sort of problem, related to the subscription
data. What is the probability that a customer who starts in 2005 is going to last for one
year? This question uses the subscription data to address the question, build-
ing a model using the 2004 starts and testing it using the 2005 starts.

The Overall Probability as a Model
The way to start thinking about this problem is to consider all customers who
start in 2004 and ask how many of them survive for exactly one year. Using one
year of starts dampens seasonal effects occurring within a year. Also, the sub-
scription table has no stops prior to 2004, limiting how far back in time we can go.

Chapter 8 addressed several different methods for looking at survival and
retention. This section looks only at the point estimate after one year, as calcu-
lated by the following query:

SELECT AVG(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1.0 ELSE 0 END) as stoprate

FROM subs

WHERE YEAR(start_date) = 2004

Customers who stop within one year have tenures less than one year and a
non-NULL stop type. Strictly speaking, the test for stop type is unnecessary,
because all customers who start in 2004 and have tenures less than 365 are
stopped.

This query uses AVG() to calculate the proportion of customers who stop.
The argument to the average is 1.0, rather than 1, because some databases
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return the average of an integer as an integer rather than as a real number. In
such databases, the integer average would always be zero except when all cus-
tomers stop within their first year.

Of the customers who start in 2004, 28.0% stop during the first year after
they start. Given a new customer who starts in 2005, the best guess for that cus-
tomer’s stop rate during the first year is 28.0%. Of course, this assumes that the
conditions affecting stops remain the same from one year to the next.

The actual stop rate for 2005 starts is 27.2%, which is quite similar to the rate
in 2004. This supports using the 2004 data to develop a model for 2005.

Exploring Different Dimensions
There are five dimensions in the subscription data that are known when cus-
tomers start:

■■ Channel;

■■ Market;

■■ Rate Plan;

■■ Initial Monthly Fee; and,

■■ Date of Start.

These are good candidates for modeling dimensions. Although the monthly
fee is numeric, it only takes on a handful of values.

The following query calculates the stop rate by channel:

SELECT channel,

AVG(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1.0 ELSE 0 END) as stoprate

FROM subs

WHERE YEAR(start_date) = 2004

GROUP BY channel

The result is a lookup table that has the expected stop rate for different 
channels.

Applying this lookup table as a model requires joining it back to a score set.
The following query calculates the probability that a customer who starts in
2005 is going to leave, using the channel for the lookup:

SELECT score.*, COALESCE(lookup.stoprate, def.stoprate) as predrate

FROM (SELECT s.*,

(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1 ELSE 0 END) as is1yrstop

FROM subs s

WHERE YEAR(start_date) = 2005) score LEFT OUTER JOIN

(SELECT channel,
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AVG(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1.0 ELSE 0 END) as stoprate

FROM subs

WHERE YEAR(start_date) = 2004

GROUP BY channel) lookup

ON score.channel = lookup.channel CROSS JOIN

(SELECT AVG(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1.0 ELSE 0 END) as stoprate

FROM subs

WHERE YEAR(start_date) = 2004) def

This query takes into account the fact that there might be no matching channel.
The query has three subqueries. The Def subquery calculates the default value
for the one-year stop rate. The Lookup subquery calculates the one-year stop
rate by channel. And the Score subquery finds the set of customers who started
in 2005. The logic for scoring is to take the stop rate from Lookup, if available,
and otherwise take the stop rate from Def using the COALESCE() function. In
this particular case, the Def subquery is superfluous, because all channels are
represented in both years.

The following query calculates the overall stop rate and the predicted stop
rate, using the previous query as a subquery:

SELECT AVG(predrate) as predrate, AVG(1.0*is1yrstop) as actrate

FROM (<scoring-subquery>) subquery

This query compares the average of the predicted rate, over all the rows, to the
actual stop rate.

The model works very well overall. In fact, the query predicts an overall
stop rate of 27.2%, which is exactly what is observed. However, Table 10-8
shows that the model does not work so well within each channel.

WARN I NG Just because a model works well overall does not mean that the
model works well on all subgroups of customers.

Table 10-8: Actual and Predicted Stop Rates by Channel for 2005 Starts, Based on 
2004 Starts

CHANNEL PREDICTED ACTUAL DIFFERENCE

Chain 41.0% 24.7% 16.4%

Dealer 25.0% 27.6% -2.6%

Mail 36.8% 35.2% 1.5%

Store 16.3% 18.1% -1.8%
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How Accurate Are the Models?
Table 10-9 compares the overall predicted stop rates and actual stop rates of
one-dimensional lookup models, using each of five different dimensions.
All the models do a reasonable job of estimating the overall stop rate. Notice
that the accuracy of the models does not improve as the number of values in
the dimension increases.

For all the models, the overall predicted stop rate is close to the actual stop
rate. However, the business goal could be to identify a group of customers that
has a much greater chance of stopping than other customers, probably to offer
them an incentive to remain. Such incentives cost money, suggesting the ques-
tion: How many customers who actually stop are captured by the model in the top ten
percent of model scores?

The answer to this question is a cumulative gains chart, which is used to visu-
alize model performance for models with binary targets. The horizontal axis is
a percentage of customers chosen based on the model score, ranging from 0%
to 100%, with the highest scoring customers chosen first. The vertical axis mea-
sures the proportion of the desired target found in that group of customers,
ranging from 0% — none of the desired target — to 100% — all of the desired
target. The curves start at the lower left at 0% on both axes and rise to the upper
right to 100% on both axes. If customers are chosen randomly, the cumulative
gains chart is a line.

Figure 10-9 shows a cumulative gains chart for the channel lookup model
for stops. The horizontal axis is the percentage of customers with the highest
scores. So, 10% means the top decile of all customers. The vertical axis is the
percentage of stoppers captured by that segment of customers.

Table 10-9: Actual and Predicted Stop Rates by Modeling Dimension for 2005 Starts,
Based on 2004 Starts

NUMBER
DIMENSION OF VALUES PREDICTED ACTUAL DIFFERENCE

Channel 4 27.2% 27.2% 0.00%

Market 3 27.1% 27.2% -0.04%

Rate Plan 3 27.8% 27.2% 0.69%

Monthly Fee 24 23.1% 27.2% -4.04%

Month 12 29.0% 27.2% 1.82%

There are three curves on the chart. The highest one is the best one, and this
is the performance of the model on the model set used to build it. Models gen-
erally perform best on the data used to create them. The middle curve is for the

490 Chapter 10 ■ Data Mining Models in SQL

99513c10.qxd:WileyRed  8/27/07  1:24 PM  Page 490



test set using 2005 starts, and the straight line is a reference assuming no
model. For instance, the point at the 25% mark on the 2005 curve says that the
top 25% of customers with the highest model score captures 28.6% of the cus-
tomers who stop. Lift is one way to measure how well the model is working.
At the 25% mark the lift is 28.6%/25%= 14.4%. Note that lift always declines to
one as the percentage moves toward 100%.

Figure 10-9: This cumulative gains chart shows the performance of the channel model
on both the model set (2004 starts) and on the score set (2005 starts).

The cumulative gains chart is a good way to compare models. Figure 10-10
shows the chart for several lookup models on the test set of 2005 starts. The
cumulative gains chart can also be used to select how many customers are
needed to get a certain number of customers expected to have the target value.

Figure 10-10: Cumulative gains charts for five models using 2005 charts are a good 
way to compare the performance of different models.
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The cumulative gains charts are based on a summary of the data, shown in
Table 10-10, having the following information:

■■ The decile, which divides the customers into ten equal sized groups
(the charts in the text divide the customers into percentiles);

■■ The predicted stop rate for the decile (the average model score);

■■ The predicted number of stops (the average model score times the num-
ber of customers);

■■ The predicted and actual stop rate for the decile;

■■ The cumulative number of actual stops up to and including the decile
and the cumulative stop rate; and

■■ The lift of actual stops compared to no model.

Only the first and last of these are used for the cumulative gains chart. How-
ever, the other information is quite informative for understanding model per-
formances and to create other informative charts.

Table 10-10: Summary Information for Cumulative Gains Chart

NUMBER
OF STOPS STOP RATE CUMULATIVE STOPS

PRED- ACT- PRED- ACT-
DECILE ICTED UAL ICTED UAL # RATE PROP LIFT

1 42,670 41,294 33.0% 31.9% 41,294 31.9% 11.8% 1.18

2 42,670 42,540 33.0% 32.9% 83,834 32.4% 23.9% 1.19

3 42,667 39,345 33.0% 30.4% 123,179 31.8% 35.1% 1.17

4 42,667 35,949 33.0% 27.8% 159,128 30.8% 45.3% 1.13

5 42,667 36,964 33.0% 28.6% 196,092 30.3% 55.9% 1.12

6 37,938 37,532 29.3% 29.0% 233,624 30.1% 66.5% 1.11

7 37,430 35,185 29.0% 27.2% 268,809 29.7% 76.6% 1.09

8 35,839 36,729 27.7% 28.4% 305,538 29.5% 87.0% 1.09

9 12,997 22,139 10.1% 17.1% 327,677 28.2% 93.3% 1.04

10 12,997 23,418 10.1% 18.1% 351,095 27.2% 100.0% 1.00

The following steps are used to calculate the information in the table:

1. Apply the model to the score set to obtain the predicted stop rate.

2. Divide the scored customers into ten (or whatever) equal sized groups.

3. Calculate the summary information for each group.
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The following query follows these steps:

SELECT decile, COUNT(*) as numcustomers, SUM(is1yrstop) as numactualstops,

SUM(predstoprate) as predactualstops, 

AVG(is1yrstop*1.0) as actualstop, AVG(predstoprate) as predstoprate

FROM (SELECT customer_id, predrate, is1yrstop,

NTILE(10) OVER (PARTITION BY NULL ORDER BY predrate DESC

) as decile

FROM (<scoring-subquery>) score

GROUP BY decile

ORDER BY 1

This query uses the score query as a subquery. Calculating the percentile uses
the window ranking function NTILE() to divide the customers into equal sized
buckets based on their predicted stop rates. Within each bucket, the query
counts the number of customers who do actually stop and estimates the num-
ber of predicted stops by taking the average predicted stop rate and multi -
plying it by the number of customers in the decile. The cumulative number of
stops is calculated in Excel.

Adding More Dimensions
Using more than one dimension for the lookup model is feasible. Up to a point,
increasing the number of dimensions can improve the model. Figure 10-11
shows the cumulative gains chart for the model using three dimensions. This
model does better than the model with one dimension.

Figure 10-11: The lookup model with three dimensions does better than the best 
model with one dimension.

Generating such a model is simply a matter of replacing the Lookup sub-
query with a more refined lookup table, resulting in a scoring query such as:

SELECT score.*, COALESCE(lookup.stoprate, def.stoprate) as predstoprate

FROM (SELECT subs.*, 
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(CASE WHEN tenure < 365 AND stop_type IS NOT NULL THEN 1

ELSE 0 END) as is1yrstop

FROM subs

WHERE YEAR(start_date) = 2005) score LEFT OUTER JOIN

(SELECT market, channel, rate_plan,

AVG(CASE WHEN tenure < 365 AND stop_type IS NOT NULL THEN 1.0

ELSE 0 END) as stoprate

FROM subs

WHERE YEAR(start_date) = 2004

GROUP BY market, channel, rate_plan ) lookup

ON score.market = lookup.market AND

score.channel = lookup.channel AND

score.rate_plan = lookup.rate_plan CROSS JOIN

(SELECT AVG(CASE WHEN tenure < 365 AND stop_type IS NOT NULL THEN 1.0

ELSE 0 END) as stoprate

FROM subs

WHERE YEAR(start_date) = 2004) def

This creates the lookup table using three dimensions rather than one.
Adding more dimensions is beneficial, because the lookup model captures

more features of the customers, and more interactions among those features.
However, as the number of dimensions increases, each cell in the lookup table
has fewer and fewer customers. In fact, using MONTHLY_FEE instead of
RATE_PLAN for the third dimension, some of the combinations have no cus-
tomers at all and more than one in six cells have fewer than ten customers, as
shown in the histogram of cell sizes in Figure 10-12. The largest cell (for the
market Gotham, the channel Dealer, and a monthly fee of $40) accounts for
15% of all customers.

Figure 10-12: This histogram chart shows the cumulative number of cells that have up 
to each number of customers for the market, dealer, monthly fee lookup model. Note that
the horizontal axis uses a log scale, because the range of cell sizes is very large.
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Having large numbers of cells has another effect as well. The resulting esti-
mate for the stop rate has a confidence interval, as discussed in Chapter 3.
The fewer customers contributing to the proportion, the wider the confi-
dence interval.

For this reason, cells in the lookup table should have some minimum size,
such as having at least 500 customers. This is accomplished by including a
HAVING clause in the Lookup subquery:

HAVING COUNT(*) >= 500

Combinations of market, channel, and monthly fee that are not in the lookup
table but are in the score set are then given the default value.

The next section presents another method for bringing together data from
many dimensions, a method that borrows ideas from probability.

Naïve Bayesian Models (Evidence Models)

Naïve Bayesian models extend the idea of lookup models for probabilities to
the extreme. It is possible to have any number of dimensions and still use the
information along each dimension to get sensible results, even when the cor-
responding lookup model would have an empty cell for that combination of
values. Instead of creating ever smaller cells, naïve Bayesian models combine
the information from each dimension.

The “naïve” part of the name is the assumption that the dimensions are
independent of each other. This makes it possible to combine information
along the dimensions into a single score. The Bayesian part of the name refers
to a simple idea from probability. Understanding this idea is a good way to
get started.

Some Ideas in Probability
One way of looking at the chi-square value is as a model score for estimating
counts that combines information along various dimensions. In practice, this
is taken one step further by measuring how different the expected value is
from the actual value. However, the expected value is itself an estimate of the
actual value.

In a similar way, a naïve Bayesian model produces an expected value for a
probability based on summaries of the probabilities along the dimensions. The
model itself is just some complicated arithmetic. However, to get a feel for
what it is doing requires some language from probability.
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Probabilities

Figure 10-13 shows four distinct groups of customers. The light gray shaded
ones are customers who stop in the first year. The striped customers are from
a particular market. Everyone is in exactly one of the groups:

■■ 38 customers stopped and are not in the market (gray, unstriped area);

■■ 2 customers stopped and are in the market (gray striped area);

■■ 8 customers are in the market and not stopped (not gray, striped); and,

■■ 52 customers are not in the market and not stopped (not gray, not striped).

The purpose of the chart is to illustrate some ideas and vocabulary about proba-
bility. The chart itself is a Venn diagram, showing overlapping sets in the data.

Figure 10-13: Four groups of customers here are represented as a Venn diagram,
showing the overlaps between the customers in one market and the stopped and 
not stopped customers.

What is the probability that someone stops? (Strictly speaking, the question
should be “if we choose one of these customers at random, what is the probability
of choosing a customer who stops?”) This is the number of customers who stop
divided by the total number of customers. There are forty customers who stop
(38+2) out of one hundred customers (38+2+8+52), so the probability is 40%. Sim-
ilarly, the probability of someone being in the market shown in the chart is 10%.

It is worth pondering how informative this situation is. If told that there are
one hundred customers, and 40% stop and 10% are in a given market, what
does this tell us about the relationship between stops and the market? The
answer is: very little. All the customers in the market could be stopped. All the
customers in the market could be not stopped. Or, anything in between.

However, once the probability of stops within the market is known, then the
various counts are all determined. This probability of stopping within the mar-
ket is an example of a conditional probability. It is the number of customers in
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the market who stop divided by the number of customers in the market, or
20% (2/10).

When the conditional probability is the same as the overall probability, the two
phenomena are said to be independent. Being independent simply means that
knowing the market provides no additional information about stopping and vice
versa. In this case, the probability of stopping is 40% and the probability of stop-
ping for customers in the market is 20%, so the two are not independent.

Odds

Another important concept from probability is odds. These are familiar to any-
one who has ever used the expression “50-50” to mean an equal chance. The
odds for something are the number of times something happens for every time
it does not happen.

Overall, 40% of customers stop and 60% do not, so the odds are forty-to-
sixty. This is often simplified, so two-to-three and 0.667 (the “to one” being
implicit) are equivalent ways of saying the same thing. When the probability is
50%, the odds are one.

There is a simple relationship between odds and probabilities and back again:

odds = probability / (1 – probability) =  –1 + 1/(1 – probability)

probability = 1 – (1/(1 + odds))

Odds and probability are two ways of describing the same thing. Given the
probability it is easy to calculate the odds, and vice versa.

Likelihood

Likelihood has a specific meaning in probability theory. The likelihood of some-
one in a market stopping is the ratio between two conditional probabilities: the
probability of someone being in the market given that they stopped and the prob-
ability of someone being in the market given that they did not stop.

Figure 10-14 illustrates what this means as a picture. The probability of
someone being in the market given they stopped is two divided by forty. The
probability of someone being in the market given they did not stop is eight
divided by sixty. The ratio is 3/8. This means that someone in the market has
a 3/8 chance of stopping compared to not stopping.

An alternative way of expressing the likelihood is as the ratio of two odds.
The first is the odds of stopping in the market and the second is the overall
odds of stopping. The odds of stopping in the market are 2/8; the overall odds
are 4/6. The ratio produces the same value: (2/8)/(4/6)=(2*6)/(4*8)=3/8.
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Figure 10-14: A likelihood is the ratio of two conditional probabilities.

Calculating the Naïve Bayesian Model
This section moves from the simple ideas in probability to an intriguing obser-
vation by Thomas Bayes and then naïve Bayesian models. Although Bayes
himself probably did not realize it, the observation also has philosophical
implications, and is the foundation of a branch of statistics called Bayesian sta-
tistics (which has little relationship to naïve Bayesian modeling). The aside
“Bayes and Bayesian Statistics” discusses the man and the statistics.

BAYES AND BAYESIAN STATISTICS

Rev. Thomas Bayes was born at the beginning of the 18th century to a family of
Nonconformists. According to English law at the time, members of non-Anglican
churches were officially classified as “nonconformist”; eventually, he took a
ministering position in a Presbyterian church.

Bayes was quite interested in mathematics, yet he lived up to his religious
affiliation in one striking way. His ideas in probability theory were published in
1763, three years after his death — distinctly nonconformist.

The paper, An Essay Towards Solving a Problem in the Doctrine of Chances,
appeared in the Philosophical Transactions of the Royal Society of London (the
paper is available at http://www.stat.ucla.edu/history/essay.pdf). For
several decades the paper languished, until found and expounded upon by a
French mathematician Pierre-Simon Laplace.

By the mid-20th century, statistics had two competing perspectives, 
the Frequentists and the Bayesians. To outsiders (and many insiders), this
competition often looks like a religious debate, so it is perhaps fitting that
Bayes himself was a religiously ordained Nonconformist.

The primary difference between the two groups is how to deal with subjective
information in probability theory. Both Bayesians and Frequentists would agree
that the probability of a coin about to be flipped landing heads side up is 50%
(because this is not a trick question).

38 52 

2 8 

Likelihood is ratio of 8/(8+52) and 2/(2+38) 
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BAYES AND BAYESIAN STATISTICS (CONTINUED)

Consider a slightly different scenario, though. Someone has flipped the coin,
hidden it from view, and looked at whether the coin is heads or tails. Now, is the
probability still 50% even though you cannot see the coin? Frequentists would
say that probability does not apply, because the event has occurred. The coin
either is or is not heads, so the “probability” is either 0% or 100%. Bayesians are
more comfortable saying that the probability is 50%. Which is true? There is no
right answer. This is a question as much about philosophy as about probability.

Chapter 3 introduced the concept of the confidence interval and the p-value
as a confidence. These are Frequentist notions. The Bayesian perspective has
similar ideas, called “credible intervals” and Bayesians often treat p-values 
as actual probabilities. Thankfully, the mathematics is the same for basic
statistical measures.

The Bayesian perspective makes it possible to incorporate prior beliefs
when analyzing data. This can be quite powerful and can make it possible 
to solve some very difficult problems, often using lots of computer power.
Frequentists counter that any given outcome can be generated, just by
choosing the appropriate prior beliefs.

Of course, there is an old saying that “statistics don’t lie but statisticians 
do.” Even without resorting to complex mathematical modeling, it is possible 
to mislead with statistics. Responsible analysts and statisticians — whether
Bayesian or Frequentist — are not trying to mislead. They are trying to analyze
data to increase understanding and provide useful results.

There is a lesson to be learned from this history. When analyzing data, the
only responsible thing to do is to be explicit about assumptions being made.
This is particularly important when working with databases, where business
processes can result in unusual behavior. Be explicit about assumptions, so the
results rest on a solid and credible foundation.

An Intriguing Observation

Thomas Bayes made a key observation in the realm of statistics. It connects the
following two probabilities:

■■ What is the probability of stopping for a customer in the partic-
ular market?

■■ What is the probability of being in the market for a customer who stops?

These are two ways of understanding the relationship between markets and
stops, one focusing on what happens in the market and the other focusing on
the customers who stop. It turns out that these probabilities are related to each
other by a simple formula.

Chapter 10 ■ Data Mining Models in SQL 499

99513c10.qxd:WileyRed  8/27/07  1:24 PM  Page 499



The two probabilities themselves are conditional probabilities. The first is the
probability of stopping, given that a customer is in a market. The second is 
the probability of being in a market, given that a customer stops. In the example
data, the first is 20% because two out of ten customers in the market stop. The sec-
ond is 5%, because two out of forty stopped customers are in the market.

Simple enough. The ratio between these numbers is four (20%/5% = 4).
Remarkably, this is also the ratio between the overall stop rate (40%) and the
overall proportion of customers in the given market (10%).

This observation is true in general. The ratio between two conditional prob-
abilities that are the inverses of each other is the ratio between the two proba-
bilities with no conditions. In a sense, the conditional parts of the probabilities
cancel out. This is Bayes’ formula.

Bayesian Model of One Variable

The Bayesian model of one variable applies the formula in the following way:
the odds of stopping given that a customer is in the market are the product of
two numbers. The first is the overall odds of stopping; the second is the likeli-
hood of the customer in the market stopping.

Let’s work this out for the example. The probability of stopping given that a
customer is in the market is 20%. Hence, the odds of a customer stopping are
20%/(1–20%) = 1/4. Is this the same as the product of the overall odds and the
likelihood?

As observed earlier, the overall odds of stopping are 2/3. The likelihood of
the customer stopping was also calculated as 3/8. Well, in this case, the result
holds: 1/4 = (2/3)*(3/8).

The case with one dimension is trivially correct. Recall the alternative way
of expressing the likelihood is the ratio of the odds of a customer stopping
divided by the overall odds. The Bayesian model becomes the product of the
overall odds times this ratio, and the overall odds cancel out. The result is just
the odds of the customer stopping given the market — which is what we were
looking for to begin with.

Bayesian Model of One Variable in SQL

The goal of the Bayesian model is to calculate the conditional probability of a
customer stopping. For the simple example in one dimension, the formula is
not necessary. The following query calculates the odds by market:

SELECT market,

AVG(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1.0 ELSE 0 END) as stoprate,

(-1+1/(1-AVG(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1.0 ELSE 0 END))) as stopodds,
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SUM(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1 ELSE 0 END) as numstops,

SUM(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 0 ELSE 1 END) as numnotstops

FROM subs

WHERE YEAR(start_date) = 2004

GROUP BY market

The results are shown in Table 10-11. Although the direct calculation is easy,
it is instructive to show the alternative approach using the odds times likeli-
hood approach. For this alternative approach, the following is needed:

■■ The overall odds; and,

■■ The likelihood of a customer stopping given that the customer is in the
market.

The odds given the market are then the overall odds times the likelihood of
stopping in the market. These odds can easily be converted to a probability.

Table 10-11: Results by Market for Bayesian Model of One Variable

NUMBER NUMBER OF
MARKET STOP RATE STOP ODDS OF STOPS NOT STOPS

Gotham 33.0% 0.49 176,065 357,411

Metropolis 29.0% 0.41 117,695 288,809

Smallville 10.1% 0.11 17,365 155,362

Both of these values can readily be calculated in SQL, because they are both
based on counting and dividing:

SELECT market, (1-(1/(1+overall_odds*likelihood))) as p,

overall_odds*likelihood as odds, overall_odds, likelihood,

numstop, numnotstop, overall_numstop, overall_numnotstop

FROM (SELECT dim1.market,

overall.numstop / overall.numnotstop as overall_odds,

((dim1.numstop / overall.numstop)/

(dim1.numnotstop / overall.numnotstop)) as likelihood,

dim1.numstop, dim1.numnotstop,

overall.numstop as overall_numstop,

overall.numnotstop as overall_numnotstop

FROM (SELECT market,

SUM(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1.0 ELSE 0 END) as numstop,

SUM(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 0.0 ELSE 1 END) as numnotstop

FROM subs

(continued)
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WHERE YEAR(start_date) = 2004

GROUP BY market) dim1 CROSS JOIN

(SELECT SUM(CASE WHEN tenure < 365 THEN 1.0 ELSE 0

END) as numstop,

SUM(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 0.0 ELSE 1 END) as numnotstop

FROM subs

WHERE YEAR(start_date) = 2004

) overall

) a

The first subquery, Dim1, calculates the number of customers who do and do
not stop in each market. The second, Overall, calculates the same values over-
all. The middle query then calculates the likelihood and overall odds, which
are brought together in the outermost query.

Using the alternative formulation for odds just changes the definition of
likelihood to the arithmetically equivalent:

(dim1.numstop/dim1.numnotstop)/(overall.numstop/overall.numnotstop)

This formulation is easier to calculate in SQL.
These results in Table 10-12 are exactly the same as the results calculated

directly. This is not a coincidence. With one variable, the Bayesian model is exact.

Table 10-12: Results for the Naïve Bayesian Approach, with Intermediate Results

MARKET P ODDS OVERALL ODDS LIKELIHOOD

Gotham 33.0% 0.493 0.388 1.269

Metropolis 29.0% 0.408 0.388 1.050

Smallville 10.1% 0.112 0.388 0.288

The “Naïve” Generalization

The “naïve” part of naïve Bayesian means “independent,” in the sense of prob-
ability. This implies that each variable can be treated separately in the model.
With this assumption, the formula for one dimension generalizes to any num-
ber of dimensions: the odds of stopping given several attributes in several
dimensions are the overall odds of stopping times the product of the likeli-
hoods for each attribute. What makes this powerful is the ease of calculating
the overall odds and the individual likelihoods.

TI P Naïve Bayesian models can be applied to any number of inputs
(dimensions). There are examples with hundreds of input dimensions.
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Table 10-13 shows the actual probability and the estimated probability by
channel and market for stopping in the first year. The estimates from the
model are pretty close to the actual values. In particular, the ordering is quite
similar. Unlike the one-attribute case, the estimate for two attributes is an
approximation, because the attributes are not strictly independent. This is
okay; we should not expect modeled values to exactly match actual values.

Table 10-13: Results from Naïve Bayesian Model, Using Channel and Market for First
Year Stops

PROBABILITY RANK
PRED- ACT- DIFFER- PRED- ACT-

MARKET CHANNEL ICTED UAL ENCE ICTED UAL

Gotham Chain 46.9% 58.7% -11.8% 1 1

Gotham Dealer 29.7% 28.9% 0.8% 5 5

Gotham Mail 42.5% 41.9% 0.6% 2 2

Gotham Store 19.8% 21.3% -1.5% 7 7

Metropolis Chain 42.2% 38.2% 4.1% 3 4

Metropolis Dealer 25.9% 23.1% 2.7% 6 6

Metropolis Mail 37.9% 41.1% -3.2% 4 3

Metropolis Store 17.0% 17.9% -0.9% 8 8

Smallville Chain 16.7% 9.1% 7.6% 9 11

Smallville Dealer 8.7% 9.7% -1.0% 11 10

Smallville Mail 14.4% 13.9% 0.4% 10 9

Smallville Store 5.3% 8.5% -3.2% 12 12

The following query calculates the values in this table:

SELECT market, channel,

1-1/(1+pred_odds) as predp, 1-1/(1+actual_odds) as actp,

1-1/(1+market_odds) as marketp, 1-1/(1+channel_odds) as channelp,

pred_odds, actual_odds, market_odds, channel_odds

FROM (SELECT dim1.market, dim2.channel, actual.odds as actual_odds,

(overall.odds*(dim1.odds/overall.odds)*

(dim2.odds/overall.odds)) as pred_odds,

dim1.odds as market_odds, dim2.odds as channel_odds

FROM (SELECT market,

-1+1/(1-(AVG(CASE WHEN tenure < 365 AND

stop_type IS NOT NULL

THEN 1.0 ELSE 0 END))) as odds

(continued)
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FROM subs

WHERE YEAR(start_date) = 2004

GROUP BY market) dim1 CROSS JOIN

(SELECT channel,

-1+1/(1-(AVG(CASE WHEN tenure < 365 AND

stop_type IS NOT NULL

THEN 1.0 ELSE 0 END))) as odds

FROM subs

WHERE YEAR(start_date) = 2004

GROUP BY channel) dim2 CROSS JOIN

(SELECT -1+1/(1-(AVG(CASE WHEN tenure < 365 AND

stop_type IS NOT NULL

THEN 1.0 ELSE 0 END))) as odds

FROM subs

WHERE YEAR(start_date) = 2004

) overall JOIN

(SELECT market, channel,

-1+1/(1-(AVG(CASE WHEN tenure < 365 AND

stop_type IS NOT NULL

THEN 1.0 ELSE 0 END))) as odds

FROM subs

WHERE YEAR(start_date) = 2004

GROUP BY market, channel) actual

ON dim1.market = actual.market AND

dim2.channel = actual.channel

) a

ORDER BY 1, 2

This query has four subqueries. The first two calculate the odds for the market
and channel separately. The third calculates the odds for the overall data. And
the fourth calculates the actual odds, which are used only for comparison pur-
poses. The middle subquery combines these into predicted odds, and the out-
ermost query brings together the data needed for the table.

The expression to estimate the odds multiplies the overall odds by several
odds ratios. This can be simplified by combining the overall odds into one
expression:

POWER(overall.odds, -1)*dim1.odds*dim2.odds as pred_odds

The simpler expression is helpful as the model incorporates more attributes.

Naïve Bayesian Model: Scoring and Lift
This section generates scores for the naïve Bayesian model, using the estimates
from 2004 to apply to 2005.
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Scoring with More Attributes

Adding more dimensions to the naïve Bayesian model is relatively simple. For
the most part, it is just a matter of adding in more dimensions in the inner
query and updating the expression for predicted odds:

POWER(overall.odds, 1-<N>)*dim1.odds* . . . *dimN.odds as pred_odds

That is, the overall odds are raised to the power of one minus the number of
dimensions and these are then multiplied by the odds along each dimension.

The one complication occurs when the score set has values that have no cor-
responding odds. This can occur for two reasons. One is that new values appear,
from one year to the next. The second is restricting the model to a minimum
number of instances for calculating the odds, so some values are missing from
the dimensional tables. The naïve Bayesian approach handles missing values in
the dimension quite well, theoretically. If a value is not available along a dimen-
sion, the likelihood value for the dimension is simply not used. However, as
with many things, the practice is a bit more detailed than the theory.

The missing dimension shows up in two places:

■■ The likelihood value will be NULL.

■■ The exponent used for the POWER() function needs to be decreased by
one for each missing dimension.

Neither of these are insurmountable; they just require arithmetic and cleverly
setting up the subqueries.

The first thing is to use LEFT OUTER JOIN rather than JOIN for combining the
dimensions tables with the score set. The second is to default the missing odds
to one (rather than NULL or zero), so they do not affect the multiplication. The
third is to count the number of dimensions that match.

The first is trivial. The second uses the COALESCE() function. The third could
use a gargantuan, ugly nested CASE statement. But there is an alternative.
Within each dimension subquery, a variable called N is given the value 1. The
following expression calculates the number of matching dimensions:

COALESCE(dim1.n, 0) + COALESCE(dim2.n, 0) + . . . + COALESCE(dimn.n, 0)

Missing values are replaced by zeros, so the sum is the number of matching
dimensions.

TI P In a query that has several outer joins, it is possible to count the number
that succeed by adding a dummy variable in each subquery (let’s call it N) and
giving it a value of 1.  Then, the expression COALESCE(q1.N, 0) + . . . +
COALESCE(qn.N, 0) counts the number of successful joins.
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The following query calculates the naïve Bayesian predicted score for two
dimensions, channel and market:

SELECT customer_id, score.channel, score.market, is1yrstop,

(POWER(overall.odds,

1-(COALESCE(market.n, 0) + COALESCE(channel.n,0))) *

COALESCE(channel.odds,0)*COALESCE(market.odds, 0)) as predodds

FROM (SELECT s.*,

(CASE WHEN tenure < 365 AND stop_type IS NOT NULL THEN 1.0

ELSE 0 END) as is1yrstop, MONTH(start_date) as mon

FROM subs s

WHERE YEAR(start_date) = 2005) score CROSS JOIN

(SELECT -1+1/(1-(AVG(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1.0 ELSE 0 END))) as odds

FROM subs

WHERE YEAR(start_date) = 2004) overall LEFT OUTER JOIN

(SELECT channel, 1 as n,

-1+1/(1-(AVG(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1.0 ELSE 0 END))) as odds

FROM subs

WHERE YEAR(start_date) = 2004

GROUP BY channel) channel

ON score.channel = channel.channel LEFT OUTER JOIN

(SELECT market, 1 as n,

-1+1/(1-(AVG(CASE WHEN tenure < 365 AND stop_type IS NOT NULL

THEN 1.0 ELSE 0 END))) as odds

FROM subs

WHERE YEAR(start_date) = 2004

GROUP BY market) market

ON score.market = market.market

This query has a separate subquery for each dimension, using the ideas just
described. In addition, the odds for each dimension are then combined
using COALESCE(), so the query can handle values that don’t match the
dimension tables. 

Creating a Cumulative Gains Chart

Creating a cumulative gains chart uses the preceding query as a subquery, cal-
culating the percentile based on the predicted odds. For this purpose, the pre-
dicted odds and predicted probability are interchangeable, because they have
the same ordering. The resulting query is basically the same query used earlier
for creating these charts:

SELECT percentile, COUNT(*) as numcustomers,

SUM(is1yrstop) as numactualstops,

AVG(is1yrstop*1.0) as actualstop,

AVG(1-(1/(1+predodds))) as avgpredp

FROM (SELECT score_subquery.*,
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1-(1/(1+predodds)) as predp,

NTILE(100) OVER (ORDER BY 1-(1/(1+predodds))) as percentile

FROM (<score-subquery>) score_subquery

) a

GROUP BY percentile

ORDER BY 1

This query calculates the percentile based on the predicted score and counts
the number of actual stops in each percentile.

The cumulative gains chart in Figure 10-15 shows the cumulative propor-
tion of stops for two score sets. As expected, the better one is for the scores on
the model set. The data from 2005 is a more reasonable score set. It demon-
strates that the model does still work on data a year later, although it is not
quite as powerful.

Figure 10-15: This chart shows cumulative gains charts for the naïve Bayesian model on
the training set (2004 starts) and on the score set (2005 starts).

Comparison of Naïve Bayesian and Lookup Models
Both naïve Bayesian models and lookup models estimate probabilities based
on values along dimensions. The two modeling techniques produce exactly
the same results when there is only one dimension; the results differ when
there are more dimensions. 

It is worthwhile to think about the two different approaches. The lookup
approach is a brute force approach that breaks the data into smaller and
smaller cells. As there become more cells — either because there are more
dimensions or because each dimension has more possible values — the cells
become smaller and smaller. The data is literally divided among the cells. This
means that the number of cells needs to be limited in some way, probably by
using few dimensions that take on few values (as in the subscription data).
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By contrast, naïve Bayesian models use all the data to estimate values for
each dimension. The data is not divided and subdivided over and over.
Instead, the approach uses probability theory and a reasonable assumption to
combine the values along the dimensions into an estimated prediction. The
assumption works well in practice, despite the fact that dimensions are almost
never independent.

Of course, both approaches are making another, unstated assumption. The
models use data from 2004. The assumption is that the past tells us about the
future. As we saw in the cumulative gains charts that compare the two values,
the models do work, but they do not work as well on the data being scored as
they do on the data used to build the model.

Lessons Learned

A data mining model takes inputs and produces an output, which is typically
a prediction or estimation of some value. There are two major processes
involved with models. The first is training or building the model. The second
is applying the model to new data.

SQL provides a good basis for learning the basics about data mining.
Although this may seem surprising, some powerful techniques are really more
about manipulating data than about fancy statistical techniques. The GROUP BY
operation in SQL is analogous to creating a model (both summarize data). The
JOIN operation is analogous to scoring a model.

This chapter discusses several different types of models. The first is a look-
alike model, where the model score indicates how close one example is to
another. For instance, the model score might indicate how similar zip codes are
to the zip code that has highest market penetration.

Lookup models are another type. These create a lookup table, so the process
of scoring the model is the process of looking up values. The values might be
the most popular product, or the probability of someone stopping, or some-
thing else. Although any number of dimensions could be used to create the
lookup table, the data gets partitioned into smaller and smaller pieces, mean-
ing that the values in the table become more uncertain or even empty when
there are more dimensions.

Naïve Bayesian models address this shortcoming. They use some basic
probability theory along with Bayes’ formula, an important formula in proba-
bility proven almost three hundred years ago. This approach to modeling
makes it possible to calculate lookup tables along each dimension separately,
and then to combine the values together. The big advantage to the naïve
Bayesian approach is the ability to handle many, many dimensions.
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The naïve Bayesian models also make an assumption about the data. This
assumption is that the different dimensions are independent (in the proba-
bilistic sense). Although this assumption is not true when working with busi-
ness data, the results from the model are often still useful. In a sense, naïve
Bayesian models produce an expected value for a probability, similar to the
way that the chi-square approach calculates an expected value.

Evaluating models is as important as creating them. A cumulative gains
chart shows how well a binary response model is performing. An average
value chart shows the performance of a model estimating a number. And a
classification chart shows the performance of classification models.

This chapter has introduced modeling in the context of SQL and working
with large databases. The traditional way of introducing modeling is through
linear regression, which is discussed in the next chapter.
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The previous chapter introduced data mining ideas using various types of
models well suited to databases, such as look-alike models, lookup tables, and
naïve Bayesian models. This chapter extends these ideas to the realm of more
traditional statistical techniques: linear regression and best-fit lines.

Unlike the techniques in the previous chapter, linear regression requires that
the input and target variables all be numeric; the results are coefficients in a
mathematical formula. A formal treatment of linear regression involves lots of
mathematics and proofs. However, this chapter steers away from an overly
theoretical approach.

In addition to providing a basis for statistical modeling, linear regression
has many applications. To understand relationships between different
numeric quantities, regressions — especially best-fit lines — are the place to
start. The examples in this chapter include estimating potential product pene-
tration in zip codes, studying price elasticity (investigating the relationship
between product prices and sales volumes), and quantifying the effect of
monthly fee on yearly stop rates.

The simplest linear regression models are best-fit lines that have one input and
one target. Because the data can be plotted using a scatter plot, such models are
readily understood visually. In fact, Excel builds linear regression models into
charts using the best-fit trend line, one of six built-in types of trend lines.

Excel can calculate best-fit lines in several ways. For the simplest case with
one input and one target, there are several methods. The general function

The Best-Fit Line: Linear
Regression Models

C H A P T E R
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512 Chapter 11 ■ The Best-Fit Line: Linear Regression Models

introduces a new class of Excel functions, because it needs to return values in
several cells. Array functions, introduced in Chapter 4, solve this dilemma; an
array function can return values in more than one cell.

Apart from the built-in functions, there are two other ways to calculate the lin-
ear regression formulas in Excel. These methods are more powerful than the
built-in functions. One is a direct method, using somewhat complicated formu-
las for the parameters in the model. The other uses the Solver capability to cal-
culate the parameters. Solver is a general-purpose tool included with Excel that
finds optimal solutions to problems. Its ability to build linear regression models
is just one example of its power.

Measuring how well the best-fit line fits the data introduces the idea of cor-
relation. Correlation is easy to calculate. As with many statistical measures, it
does what it does well, but it comes with some warnings. It is easy to over-
interpret correlation values.

Multiple regression extends the “best-fit line” regression by using more
than one input variable. Fortunately, multiple regression is quite feasible in
Excel. Unfortunately, it does not produce pretty scatter plots, because there are
too many dimensions.

SQL can also be used to build basic linear regression models, when there are
one or two input variables. Unfortunately, standard SQL does not have built-
in functions to do this, so the equations have to be entered explicitly. These
equations become more complicated as more variables are added, as we’ll see
with the two-variable example at the end of this chapter. The chapter begins
not with complicated SQL statements, but rather with the best-fit line, which
enables us to visualize linear regression.

The Best-Fit Line

The simplest case of the linear regression has one input variable and one target
variable. This case is best illustrated with scatter plots, making it readily
understandable visually and giving rise to the name “best-fit line.”

Tenure and Amount Paid
The first example of a best-fit line is for a set of customers in a subscription-
based business. This example compares the relationship between the tenure of
customers and the total amount the customers paid. In a subscription busi-
ness, there is an evident relationship between these. The longer customers
remain active, the more they pay.

Figure 11-1 shows best-fit line for these customers, with the tenure on the 
X-axis and the amount paid on the Y-axis. The chart clearly shows the relation-
ship; both the points and the best-fit line start low and slope upward to the right.
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Figure 11-1: This chart shows the best-fit line for a set of data points showing the
relationship between customers’ tenures and the amount they have paid.

One way to use the best-fit line is to estimate how much customers would
pay if they survived to a given tenure. A typical customer with tenure of 240
days should pay about $125. Such an estimate could be used to estimate the
amount to spend on customer acquisition. For instance, a typical customer
seems to be worth $192.30 in the first year (which is the value for 365 days on
the chart); this amount might direct acquisition budgets.

This simple example shows that the best-fit line is a good way to visualize
data and summarize the relationship between two variables. It can also be use-
ful for estimating values.

TI P The best-fit line can be seen in a chart by selecting a series, right-clicking,
and adding a trend line. The linear best-fit line makes it possible to see trends
in the data.

Properties of the Best-fit Line
There are many different possible lines that go near the data points. Of all these
possible lines, the best-fit line is a very specific one. Figure 11-1 shows the ver-
tical line segments, connecting each observed data point to the point on the line
directly above or beneath it. The best-fit line is the one where the vertical dis-
tances between the observed point and the line are as small as possible — for
some definition of “small.”

What Does Best-Fit Mean?

The specific definition is that the best-fit line minimizes the sum of the
squares of the distances between the observed data points and the line, along
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the vertical dimension. In fact, one name for linear regression is ordinary least
squares (OLS) regression. 

The sum of squares measures results in relatively simple calculations. Being
simpler, these calculations were feasible before the era of computers, as
explained in the aside “Ceres and Least Squares Regression.” This fact leads to
another reason the method works well in practice: after centuries of use, the
models are well understood. There are a plethora of measures to understand
them and to determine when and whether they are working.

The definition of the best-fit line is along the Y-dimension (all the line 
segments are vertical instead of being horizontal, for instance). Why the 
Y-dimension? The simple answer is that the Y-value is the thing we are try-
ing to estimate.

CERES AND LEAST SQUARES REGRESSION

An asteroid and linear regression may not seem to have much to do with each
other. However, the method of least squares regression was invented by Carl
Friederich Gauss, and first applied to the problem of finding this celestial body.

In January 1801, the Italian astronomer Joseph Piazzi discovered the asteroid
Ceres and observed it until mid-February when it disappeared behind the sun.
Based on his observations, astronomers rushed to figure out the full orbit of
Ceres, so they could continue observations when Ceres reappeared.

Of course, in those days, the telescopes were using mirrors ground by hand
and the positions were recorded on paper, so the observations themselves
were rather inexact. Gauss recognized several key aspects of the problem,
some involving astronomy, but the most innovative part was dealing with the
inaccuracy in the measurements.

Based on only three of the observed positions, Gauss estimated the orbit
and accurately predicted where Ceres would reappear from behind the sun. By
the fall of 1801, Ceres did reappear, very close to where Gauss predicted and
quite far from where other astronomers expected it to be. This reinforced the
strength of Gauss’s methods.

This history is interesting for several reasons. First, Gauss is considered by
some to be the greatest mathematician ever, for his contributions to a wide
range of subjects, including statistics.

It is also interesting because the first problem was not a linear regression
problem as explained in the text. Gauss was trying to estimate an ellipse rather
than a line.

The third reason is practical. Ordinary least squares regression uses the sum
of the distances from the line, rather than the distances themselves. Perhaps
this is because the distance is the square root of some quantity, so it is easier
to calculate the distance squared than the distance itself. In a world where all
the calculations have to be done by hand, Gauss may have preferred the
simpler calculation that ignores taking the final square root.
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Although the best-fit line is unique and well-understood, it is worth point-
ing out that slight variations in the definition would result in different lines. If
another distance were used, such as the horizontal distance, the resulting
“best-fit” line would be different. If the lengths of the line segments were com-
bined in a way other than by taking the sum of the squares, say by taking the
sum of the distances instead, the resulting line would also be different. How-
ever, the best-fit line is quite useful because it is so well understood and does
capture important features of data.

Formula for Line

The best-fit line is a line that is defined by a formula that readers may recall
from high school math:

Y = m*X + b

In this equation, m is the slope of the line and b is the Y-intercept, because this is
where the line crosses the Y-axis. When the slope is positive, the values of Y
increase as the values of X increase (positive correlation); when the slope is neg-
ative, the line goes down instead (negative correlation). When the slope is zero,
the line is horizontal. The goal of linear regression is to find the values of m and
b that minimize the sum of the squares of vertical distance between the line and
the observed points.

The best-fit line in Figure 11-1 has a formula:

<amount paid> = $0.5512 * <tenure> - $8.8558

This line defines a simple relationship between the two variables (tenure and
amount paid). They are positively correlated. One easy way to calculate the
values m and b is using the SLOPE() and INTERCEPT() functions in Excel.

There is nothing special about calling the slope m and the intercept b. In fact,
statisticians have different names for them. They use the Greek letter beta for
the coefficients, calling the Y-intercept ß0 and the slope ß1. This notation has the
advantage of being readily extensible to more coefficients.

Renaming the coefficients (albeit for a good reason) is not the only oddity in
standard statistical terminology. From that perspective, the Xs and Ys are con-
stants, the betas are variables, and lines do not have to be straight. The aside
“Some Strange Statistical Terminology” explains this in more detail.

Expected Value

For a given value of X, the equation for the line can be used to calculate a value
of Y. This expected value represents what the model “knows” about the rela-
tionship between X and Y, applied to a particular value of X.
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SOME STRANGE STATISTICAL TERMINOLOGY

In the equation for the line, the “X”s and “Y”s are normally thought of as being
variables and the coefficients as being constants. That is because we are thinking
of using the line to estimate a Y-value given an X-value. In data analysis, though,
the problem is estimating the values of the coefficients.

The language of statistical modeling turns this terminology upside down. The
Xs and Ys are constants, because they refer to known data points. There may be
two data points or two million, but for all of them the X- and Y-values are known.
On the other hand, the challenge in statistical modeling is to find the line, by
finding coefficients that minimize the sum of the squares of the distances
between the points and the line. The coefficients are the variables that need 
to be solved for.

This inverse terminology actually explains why the following are also
examples of “linear” models although the formulas do not look like the
formula for a line:

Y = ß1*X
2 + ß0

ln(Y) = ß1*X + ß0

ln(Y) = ß1*X
2 + ß0

These are linear because they are linear in the coefficients. The fact that there 
are funky functions of Xs and Ys involved does not make a difference. The
coefficients are what’s important. We know the values of X and Y; the coefficients
are unknown.

A good way to think about this is that all the observed data could be
transformed. For example, in the first example, the X-value could be squared
and called Z:

Z = X2

In terms of Y and Z, the first equation becomes:

Y = ß1*Z + ß0

This is a linear relationship between Y and Z. And Z is known as X is, because it
is just the square of the X value.

For example, Table 11-1 shows the expected values for various tenure values
for the data in Figure 11-1. The expected values can be higher or lower than the
actual values. They can also be out-of-range, in the sense that it makes no sense
for the amount paid to be negative (and the expected values for small tenures
are negative). On the other hand, all values of tenure have expected values,
making it possible to estimate the value of a customer after one year. In this
case, it is $192.30.
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Table 11-1: Some Expected Values for Best-fit Line in Figure 11-1

EXPECTED $$ 
TENURE (0.55*TENURE - $8.86) ACTUAL $$ DIFFERENCE

5 -$6.10 $1.65 $7.75

8 -$4.45 $0.90 $5.35

70 $29.72 $15.75 -$13.97

140 $68.30 $91.78 $23.48

210 $106.88 $71.45 -$35.43

365 $192.30 None N/A

In Excel, the expected value can be calculated directly from two columns of
X- and Y-values using the FORECAST() function. This function takes three argu-
ments: the value to make the estimate for, the Y-values, and the X-values. It
returns the expected value, using a linear regression formula. FORECAST()
applies the model, without producing any other information to determine
how good the model is or what the model looks like.

One rule of thumb when using best-fit lines is to use the line for interpolation
rather than extrapolation. In English, this means calculating expected values
only for values of X that are in the range of the data used to calculate the line.

Error (Residuals)

Of course, the expected value generally differs from the actual value, because
the line does not perfectly fit the data. The difference between the two is
called the error or residual. For the best-fit line, the sum of the residuals is zero,
because all the positive values cancel out all the negative ones. Although the
best-fit line is not the only line with this property, it also has the property that
the sum of the squares of the residuals is as small as possible.

There is a wealth of statistical theory about residuals. For instance, a model
is considered a good fit on data when the residuals follow a normal distribu-
tion (which was discussed in Chapter 3). The residuals should not be related to
the X-values.

Figure 11-2 plots the residuals from the data in Figure 11-1 against the X-values.
As a general rule, the residuals should not exhibit any particular pattern. In par-
ticular, long sequences of positive or negative residuals indicate that the model 
is missing something. Also, the residuals should not get bigger as the X-values
get bigger.

These residuals are pretty good, but not perfect. For instance, the initial
residuals are almost all positive and relatively small. This is because the
expected values are negative for small values of X, but the actual values are
never negative. The model is not perfect, and this shouldn’t be surprising
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518 Chapter 11 ■ The Best-Fit Line: Linear Regression Models

because it is only taking tenure into account. Although tenure is important,
other things also affect customers’ total payments.

Figure 11-2: This chart shows the residuals for the data in Figure 11-1. Notice that the
residuals tend to get larger as the X-values get larger.

TI P Creating a scatter plot of the residuals and the X-values in the model is
one way to see if the model is doing a good job. In general, the scatter plot
should look random, with no long sequences of positive or negative values.

Preserving the Averages

One very nice characteristic of best-fit lines (and linear regression models in
general) is that they preserve averages. The average of the expected values of
the original data is the same as the average of the observed values. Geometri-
cally, this implies that all best-fit lines go through a particular point. This point
is the average of the X-values and the average of the Y-values of the data used
to build the model.

In practical terms, best-fit lines preserve some key characteristics of the data
used to build them. Applying the model does not “move” the center of the
data. So, taking the average of a large number of expected values (such as for
all customers) is usually a fairly accurate estimate of the average of the actual
values, even if the individual estimates are different. 

Inverse Model

Another very nice feature is the fact that the inverse can be readily con-
structed. That is, given a value of Y it is possible to calculate the corresponding
value of X, using the following formula:

X = (Y – b) / m
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Such a model can calculate the value of X for any given value of Y.
Note that the inverse model calculated this way is different from the inverse

model calculated by reversing the roles of X and Y. For instance, for the best-fit
line in Figure 11-1, the “mathematical” inverse is:

<tenure> = 1.8145 * <tenure> + 16.0687

However, reversing the roles of X and Y generates a different line:

<tenure> = 1.5029 * <tenure> + 35.6518

The fact that these two lines are different is interesting from a theoretical per-
spective. Reversing the roles of X and Y is equivalent to using the horizontal dis-
tance, rather than the vertical distance to calculate the best-fit line. For practical
purposes, if we need the inverse relationship, then either works well enough.

WARN I NG The inverse relationship for a linear regression model is easy to
calculate from the model equation. However, this is not the same as building
another model by swapping the X-values and the Y-values.

Beware of the Data
There are many ways of understanding how well a model fits a particular set
of data. However, a model is only as good as the data used to build it. Alas,
there are many fewer ways of determining whether the right data is being
used for the model.

The data used for the scatter plot in Figure 11-1 is missing an important
subset of customers; the data excludes customers who never paid. Hence, the
relationship between payment and tenure is only for the customers who
make a payment, not for everyone.

Almost half the customers in this sample never make a payment, because the
customers come from the worst channel. When these freeloading customers are
included, they have a small effect on the best-fit line, as shown in Figure 11-3.
The non-payers are shown as the circles along the X-axis, and the best-fit line is
the dashed line. The line has shifted a bit to the right and become a bit steeper.

Before diving into the contents of the chart, it is worth commenting on how
this chart is created. Although only two series are visible, the chart actually has
three series. One is for all customers and is used to generate the dotted best-fit
line. Although the trend line for this series is visible, the points are not. Another
series is for the paying customers, shown in Figure 11-1. The best-fit line for this
dataset is the solid gray line. Then, the third series is the non-payers, and is
used to show the customers who never paid. The best-fit lines are also given
names, to make them clearer in the legend.
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Figure 11-3: When non-paying customers are included, the best-fit line shifts a bit to the
right and becomes a bit steeper.

There are 226 customers, of which 108 are non-payers (48%). Including the
non-payers has an effect on the line. Consider the following question: What is
the expected revenue for a new customer who survives for one year? For the
original data, the answer was $192.30. When all customers are included, 
the value is $194.41.

The expected value has gone up by including customers who do not pay.
This is counterintuitive. One could argue that linear regressions are not good
for extrapolation. However, this example does not extrapolate beyond the end
of the data, because there are data points beyond 365 days (although 365 days
is among the higher tenure values). One could argue that the values are close
and within some margin of error, which is undoubtedly true because there are
just a couple hundred data points overall. The irony is, though, that we could
add more and more non-paying customers to obtain almost any value at the
one-year mark.

With a bit more thought, the issue goes from counterintuitive to absurd.
Consider using the model to estimate revenue for customers who survive for
one year. If one hundred customers start and are expected to stay for one
year, what is their expected revenue during the first year? Including all cus-
tomers, the estimate is $19,441. However, only including customers who pay
reduces the estimate to $19,230. Although the difference is small, it raises the
question: how does including non-paying customers increase the one-year
estimated revenue? And, as noted earlier, additional non-paying customers
in the data used to calculate the line could push the estimate up even more.

Something interesting is happening. A line is a rigid model. If a line goes
down on one side, then either the whole line shifts downward (if the slope
remains the same), or it goes up somewhere else. The freeloading customers all
have low tenures, because non-payers stop (or are stopped) soon after starting.
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Hence, the non-paying customers are all on the left of the scatter plot. These
customers pull down the best-fit line, which in turn gets steeper. And steeper
lines produce higher values for longer tenures.

One might ask which is the better estimate. The example shows that there
are different factors at work, one for initial non-payment and one for the
longer term trend. For paying customers, using the initial model makes more
sense, because it is built using only paying customers. It is not distracted by
the non-payers.

The purpose of this example is to stress the importance of choosing the right
data for modeling. Be aware of the effects of data on the resulting model.

Trend Lines in Charts
Best-fit lines are one of several types of trend lines supported in Excel’s
charts. The purpose of trend lines is to see patterns in charts that may not be
apparent when looking at disparate points. They are only available when
there is one input and one target variable. Nevertheless, the trend lines are
useful for seeing patterns in data; and the best-fit line is useful for under-
standing linear regression.

Best-fit Line in Scatter Plots

A powerful and simple way to calculate a linear regression is directly within a
chart using the best-fit trend line, as already shown in Figures 11-1 and 11-3.
The following steps add the best-fit trend line:

1. Left-click the series to select it.

2. Right-click again to bring up the “Format Trendline” dialog box.

3. Choose the “Linear” option on the upper left-hand side.

At this point, you can exit the dialog box, and the best-fit line appears between
the first and the last X-values.

The line appears in the chart as a solid black line. Because the trend line is
generally less important than the data, it is a good idea to change its format to
a lighter color or dotted pattern. When there is more than one series on the
chart, make the color of the trend line the same color as the data. As with any
other series, just click the series to change its format. 

TI P When placing a trend line in a scatter plot or a bubble plot, change its
format to be lighter than the data points but similar in color, so the trend line 
is visible but does not dominate the chart.

99513c11.qxd:WileyRed  8/27/07  1:35 PM  Page 521



522 Chapter 11 ■ The Best-Fit Line: Linear Regression Models

There are several useful options under the “Options” tab of the “Format
Trendline” dialog box:

■■ To give the trend line a name that appears in the chart legend, click by
“Custom” and type in the name.

■■ By default, the trend line is only for the range of X-values in the data.
To extend beyond this range, use the “Forecast” area and specify the
number of units “Forward” after the last data point.

■■ To extend the range to values before the first data point, use the “Fore-
cast” area and specify the number of units “Backward” before the first
data point.

■■ To see the formula, choose “Display equation on chart.” Once the equa-
tion appears, it is easy to modify the font and move it around.

■■ To see how well the model fits the data, choose “Display R-squared
value on chart.” The R2 value is discussed later in this chapter.

If you forget to add options when the trend line is created, double-click the
trend line and choose “Format Trendline” to bring up the dialog box. One nifty
feature is that the trend line itself can be formatted to be invisible, so only the
equation appears on the chart. Also note that when the data in the chart
changes, the trend line and its equation change as well.

Logarithmic, Power, and Exponential Trend Curves

Three types of trend curves are variations on the best-fit line, the difference
being the shape used for the curve that fits the data is not a line:

■■ Logarithmic: Y = ln(ß1*X + ß0)

■■ Power: Y = ß0*X^ß1

■■ Exponential: Y = exp(ß1*X + ß0)

Fitting these curves has the same spirit as linear regression, because all three
formulas have two coefficients that are analogous to the slope and intercept
values for a line. Each of these curves has its own particular properties. The
first two, the logarithmic and power curves, require that the X-values be posi-
tive. The second two always produce Y-values that are positive (Excel does not
allow ß0 to be negative for the power trend line).

The logarithmic curve decreases slowly, much more slowly than a line does.
So, doubling the X-value only increases the Y-value by a constant. The left side
of Figure 11-4 shows the logarithmic trend line for the payment data. Because
the data has a linear relationship, the logarithmic curve is not a particularly
good fit.
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Figure 11-4: When the X-axis has a logarithmic scale, the logarithmic trend line looks like
a line.

There is a relationship between the logarithmic trend line and the best-fit
line. Changing the X-axis to be on a “logarithmic” scale (by clicking the “Loga-
rithmic Scale” button on the “Scale” tab of the “Format axis” dialog box) makes
the logarithmic curve look like a line. Figure 11-4 shows a side-by-side compar-
ison of the same data, with one chart having the normal scale on the X-axis and
the other, the logarithmic scale.

The exponential curve increases very rapidly, much more rapidly than a
line. Its behavior is similar to the logarithmic trend line, but with respect to the
Y-axis rather than the X-axis. That is, when the Y-axis has a logarithmic scale,
the exponential curve looks like a line.

The power curve increases more slowly than the exponential. It looks like a
line when both the X-axis and the Y-axis have a logarithmic scale. It also looks
like a line under normal scaling when ß1 is close to one.
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524 Chapter 11 ■ The Best-Fit Line: Linear Regression Models

One way of thinking about these trend lines is that they are best-fit lines,
but the data is transformed. This is, in fact, the method that Excel uses to cal-
culate the curves. As we’ll see the later in the chapter, this method is useful
practically, but it is an approximation. The results are a bit different from cal-
culating the best-fit curves. Excel’s trend curves are good, but not the theoret-
ically correct best-fit curves.

Polynomial Trend Curves

The polynomial curve is a bit more complicated because polynomial curves
can have more than two coefficients. The form for these curves is:

■■ Polynomial: Y = ßn*Xn + . . . + ß2*X2 + ß1*X + ß0

The degree of the polynomial is the value of n in the equation, which is input
into the box labeled “Order” on the “Type” tab of the “Format Trendline” dia-
log box.

Polynomial fitting can be quite powerful. In fact, for any given set of
points, there is a polynomial that fits them exactly. This polynomial has a
degree one less than the number of points. Figure 11-5 shows an example
with five data points and polynomials of degree one (a line) through four.
Higher degree polynomials capture more of the specific features of the data
points, rather than the general features. This is an example of overfitting,
which is when a model memorizes the detail of the training data without
finding larger patterns of interest. Also notice that the equations for the poly-
nomials have nothing to do with each other. So, finding the best-fit polyno-
mial of degree two is not a simple matter of adding a squared term to the
equation for the best-fit line.

Figure 11-5: A polynomial of sufficiently high degree can fit any set of data exactly. This
example shows five points and the best-fit polynomials of degrees one through four. The
fourth degree polynomial goes through all five points.

y = -0.5044x + 0.7115
y = 2.7459x2 - 2.4553x + 0.8815

y = 36.679x3 - 35.867x2 + 8.0349x + 0.3871
y = 104.94x4 - 111.43x3 + 29.596x2 - 1.1807x + 0.6363
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When the order of the polynomial is odd, the curve starts high and goes
low or starts low and goes high. The typical example of this is the line, which
either slants upwards or downwards, but all odd degree polynomials have
this property.

Polynomials of even degree either start and end high or start and end low.
These have the property that there is either a minimum or maximum value,
among the values. For some optimization applications, this is a very useful
property.

WARN I NG When fitting polynomial trend curve to data points, be sure that
the degree of the polynomial is much smaller than the number of data points.
This reduces the likelihood of overfitting.

Moving Average

After the best-fit line, probably the most useful type of trend line is the moving
average. These are often used when the horizontal axis is time, because they
can wash away variation within a week or within a month.

Figure 11-6 shows starts by day for the subscription data. There is a lot of
variation within the week, because some days have more starts than others.
Human eyes tend to follow the maximum and minimum values, which might
obscure what’s really happening. The trend line shows the 7-day moving aver-
age, which eliminates the within-week variation, making the longer term
trend more visible.

Figure 11-6: Starts by day are very jagged, because there are few starts on the weekend.
The 7-day moving average does a better job of showing the trend during the year.
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526 Chapter 11 ■ The Best-Fit Line: Linear Regression Models

Sometimes moving averages can be used to spot very subtle patterns. This
example looks at the relationship between the proportion of a zip code that has
graduated from college and the proportion on public assistance, for zip codes in
Minnesota. This data comes from the Zipcensus table, using the following query:

SELECT zipcode, (popedubach+popedumast+popeduprofdoct) as popcollege,

hhpubassist

FROM zipcensus

WHERE state = ‘MN’

ORDER BY 1

The scatter plot in Figure 11-7 does not show an obvious pattern, although it
does seem that zip codes where most adults have a college degree have rela-
tively few residents on public assistance.

Figure 11-7: The relationship between the proportion of a zip code with a college
education and the proportion on public assistance in the state of Minnesota is not obvious.

The top chart in Figure 11-8 shows one of the dangers when adding a
moving average trend line. This chart applies the moving average directly
to the data as pulled from the database, producing a zigzag line that
bounces back and forth and makes no sense. The lower chart fixes this prob-
lem by sorting the data by the X-values. Here, a pattern is visible, although
the relationship is not a line. As zip codes have more college graduates, they
have fewer households on public assistance.

In general, when using moving averages, make sure that the data is sorted.
Although this is always true for line charts, it may not be true for scatter plots
and bubble charts. To sort the data in place, select the table to be sorted and use
the Data ➪ Sort menu option (or type <alt>-D, <alt>-S) and choose the col-
umn or columns for sorting. The sort dialog box allows you to sort by up to
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three columns. If you need to sort by more columns, create an additional col-
umn in the table, using the concatenation function to append the column val-
ues together. Sorting is only needed for the moving average trend line; the
other types are insensitive to the ordering of the data.

Figure 11-8: A moving average can find patterns in the data, as shown in the lower chart
where the X-values are sorted. However, if the data is not sorted, the moving average is a
meaningless scribble.

TI P When using the moving average trend line, be sure that the data is sorted
by the X-values.

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

0% 10% 20% 30% 40% 50% 60% 70% 80%

% College Grads

%
 P

ub
lic

 A
ss

is
ta

nc
e 

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

0% 10% 20% 30% 40% 50% 60% 70% 80%

% College Grads

%
 P

ub
lic

 A
ss

is
ta

nc
e 

99513c11.qxd:WileyRed  8/27/07  1:35 PM  Page 527



Best-fit Using LINEST() Function
Trend lines are not the only way to do linear regression in Excel. The function
called LINEST() provides the full functionality of linear regression, including
calculating various statistics that describe the goodness of fit. It returns the fol-
lowing information:

■■ The R2 value;

■■ The standard error for the coefficients;

■■ The standard error for the Y-estimate;

■■ The degrees of freedom;

■■ The sum of squares; and,

■■ The sum of the squares of the residuals.

This chapter discusses the first of these. The remaining are more advanced 
statistical measures, which are more appropriately discussed in a statistics book.

Returning Values in Multiple Cells

Before moving to the statistics and the calculation of these values, there is the
issue of how a single function in Excel can return more than one value. All the
functions we have seen so far reside in only a single cell. In fact, the intuitive def-
inition of function is something that returns one value assigned in a single cell.

The solution is array functions, as discussed in the aside “Excel Functions
Returning More Than One Value.” The call to an array function that returns
multiple values is in many ways similar to any other function. The call to
LINEST() looks like:

=LINEST(<y-values>, <x-values>, TRUE, TRUE)

The first argument is the target values (typically a column of values); the sec-
ond argument is the input values (typically another column). The final two
arguments are flags. The first flag says to do a normal linear regression (when
FALSE, this would force the constant ß0 to have the value of zero, which is
sometimes useful). The final flag says to calculate various statistics along with
the coefficients.

Although this is an Excel formula, it is not entered in quite the same way as
other Excel formulas. First, the formula is entered for a group of cells rather
than just one. In this particular case, the function calculates values in ten cells,
two across by five down. The function LINEST() always returns values in five
rows when the last argument is TRUE. In addition, there is one column for
each input variable. With one column of X-values, there are two coefficients.

528 Chapter 11 ■ The Best-Fit Line: Linear Regression Models
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Another difference is that array formulas are entered using <control>-
<shift>-<enter> rather than <enter>. Excel shows the formula surrounded
by curly braces (“{” and “}”) to indicate that it is an array formula; however,
these curly braces are not typed in when the formula is entered.

Once the formula is in place, it can only be modified by highlighting all the
cells where it appears. Attempts to modify a single cell in the array cause an
error: “You cannot change part of an array.” Similarly, removing the formula
requires selecting all the cells in the formula and hitting the <delete> key.

WARN I NG When you try to change one cell in an array of cells that has an
array function, Excel returns an error. Select the whole array of cells to delete or
modify the formula.

EXCEL FUNCTIONS RETURNING MORE THAN ONE VALUE

Chapter 4 introduced array functions as a way of performing complicated
arithmetic on columns of numbers. For instance, array functions can combine
the functionality of IF() and SUM().

Array functions not only have the ability to accept arrays of cells as
arguments, they can also return arrays of values. In fact, almost any Excel
function can be used in this fashion.

Consider a simple situation, where columns A and B each contain 100 numbers
and each cell in column C contains a formula that adds the values in the same
row in columns A and B. Cells in column C have formulas that look like:

=A1+B1

=A2+B2

. . .

=A100+B100

The formula is repeated on every row; typically, the first formula is typed on the
first row and then copied down using <control>-D.

An alternative method of expressing this calculation is to use an array
function. After selecting the first 100 rows in column C, the array function 
can be entered as:

=A1:A100+B1:B100

And then completed using <control>-<shift>-<enter>, rather than just
<enter>. Excel recognizes this as an array function and puts curly braces
around the formula to indicate this:

{=A1:A100+B1:B100}

Continued on next page
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EXCEL FUNCTIONS RETURNING MORE THAN ONE VALUE (CONTINUED)

There is one function for all 100 rows.
Excel recognizes the array function and figures out that the range of 100 cells

in the A column matches the 100 cells in the B column and this also matches
the 100 cells in the C column containing the array formula. Because all these
ranges match, Excel figures out to iterate over the values in the cell ranges. So
the formula is equivalent to C1 containing A1+B1 and C2 containing A2+B2 and
so on to C100.

This simple example of an array formula is not particularly useful, because
in this case (and many similar cases), the appropriate formula can simply be
copied down the column. One advantage of array formulas is that they take up
less storage space, because an array formula is stored only once, rather than
once for every cell. This can make a difference when there are thousands of
rows in the array.

There are a handful of functions that are designed to work as array functions
because they return values in arrays of cells. This chapter discusses LINEST(),
which is one such function. A similar function, LOGEST(), is also an array
function. It fits an exponential curve to data, rather than a line.

Excel also has functions that support matrix operations. Three of these 
are array functions that return values in a group of cells: TRANSPOSE(),
MINVERSE(), and MMULT().

Calculating Expected Values

Although staring at the coefficients and statistics that describe a linear regression
model may be interesting, probably the most important thing to do with a model
is to apply it to new data. Because LINEST() produces coefficients for a line, it is
simple enough to apply the model using the formula for a line:

=$D$2*A2+$D$3

Where $D$2 and $D$3 contain the coefficients calculated by LINEST(). Notice
that the last coefficient is the constant.

Excel offers several different ways of calculating the coefficients. For
instance, the formula produced in a chart for the best-fit line is the same as the
one calculated by LINEST(). In addition, there are several other functions in
Excel that can be used to calculate the expected value for a line that has one
input variable:

=SLOPE(<y-values>, <x-values>)*A2+INTERCEPT(<y-values>, <x-values>)

=FORECAST(A2, <y-values>, <x-values>)

=TREND(<y-values>, <x-values>, A2, TRUE)

The first method calculates the slope and intercept separately, using the func-
tions SLOPE() and INTERCEPT(). The second and third use two functions that
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are almost equivalent. The only difference is that TREND() takes a final argu-
ment specifying whether or not to force the Y-intercept to be zero. The advan-
tage of using the formula explicitly with LINEST() is that it generalizes to more
variables. The advantage to the other methods is that all the calculations are in
one cell.

The difference between the actual value and the expected value is called the
residual. Figure 11-2 showed a plot of the residuals by X-value. For a good
model, the points should look random. When there is an evident pattern, such
as the residuals getting bigger as the X-values getting bigger or many of the
residuals being the same size, then the model is not as good as it could be.

LINEST() for Logarithmic, Exponential, and Power Curves

The logarithmic, exponential, and power curves are the three types of trend
lines that are related to the best-fit line, and these formulas can be approxi-
mated using LINEST() as well. The results are not exact, but they are useful.

The key is to transform the X-values, Y-values, or both using logs and expo-
nential functions. To understand how this works, recall how logarithms and
exponentiation work. These functions are inverses of each other, so EXP(LN(<any
number>)) is the original number. A useful property of logarithms is that the sum
of the logs of two numbers is the same as the log of the product of the numbers.

The first example shows how to calculate the coefficients for the logarithmic
curve by transforming the variables. The idea is to calculate the best-fit line for
the X-values and the exponentiation of the Y-values. The resulting equation is:

EXP(Y) = ß1*X + ß0

By taking the logarithm of both sides, this equation is equivalent to the 
following:

Y = LN(ß1*X + ß0)

This is the formula for the logarithmic trend line. The coefficients calculated
with the transformed Y-values are the same as the coefficients calculated in
the chart.

The transformation for the exponential is similar. Instead of using EXP(Y),
use LN(Y), so the resulting best-fit equation is for:

LN(Y) = ß1*X + ß0

When “undoing” the log by taking the exponential, the formula becomes:

Y = EXP(ß1*X + ß0) = EXP(ß0)*EXP(ß1*X)

Chapter 11 ■ The Best-Fit Line: Linear Regression Models 531
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532 Chapter 11 ■ The Best-Fit Line: Linear Regression Models

This is very similar to the formula for the exponential trend line. The only dif-
ference is that the ß0 coefficient produced this way is the log of the coefficient
given in the chart.

Finally, the transformation for the power curve uses the log of both the X-
values and the Y-values:

LN(Y) = ß1*LN(X) + ß0 = LN(EXP(ß0)*X^ß1)

Undoing the log on both sides produces:

Y = EXP(ß0)*X^ß1

The only difference between these coefficients and the ones in the chart is 
that the ß0 calculated using LINEST() is the logarithm of the value calculated in
the chart.

There is an additional Excel function LOGEST() that fits the exponential
curve. The coefficients are related to the coefficients in the charts. In this case,
the ß0 is the same, but log of ß1 is the corresponding coefficient in the chart.

When calculated in any of these methods — in the charts, using LOGEST(), or
by transforming the original data — the resulting coefficients are only approxi-
mations of the correct values. The problem is that transforming the Y-value also
changes the distance metric. Hence, what is the “best-fit” for the transformed
data may not quite be the “best-fit” on the original data, although the answers
are usually similar. However, the transformation method does make it possible
to fit these curves in a “quick and dirty” way. To obtain more exact answers in
Excel, use the Solver method described later in this chapter.

TI P The exponential, logarithmic, and power curve trend lines, as well as
LOGEST(), are approximately correct. The coefficients are not optimal, but they
are close.

Measuring Goodness of Fit Using R2

How good is the best-fit line? Understanding this is as important as building
the model in the first place. Scatter plots of some data looks a lot like a line; in
such cases, the best-fit line fits the data quite well. In other cases, the data looks
like a big blob, and the line is not very descriptive. Fortunately, there is a simple
but somewhat flawed measure of how good the fit is. This is called the R2 value.

The R2 Value
R2 is a measure of how well the best-fit line fits the data. When the line does not
fit the data at all, the value is zero. When the line is a perfect fit, the value is one.
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The best way to understand this measure is to see it in action. Figure 11-9
shows four sets of data artificially created to illustrate different scenarios. The
two on the top have an R2 value of 0.9; the two on the bottom have an R2 value
of 0.1. The two on the left have positive correlation, and the two on the right
have negative correlation.

Figure 11-9: The four examples here show the different scenarios of positive and
negative correlation among the data points, and examples with R2 of 0.1 (loose fit) and
0.9 (tight fit).

Visually, when the R2 value is close to one, the points are quite close to the
best-fit line. They differ a little bit here and there, but the best-fit line is doing a
good job of capturing the trend in the data. Another way to think about this is
that moving or removing one or two points would not have a big impact on the
resulting line. When the R2 value is close to one, the model is stable in the sense
that changing the values of a few points has a small effect on the best-fit line.

On the other hand, when the R2 value is close to zero, the resulting line does
not have much to do with the data. This is probably because the X-values do not
contain enough information to estimate the Y-values very well, or because there
is enough information, but the relationship is not linear. In this case, changing
a few data points could have a big impact on the best-fit line.

Positive Correlation, R^2=0.9

y = 0.9942x + 1.7111
R2 = 0.9

Negative Correlation, R^2=0.9

y = -0.9201x + 10.248
R2 = 0.9

Positive Correlation, R^2=0.1

y = 0.3125x + 4.3699
R2 = 0.1

Negative Correlation, R^2=0.1

y = -0.3733x + 7.9484
R2 = 0.1
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So, the R2 tells us how tightly the data points fit around the best-fit line. This
information gives a good description of how well the line fits the data.

Limitations of R2

R2 measures how good the best-fit line (or best-fit curve in other cases)
describes the data. It does not tell us whether there is a relationship between
the X- and Y-values. Conversely, there may be an obvious relationship, even
when the R2 value is zero.

Figure 11-10 shows two such cases. In the chart on the left, the data forms a
U-shape. There is an obvious relationship, and yet the best-fit line has an R2

value of zero. This is actually true for any symmetric pattern flipped around a
vertical line. Although there is a pattern, it is not captured by the best-fit line.

Figure 11-10: There may be an obvious relationship even when the R2 value is zero. 
The relationship is not the best-fit line, however.

The chart on the right side of Figure 11-10 shows what can happen with out-
liers. For any given set of data, it is possible to add one data point that makes
the R2 value be zero. This occurs when the additional data point causes the
best-fit line to be horizontal.

These examples are intended to show the limits of R2. When the value is
close to one, the regression line explains the data well. When the value is close
to zero, the particular regression does not explain what is happening. 

TI P When the R2 value is close to one, the particular model explains the
relationship between the input variables and the target. When the value is
close to zero, the particular model does not explain the relationship, but there
may be some other relationship between the variables.

Zero Correlation (Symmetry)

y = 3.5625
R2 = 0.0000

Zero Correlation (Outlier)

y = 6.8333
R2 = 0.0000
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What R2 Really Means
The R2 value has a very specific meaning. It is the ratio of two values. The numer-
ator is the total variation in the Y-values explained by the model. The denomina-
tor is the total variation the Y-values. The ratio describes how much of the total
variation in the data is explained by the model.

Simple enough. Excel can calculate the value using the CORREL() function.
This function calculates the Pearson correlation coefficient, which is called r.
As its name implies, R2 is the square of r.

The R2 value can also be calculated directly from the data. The numerator is
the sum of the squares of the differences between the expected Y-values and the
average Y-value; that is, the numerator measures how far the expected values
are from the overall average. The denominator is the sum of the squares of the
differences between the observed Y-values and the average Y-value. The denom-
inator measures how far the observed values are from the overall average.

Table 11-2 walks through the calculation for the example on the right of Fig-
ure 11-10 where the R2 value is zero. Columns two and three have the observed
Y-value and the expected Y-value. Columns four and six have the differences
between these and the average. Columns five and seven have the squares. The
R2 value is then the ratio of the sums of these squared values.

Table 11-2: Example of an R2 Calculation

X Y YEXP YEXP-YAVG (YEXP-YAVG)2 Y-YAVG (Y-YAVG)2

1.0 5.5 6.83 0.0 0.0 -1.3 1.78

2.0 6.0 6.83 0.0 0.0 -0.8 0.69

3.0 6.5 6.83 0.0 0.0 -0.3 0.11

4.0 7.0 6.83 0.0 0.0 0.2 0.03

5.0 7.5 6.83 0.0 0.0 0.7 0.44

6.0 8.0 6.83 0.0 0.0 1.2 1.36

7.0 8.5 6.83 0.0 0.0 1.7 2.78

8.0 9.0 6.83 0.0 0.0 2.2 4.69

9.0 9.5 6.83 0.0 0.0 2.7 7.11

10.0 0.8 6.83 0.0 0.0 -6.0 36.00

Sum 0.0 55.00

R2 0.0
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This table explains what happens when the R2 value is zero. The expected
value is a constant, and this constant is the average of the Y-values (one of the
properties of the best-fit line is that it goes through the point that is the aver-
age of the X-values and the average of the Y-values). The R2 value can only be
zero when the expected value is always constant. Similarly, when the R2 value
is small, the expected values do not vary very much.

Notice that the R2 value can never be negative, because the sums of squares
are never negative. However, the Pearson correlation (r) can be negative, with
the sign indicating whether the relationship is positive correlation (as X gets
bigger, Y gets bigger) or negative correlation (as X gets bigger, Y gets smaller).

The R2 value only makes sense for the best-fit line. For an arbitrary line, the
value can be greater than one, although this never happens for the best-fit line.

Direct Calculation of Best-Fit Line Coefficients

This section delves into the arithmetic for calculating the coefficients of the
best-fit line. There are two reasons for explaining the arithmetic. Directly cal-
culating the coefficients makes it possible to do the calculation in SQL as well
as Excel. More importantly, though, there is a bit of functionality missing from
Excel, and this functionality is quite useful. This is the ability to do a weighted
best-fit line.

Doing the Calculation
Calculating the best-fit line means finding the values of the coefficients ß1 and
ß0 in the equation for the line. The mathematics needed for the calculation is
simple addition, multiplication, and division. There is nothing magical about
the calculation itself, although the proof that it works is beyond the scope of
this book.

The calculation uses the following easily calculated intermediate results:

■■ Sx is the sum of the X-values;

■■ Sy is the sum of the Y-values;

■■ Sxx is the sum of the squares of the X-values; and,

■■ Sxy is the sum of each X-value multiplied by the corresponding Y-
value.

The first coefficient, ß1, is calculated using the following formula:

ß1 = (n*Sxy – Sx*Sy) / (n*Sxx – Sx*Sx)

The second coefficient has the following formula:

ß0 = (Sy/n) – beta1*Sx/n
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Table 11-3 shows the calculation for the data used in the R2 example. The top
portion of this table contains the data points, along with the squares and prod-
ucts needed. The sums and subsequent calculation are at the bottom of the table.

Table 11-3: Direct Calculation of the Coefficients

X Y X^2 X*Y

1.0 5.5 1.00 5.5

2.0 6.0 4.00 12.0

3.0 6.5 9.00 19.5

4.0 7.0 16.00 28.0

5.0 7.5 25.00 37.5

6.0 8.0 36.00 48.0

7.0 8.5 49.00 59.5

8.0 9.0 64.00 72.0

9.0 9.5 81.00 85.5

10.0 0.8 100.00 8.3
VARIABLE SX SY SXX SXY

Sum 55.0 68.3 385.0 375.8

n*Sxy-Sx*Sy 0.00

n*Sxx-Sx*Sx 825.00

Beta1 0.0000

Beta0 6.8333

Calculating the Best-Fit Line in SQL
Unlike Excel, SQL does not have functions built-in to calculate the coefficients
for a linear regression formula. The calculations can be done explicitly, using
the preceding formulas. The following query does this for the Minnesota
example in Figure 11-7:

SELECT (1.0*n*Sxy - Sx*Sy)/(n*Sxx - Sx*Sx) as beta1,

(1.0*Sy - Sx*(1.0*n*Sxy - Sx*Sy)/(n*Sxx - Sx*Sx))/n as beta0,

POWER(1.0*n*Sxy - Sx*Sy, 2)/((n*Sxx-Sx*Sx)*(n*Syy-Sy*Sy)) as r2,

b.*

FROM (SELECT COUNT(*) as n,

SUM(popcollege) as Sx,

SUM(hhpubassist) as Sy,

(continued)
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SUM(popcollege*popcollege) as Sxx,

SUM(popcollege*hhpubassist) as Sxy,

SUM(hhpubassist*hhpubassist) as Syy

FROM (SELECT (popedubach+popedumast+popeduprofdoct) as popcollege,

hhpubassist

FROM zipcensus

WHERE state = ‘MN’) a

) b

The innermost subquery calculates of the Sx, Sy, Sxx, Sxy, and Syy (the latter is
needed for R2). These are then combined in the next level into the coefficients.
This query also calculates the R2 value, using an alternative formula that does
the calculation directly, rather than by first calculating expected values.

The values produced by this are in Table 11-4. Although the moving average
suggests a relationship, the R2 value suggests that the relationship is not a line.

Table 11-4: Coefficients for Relationship College Education and Public Assistance in 
Minnesota Zip Codes

COEFFICIENT/STATISTIC VALUE

N 868

Sx 148.8791

Sy 27.9332

Sxx 36.8076

Sxy 4.2998

Syy 1.7657

Beta1 -0.0436

Beta0 0.0397

R2 0.0247

Price Elasticity
Price elasticity is the economic notion that product prices and product sales are
inversely related to each other. As prices go up, sales go down, and vice versa.
In practice, price elasticity provides information about the impact of raising or
lowering prices. Although the economic relationship is approximate, and
sometimes quite weak, price elasticity is useful for what-if analyses that inves-
tigate the effects of changing prices.

The subject of price elasticity opens up the subject of prices in general. Typi-
cally, a product has a full price. Customers may pay the full price, or they may
pay a discounted price for a variety of reasons — the item may be on sale, the
customer may have a loyalty relationship with an associated discount, the item
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may be bundled with other products, the customer may have a group discount,
and so on.

This section starts by investigating prices, first by product group and then
more specifically for books whose full price is $20. It then shows how basic
regression analysis can be used to estimate elasticity effects. These effects are
only approximate, because demand is based on more than pricing (what com-
petitors are doing, marketing programs, and so on). Even so, regression analy-
sis sheds some light on the subject.

Price Frequency

Visualizing the relationship between sales volume and price is a good place to
start. A price frequency chart shows how often products are sold at a given
price. The horizontal axis is the price; the vertical axis is the frequency, so each
point shows the number of products sold at a particular price. A pricing fre-
quency chart might use the full price, the average price, or a bar showing the
range of prices.

Figure 11-11 shows a full price frequency chart broken out by product
groups. Because the range of values is so large and values are always positive,
both axes use a logarithmic scale. The seven symbols represent the seven prod-
uct groups of interest. Each point in the chart is an instance of products in the
product group having a particular full price.

Figure 11-11: This pricing frequency chart shows the relationship between sales volume
and full price by product group.
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As a whole, the chart gives an idea of the relationship between full prices,
product groups, and demand. The circled point at the top, for instance, indi-
cates that there are 17,517 orders that contain ARTWORK products whose full
price is $195. Although not shown on the chart, this point actually corresponds
to 670 different products in the product table, all in the ARTWORK group and
all having the same full price.

The pricing frequency chart has other interesting information. The most
commonly sold items are ARTWORK products having a full price of $195 (the
circled point is the highest point in the chart). Although relatively expensive,
the ARTWORK products selling at this price are inexpensive relative to other
ARTWORK products. The products in this category typically cost more, as
seen by the fact that the ARTWORK products (labeled with “x”s) are to the
right of the highlighted marker.

Almost all the expensive products are ARTWORK, with the exception of one
BOOK and one CALENDAR (and these may be examples of misclassification).
On the other hand, the BOOK group is quite well represented as having many
products selling in more than one thousand orders — these are the solid
squares on the upper left of the chart. Books are also generally moderately
priced. The least expensive products are further to the left. These include
many GAMES and CALENDARS. FREEBIES, which are by definition free, are
not included in the chart.

The pricing frequency chart is a good way to visualize the relationship
between pricing and sales. With respect to price elasticity, its use is limited. The
best selling books, for instance, have a price point pretty much in the middle of
the book prices. Books that are more expensive sell fewer copies. But also,
books that are less expensive sell fewer copies. Clearly and unsurprisingly,
something besides price is important for book sales.

The following query gathers the data for the chart:

SELECT productgroupname, fullprice, COUNT(*)

FROM orderline ol JOIN product p ON ol.productid = p.productid

WHERE fullprice > 0

GROUP BY productgroupname, fullprice

ORDER BY 3 DESC

This query uses the Orderline table to calculate the total number of orders and
the Product table to get the FULLPRICE. This query counts the number of lines
in orders, which is reasonable. Another possibility would be to count the num-
ber of units.

The results are broken out by product group, because this is a natural way
to compare products. To create the chart, there is a separate column for each
product group. The FULLPRICE is placed in the appropriate column for
each row, with NA() going in the other columns. A scatter plot is created
from the pivoted data. 
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Price Frequency for $20 Books

Seeing the range of prices and sales volumes is interesting. For elasticity,
though, it is better to look at a single product or group of similar products. This
section investigates products in the BOOK category whose full price is $20.
Even though the full price is $20, these are often discounted, using marketing
techniques such as coupons, clearance offers, product bundles, and customer
loyalty discounts.

Price elasticity suggests that when prices are lower, there should be more
orders and when prices are higher, there should be fewer orders. Of course,
this is economic theory, and a lot of things get in the way in the real world.
Prices lower than the full price may indicate special promotions for the prod-
uct that further increase demand, beyond the change in price. Or, low prices
may indicate inventory clearance sales for the last few copies of otherwise
popular books. In such a case, demand might be high, but there are few sales
because there is insufficient inventory to fulfill all demand.

A good summary for this investigation is prices and sales by month:

■■ The average price of $20 full-price books sold in the month.

■■ The total units sold in the month for these products.

Just to be clear, the full price is $20, but customers may be getting a discount of
one form or another. Also, a given book always has the same full price, which
is in the Product table, not the Orders table. In the real world, products may
have different full prices at different times. If this is the case, the Orders table
should include the full price as well as the price the customer pays.

The following query does this summarization:

SELECT YEAR(orderdate) as year, MONTH(orderdate) as mon,

COUNT(DISTINCT ol.productid) as numprods,

AVG(unitprice) as avgprice, SUM(ol.numunits) as numunits

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid JOIN

(SELECT *

FROM product

WHERE productgroupname = ‘BOOK’ and fullprice = 20) p

ON ol.productid = p.productid

GROUP BY YEAR(orderdate), MONTH(orderdate)

ORDER BY 1, 2

The scatter plot in Figure 11-12 shows the results, with the horizontal axis
being the price in the month and the vertical axis being the total units sold.
Each point in the scatter plot is the summary of one month of data for $20
books. The chart does not show which point corresponds to which month,
because the purpose is to look at the relationship between average price and
volume, not to see trends over time.

In most months, the books have an average price over $17, as seen by the
prevalence of points on the lower right. During these months, the sales are
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often on the low side, particularly as the average increases toward $20. This
does suggest a relationship between price and demand. During some months,
the average price is absurdly low, less than $10, suggesting that many $20
books are sometimes sold at a hefty discount.

Figure 11-12: This scatter plot shows the actual prices of books whose full price is $20.
Each point is the average price by month and the average sales by month.

The best-fit line is also shown in the chart. This line is not a particularly
good fit, but it does suggest that as the price increases, demand decreases. The
slope of the line is minus 5.7, which means that for every dollar increase in
price, the demand decreases by 5.7 units per month.

There is no a priori reason to believe that the relationship is a simple line,
which implies that more sophisticated models might be needed. On the other
hand, a line produces a very handy number — minus 5.7 — that can be used
to direct pricing and discounting efforts.

One complication is the fact that there are different numbers of products for
sale at that price in any given month, and there are different amounts of inven-
tory for those products. When inventory is an issue, demand may be repre-
sented by customers wanting to purchase the product, even if they cannot
because there is insufficient inventory. The relationship between price and
demand is interesting to investigate; it is also related to many other factors that
can make it challenging to tease out a particular formula.

Price Elasticity Model in SQL

The coefficients for the line can also be calculated in SQL. The following query
performs the same analysis, finding the relationship between the price of $20
full-price books and the volume of sales on a monthly basis:

SELECT (1.0*n*Sxy - Sx*Sy)/(n*Sxx - Sx*Sx) as beta1,

(1.0*Sy - Sx*(1.0*n*Sxy - Sx*Sy)/(n*Sxx - Sx*Sx))/n as beta0,

y = -5.6789x + 147.93
R2 = 0.1099
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POWER(1.0*n*Sxy - Sx*Sy, 2)/((n*Sxx-Sx*Sx)*(n*Syy-Sy*Sy)) as R2

FROM (SELECT COUNT(*) as n,

SUM(x) as Sx,

SUM(y) as Sy,

SUM(x*x) as Sxx,

SUM(x*y) as Sxy,

SUM(y*y) as Syy

FROM (SELECT YEAR(orderdate) as year, MONTH(orderdate) as mon,

1.0*SUM(ol.numunits) as y,

AVG(unitprice) as x

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid JOIN

(SELECT *

FROM product

WHERE productgroupname = ‘BOOK’ and fullprice = 20

) p

ON ol.productid = p.productid

GROUP BY YEAR(orderdate), MONTH(orderdate)

) a

) b

The innermost query summarizes the appropriate orders by month. Subquery
A is basically the same query used for the scatter plot, with minor cosmetic dif-
ferences. One is that the columns are named X and Y, which recognizes the
roles that these columns play in the calculation of the coefficients. Also, the 
Y-value is multiplied by 1.0 so it is not treated as an integer in the calculation.
Reassuringly, this SQL calculates the same coefficients as the best-fit line in
Excel’s charts.

Price Elasticity Average Value Chart

Price elasticity models estimate the amount of demand at a given price point.
As discussed in the previous chapter, the average value chart is a good way to
evaluate a model whose target is numeric. This chart divides the expected num-
ber of sales into ten deciles, and then shows the actual number of sales and the
expected number of sales in each group. Figure 11-13 shows the average value
chart corresponding to the best-fit line for estimating demand based on price.

The average value chart shows that the model is not working well (which
we already suspected because of the low R2 value). The expected number of
sales decreases as the deciles increase, with the expected number being rather
flat after the first three deciles. However, the actual sales start high, dip, then
go up again. The top two deciles also have much lower average prices than the
rest of the deciles ($8.31 and $13.77 versus over $17 in the remaining months).
This suggests that in months when the average prices are very low, something
is going on besides just the change in price.

A big reason why the model has a low R2 value is because of deciles 4 and
5, where the actual volume is much larger than the expected volume (or alter-
natively that demand for the first three deciles is much lower than it should
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be). Despite the low R2 value, there does seem to be a relationship between
price and volume, albeit with exceptions. The model results suggest that pric-
ing discounts on the books are not the only factor driving sales. Some dis-
counts are intended to drive sales of popular books even higher. Other
discounts are intended to sell the last copies of books that happen to still be in
stock. When it comes to estimating sales volume, price is only one factor
affecting the volume of sales.

Figure 11-13: This average value chart shows the relationship between the expected
number of sales and the actual number of sales by sales price for books whose full 
price is $20.

Weighted Linear Regression

Bubble charts are a typical way to visualize summarized data. The data is
located on the chart according to X- and Y-values, and the size of each bubble is
the frequency count. Alas, when Excel calculates the best-fit line in a bubble
chart, it does not take into account the sizes of bubbles. The resulting best-fit
line does a poor job showing trends in the data.

WARN I NG When Excel calculates best-fit lines in bubble charts, it does 
not take the size of the groups into account. This can significantly skew the
resulting line. The desired line requires doing a weighted linear regression.

The way to solve this problem is by using a technique called weighted linear
regression, which takes the sizes of the bubbles into account. Unfortunately,
this capability is not built into Excel directly. There are two ways to do the cal-
culation. One is to apply the formulas from the previous section, adjusting the
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various intermediate sums for the frequencies. The other uses special function-
ality in Excel called Solver, which is a general-purpose tool that can be used for
this specific need.

This section starts with a basic business problem where weighted linear
regression is needed. It then discusses various ways to address the problem in
Excel and SQL.

Customer Stops during the First Year
Is there a relationship between the monthly fee (in the subscription data) and
the stops during the first year? The hypothesis is that each increment in the
monthly fee has an effect on the overall stop rate.

The bubble chart in Figure 11-14 shows the monthly fee on the horizontal
axis and the proportion of customers who stop during the first year on the ver-
tical axis. The size of each bubble is the number of customers in the group.
Many bubbles are so small that they do not appear in the chart. For instance,
there are two customers who started with a monthly fee of $3, and one of them
stopped. However, they are not on the chart because a bubble for two cus-
tomers is simply too small to see on a chart where the largest bubbles represent
hundreds of thousands of customers.

Figure 11-14: This bubble chart shows the relationship between the initial monthly fee
(horizontal axis) and the stop rate during the first year for customers who started in 2004
and 2005. The size of the bubble is the number of customers.

The chart itself includes the best-fit line for the data, as produced in Excel.
The best-fit line is almost horizontal, suggesting that there is almost no rela-
tionship between the monthly fee and the stop rate. The lack of relationship is
corroborated by the miniscule R2 value, which suggests that any relationship
that does exist is not linear.

y = 0.0001x + 0.4856
R2 = 0.0009
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The following query provides the data for the bubble chart:

SELECT monthly_fee,

AVG(CASE WHEN tenure < 364 AND stop_type IS NOT NULL THEN 1.0

ELSE 0 END) as stoprate,

COUNT(*) as numsubs

FROM subs

WHERE start_date BETWEEN ‘2004-01-01’ and ‘2005-12-31’

GROUP BY monthly_fee

ORDER BY 1

This query simply aggregates all the customers who started in 2004 and 2005,
keeping track of those who stopped during the first year.

Weighted Best Fit
Table 11-5 shows the data used to create the bubble chart. This table highlights
the fact that most of the groups are quite small. Over half have fewer than
three hundred customers, and these do not even show up on the chart. When
Excel calculates the best-fit line, it does not take into account the size of the
bubbles, so these invisible points are worth as much as the visible ones, which
have 99.9% of the customers. This is true both for the best-fit line in the charts
and for the LINEST() function.

Table 11-5: First Year Stop Rate and Count by Initial Monthly Fee

MON- # SUB- MON- # SUB- MON- # SUB- 
THLY STOP SCRI- THLY STOP SCRI- THLY STOP SCRI-
FEE RATE BERS FEE RATE BERS FEE RATE BERS

$0 100% 1 $25 46% 2,901 $80 26% 7,903

$7 0% 1 $27 57% 7 $90 32% 79

$10 18% 1,296 $30 21% 803,481 $100 43% 34,510

$12 100% 1 $35 19% 276,166 $117 0% 1

$13 50% 2 $37 100% 1 $120 33% 3,106

$15 89% 38 $40 34% 797,629 $130 81% 26

$16 100% 1 $45 14% 39,930 $150 45% 11,557

$18 50% 2 $50 35% 193,917 $160 100% 4

$19 100% 3 $60 21% 48,266 $200 58% 6,117

$20 15% 120,785 $70 52% 35,379 $300 10% 241

$22 67% 9 $75 17% 22,160 $360 100% 6
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This is a problem, because some bubbles are clearly more important than
others. One approach is to filter the data, and choose only the bubbles that
exceed a certain size. To do this, select the cells and turn on filtering using the
Data ➪ Filter ➪ AutoFilter menu option (or the sequence of three keys, <alt>-
D <alt>-F <alt>-F). When the filter appears, apply a “(Custom…)” filter in
the NUMSUBS column to select the rows that have a count greater than, say,
1000. When the data is filtered, the chart automatically updates both the data
and the best-fit line. The resulting R2 value increases to 0.4088, suggesting that
there is a relationship between monthly fee and surviving the first year.

TI P When filtering rows of data that have an associated chart on the same
worksheet, be sure that the chart is either above or below the data. Otherwise,
the filters might reduce the height of the chart, or cause it to disappear altogether.

Using filters is an ad hoc approach, because it depends on choosing an arbi-
trary threshold. A better approach is to use all the data to calculate a weighted
best-fit line. Before diving into the calculations, the weighted best-fit is used
when data is summarized, and the groups have different sizes. This is a com-
mon occurrence, particularly when summarizing data from large databases
and analyzing the data in Excel.

The calculations for the weighted best-fit is quite similar to the calculations
for the best-fit line. The only difference is that the formulas take the weights
into account when calculating the various intermediate sums.

Table 11-6 shows the calculation of ß1, ß0, and R2 for the best-fit line with and
without weights. The calculation of N, the total number of points, shows the
difference. In the unweighted case, there are 33 points, because there are 33 dif-
ferent values of monthly fee. These groups correspond to 2.4 million customers,
which is the value of N using the weights. The 1,296 customers who initially
paid $10 and have a stop rate of 17.6% are instead treated as 1,296 rows with the
same information.

Table 11-6: Comparison of Calculations with and without Weights

COEFFICIENT/STATISTIC UNWEIGHTED WEIGHTED

N 33.00 2,405,526.00

Sx 2,453.00 94,203,540.00

Sy 16.33 647,635.68

Sxx 404,799.00 4,394,117,810.00

Sxy 1,241.02 27,310,559.03

Syy 11.68 190,438.85

Continued on next page
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Table 11-6  (continued)

COEFFICIENT/STATISTIC UNWEIGHTED WEIGHTED

Beta1 0.00 0.00

Beta0 0.49 0.16

R2 0.0009 0.3349

The resulting best-fit line now has the following characteristics:

■■ slope = 0.0028

■■ intercept = 0.2665

■■ R2 = 0.3349

The slope indicates that for each dollar that the monthly fee increases, the stop
rate increases by 0.28%. Without the weighting, the increase was a negligible
0.01%. The R2 value suggests that the pattern is of medium strength, not dom-
inant, but potentially informative. Without the weights there was no dis-
cernible pattern.

So, based on this analysis, if the company were to raise the monthly fee by
$10 for new customers, it would expect an additional 2.8% of them to leave
during the first year. Whether this is financially viable depends on the busi-
ness needs of the company.

Weighted Best-Fit Line in a Chart
Being able to plot the weighted best-fit line in a chart is useful, even though
Excel’s charts do not support this functionality directly. We have to trick the
software into doing what we want.

The idea is to insert another series in the chart corresponding to the best-fit
line, add the line for the series, and make the new series invisible so only the line
is visible:

1. For each monthly fee, apply the weighted best-fit formula to get the
expected value.

2. Add a new data series to the chart with the monthly fee and the
expected value. Because this is a bubble chart, be sure to include a size
for the bubbles as well.

3. Add the trend line for the new monthly fee series.

4. Format the series so it is invisible, either making the pattern and area be
transparent or by making the width of the bubbles equal to zero.
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Figure 11-15 shows the original data with the two trend lines. Clearly, the
sloping trend line that takes into account the sizes of the bubbles does a better
job of capturing the information in the chart.

Figure 11-15: The weighted best-fit line does a much better job of capturing the patterns
in the data points.

Weighted Best-Fit in SQL
The following query uses the same ideas to calculate the coefficients and R2

value directly in SQL for a weighted linear regression:

SELECT (1.0*n*Sxy - Sx*Sy)/(n*Sxx - Sx*Sx) as beta1,

(1.0*Sy - Sx*(1.0*n*Sxy - Sx*Sy)/(n*Sxx - Sx*Sx))/n as beta0,

(POWER(1.0*n*Sxy - Sx*Sy, 2)/((n*Sxx-Sx*Sx)*(n*Syy-Sy*Sy))

)as Rsquare

FROM (SELECT SUM(cnt) as n,

SUM(x*cnt) as Sx,

SUM(y*cnt) as Sy,

SUM(x*x*cnt) as Sxx,

SUM(x*y*cnt) as Sxy,

SUM(y*y*cnt) as Syy

FROM (SELECT monthly_fee as x,

AVG(CASE WHEN tenure < 364 THEN 1.0 ELSE 0 END) as y,

COUNT(*) as cnt

FROM subs

WHERE start_date BETWEEN ‘2004-01-01’ and ‘2005-12-31’

GROUP BY monthly_fee) a

) b

y = 0.0001x + 0.4856

y = 0.0026x + 0.0324
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The only difference between this query and the unweighted query is the cal-
culation of the intermediate values in the middle subquery. This query returns
the same results at the Excel calculation.

Weighted Best-Fit Using Solver
Using the formulas is one way to calculate the coefficients of the weighted
best-fit line. However, this does not work with more than one input variable,
not to mention the fact that remembering the formulas is onerous.

This section discusses an alternative approach using an Excel add-in called
Solver (this is included for free with Excel). The fundamental idea behind Solver
is to set up a spreadsheet model, where certain cells are inputs and one cell is an
output. Solver then finds the right set of inputs to obtain the desired output —
very powerful functionality. The question is how to set up a spreadsheet model
that does the weighted best-fit line.

The Weighted Best-Fit Line

So far, this chapter has approached the problem of finding the coefficients
for a best-fit line by applying complicated mathematical formulas. How-
ever, a spreadsheet could calculate the sum of the squares of the distances
between the data points and any given line. The spreadsheet would have
two input cells for the coefficients. The distance from each point to the line
can be calculated, and the total error added up in another cell. By trying out
different values for the coefficients, we could manually attempt to minimize
the total error.

Such a spreadsheet is an example of a spreadsheet model. As with the mod-
els discussed in this chapter and the previous chapter, it takes inputs (the coef-
ficients in the input cells) and calculates an output (the total error value). What
happens in between depends on the data and calculations in the spreadsheet.

Setting up a spreadsheet model for the basic best-fit line is not useful,
because there are built-in functions that do exactly what is needed. However,
no such functions exist for the weighted version, making this a better example.
Figure 11-16 shows a spreadsheet that contains the grouped data with fre-
quency counts, various columns that do calculations, two cells for input (I3
and I4), and one that has the error (I5).

The first of the additional columns contains the expected value, which is
calculated using the input cells:

=<beta1>*<monthly_fee>+<beta0>

The next column has the error, which is the absolute value of difference
between the expected value and the actual value, and the column after that,
the error squared. The final column calculates the square of the error times the
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count. The total error cell contains the sum of these squares, which is what the
best-fit line minimizes.

Figure 11-16: This is a spreadsheet model for calculating the error between a given line
and the data points (taking the weight into account).

Modifying the values in cells I3 and I4 changes the error value. One way to
minimize the error is to manually try different combinations of values.
Because there are two values, this can be tricky. However, the spreadsheet
recalculates very quickly and there are only two cells, so a person can get rea-
sonably close to the minimum value.

Solver Is Better Than Guessing

Solver uses the same spreadsheet model. However, instead of guessing the val-
ues of the coefficients that minimize the error, Solver finds the coefficients auto-
matically. Although Solver comes with Excel, the functionality is not
automatically available. To load Solver into Excel, use the menu item Tools ➪

AddIns (<alt>-T <alt>-I), click “Solver,” and then “OK.” Once installed, Solver
is available under the menu Tools ➪ Solver or using the keys strokes <alt>-T
then <alt>-V.

The “Solver Parameters” dialog box, shown in Figure 11-17, has several
prompts for information. At the top is the entry “Set Target Cell” to specify
the target cell. The goal can be to minimize, maximize, or to set it to a partic-
ular value.
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Figure 11-17: The “Solver Parameters” dialog box has areas for the cell to optimize, 
the type of optimization, the cells whose values can change, and any constraints on the
problem.

The list of cells that Solver can change is in the area called “By Changing
Cells.” In addition, Solver allows you to set constraints on the cells, such as
requiring that all values be positive or in some range. This is not functionality
needed for finding the weighted best-fit line.

Clicking “Solve” causes Excel to try many different combinations of coeffi-
cients looking for the optimal value. In this case, the problem is not particularly
complicated, and Solver finds the right solution quickly, placing the optimal coef-
ficients in the input cells. Solver finds the best-fit line using the spreadsheet
model. The aside “Discussion of Solver” discusses this add-in in a bit more detail.

More Than One Input Variable

Linear regression has been introduced using the best-fit line, which has 
one input and one target variable. In practice, there is usually more than one
possible input variable. This section touches on the topic. So-called multiple
regression pushes the abilities of SQL. In general, such problems are better
solved with statistics tools rather than Excel.

Multiple Regression in Excel
The function LINEST() can take more than one input column, although the
input columns do need to be adjacent. The function call is the same, except for
the size of the array containing the returned values. The width of this array
should be the number of different input variables plus one. The array should
always have five rows.
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DISCUSSION OF SOLVER

Solver is an add-in developed by the company Frontline Systems
(www.solver.com). A basic version of Solver has been bundled with Excel
since 1991. More advanced versions are offered by Frontline Systems.

The idea of finding the optimal value is to find the coefficients that minimize
or maximize some objective function. For our purposes, the objective function
simply means the value in the target cell, such as the example in the text for
the total error for the weighted best-fit line. The objective function can be quite
complicated, because it can depend directly on the input cells or there could be
many intermediate calculations, using other cells in the spreadsheet.

The weighted best-fit line is a particularly simple type of problem to solve,
because it is in a class called convex conic quadratics. The simplest example of
this, a parabola, has a single minimum value, and by analyzing information at
any point along the curve, it is possible to determine whether the minimum is
to the left or right of that point. Solver guesses the solution and then refines
the guess, getting closer and closer each time.

Making even small changes to the spreadsheet model can change the
structure of the problem. So, changing the objective function to something more
complicated could have a big impact on the efficiency of the algorithm. A small
change could result in Solver taking much more time to find the optimal solution.

The Solver software is quite powerful. It can detect when a problem is easy
to solve and solve it using the appropriate methods. More complicated
problems have more complicated methods, which can take longer to solve.

Finding the coefficients for a best-fit line is only a taste of what Solver can do.
One interesting class of problems is resource allocation. This occurs when there
are many constraints and the goal is to maximize profit. An example of this is
dividing the marketing budget to bring in new customers in various channels.
Different channels have different costs for acquiring customers. The customers
who come in may behave differently, and different times of year may have better
response or different mixes, and each channel has a maximum or minimum
capacity. It is possible to set up a spreadsheet that, given a mix of customers, is
able to calculate the profit. Then, the overall profit can be maximized using
Solver. Of course, the result is only as good as the assumptions going into the
worksheet model, and these assumptions are only estimates about what might
happen in the future.

This type of resource allocation problem is called a linear programming
problem (for technical reasons; it is not related to linear regression), and Solver
knows how to solve such problems quite efficiently.

Getting the Data

In the orders data, there is a relationship between the penetration of a zip code
and the average household income, the proportion college educated, and the
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proportion of people on public assistance. Such relationships can be investi-
gated further using multiple regression.

This example uses zip codes that have more than one thousand households
and that have at least one order. The query calculates the variables needed for
this example:

SELECT o.zipcode, numorders * 1.0/hh as pen,

hhmedincome, hhpubassist, pcoll

FROM (SELECT zc.*, (popedubach + popedumast + popeduprofdoct) as pcoll

FROM zipcensus zc) zc JOIN

(SELECT zipcode, COUNT(*) as numorders

FROM orders o

GROUP BY zipcode) o

ON zc.zipcode = o.zipcode

WHERE hh >= 1000

The returned data has 9,947 rows. The second column PEN is the Y-value. The
last three columns are X-values.

Investigating Each Variable Separately

A good first step is to investigate each of the variables one-by-one. The best-fit-
line and R2 values for each variable can be calculated using the functions
SLOPE(), INTERCEPT(), and CORREL().

Table 11-7 shows this information. There are several things to note about
these values. First, the best variable is the proportion of the zip code in college.
This is the best because it has the highest R2 value. This variable does a better
job than the others in predicting product penetration.

Table 11-7: Relationship between Three Variables Individually and Product Penetration

SLOPE INTERCEPT R-SQUARE

HH Median Income 0.0000 -0.00436 0.2406

% HH On Public Assistance -0.0324 0.00347 0.0325

College Percent 0.0186 -0.00268 0.2751

The signs of the slope are interesting. Positive slope means that as the input
value increases, the target value increases. So, penetration increases as median
income goes up and as the proportion who graduated college goes up. On the
other hand, penetration decreases as a greater proportion of the population is
on public assistance.

It would seem that variables with larger slope (steeper lines) would have a
bigger impact on the target. Unfortunately, the sizes of the slope do not pro-
vide any information about which variables are better or which have a bigger
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impact on the target. The reason is that the original variables have very differ-
ent ranges. The median income is measured in thousands of dollars, so its coef-
ficient is going to be very close to zero. The other two variables are proportions
which vary between zero and one, so their coefficients are higher.

This is unfortunate, because it is useful to know which variable is having a
greater effect on the target. Standardizing the inputs fixes this problem. As
explained in Chapter 3, standardizing variables calculates the number of stan-
dard deviations that a value is from the average, and this is easily done in
Excel, using a formula such as:

=(A1 – AVERAGE($A$1:$A9947)/STDEV($A$1:$A9947)

This formula is then copied down the column to get standardized value for 
all inputs.

TI P If you want to compare the effects of a variable on the target (in a linear
regression), standardize the input value before calculating the coefficients.

Table 11-8 shows the results with the standardized values. The R2 values
remain the same, although the slopes and intercepts have changed. Standard-
izing the inputs has no impact on how good the resulting line is.

Table 11-8: Relationship between Standardized Values and Product Penetration

SLOPE INTERCEPT R-SQUARE

HH Median Income 0.0025 0.0025 0.2406

% HH On Public Assistance -0.0010 0.0025 0.0325

College Percent 0.0029 0.0025 0.2751

The constant in the formula (ß0) is the same for all three formulas. This is not
a coincidence. When doing the linear regression on standardized input values,
the constant is always the average of the Y-values. The converse is not true,
however. If the intercept happens to be the average, this does not mean that
the X-values are standardized.

The bigger the slope (either positive or negative) on the standardized values,
the bigger the impact on the predicted penetration.

Building a Model with Three Input Variables
Building a model with all three input variables is as easy as building a model with
one, except for one thing. The function LINEST() is an array function that returns
values in an array of cells. The number of columns in this array is one more than
the number of variables in the model. The number of rows is always five.
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The call to LINEST() looks like:

=LINEST(‘T11-07’!D14:D9960, ‘T11-07’!E14:G9960, TRUE, TRUE)

Remember, this is an array function. Because there are three input variables (in
columns E, F, and G), the function needs to be entered into an array of four
cells across and five cells down, as shown in the screen shot in Figure 11-18. All
the cells in the array have the same formula, shown in the formula bar. The
curly braces are not part of the formula; Excel includes them to indicate that
the formula is an array formula.

Figure 11-18: The call to LINEST() with three input columns requires entering the
formula in an array four columns wide and five rows down.

How does this model compare to the models with a single variable? The R2

value is in the middle cell in the first column. The value is higher, so by that mea-
sure the model is better. Of course, the R2 value is only 0.32, which is not a big
increase over the best single variable model, which had an R2 value of 0.275.
Adding new variables may produce a model that is only marginally better.

The coefficients for this model are all positive, which is interesting. When used
in the model alone, the coefficient for the proportion of the population on public
assistance is negative, meaning that it is negatively correlated with penetration.
With other variables in the model, this variable becomes positively correlated.
Whatever else, this illustrates that the coefficients can change dramatically as
new variables are added into the regression. How and why does this happen?

This is an important question. The answer is at once simple and rather pro-
found. The simple answer is that the other variables overcompensate for the
proportion of the population on public assistance. That is, all the variables are
trying to determine what makes a good zip code for penetration, and it seems
to be wealthier, better educated zip codes. The other variables do a better job
of finding these, so when they are included, the effect of the public assistance
variable changes dramatically.

More formally, the mathematics of multiple regression assume that the vari-
ables are independent. This has a specific meaning. It means that the correla-
tion coefficient — the CORREL() function in Excel — is zero (or very close to
zero) for any two input variables. The correlation between the household
median income and the proportion of the population on public assistance is
–0.55. It is negative because as one goes up the other goes down (wealthier
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people tend to have fewer neighbors on public assistance). The correlation is
rather strong, so the variables are somewhat redundant.

In fact, when doing linear regression, it is easy to forget the fact that the tech-
nique works best when the variables are independent. This is because, in prac-
tice, input variables are rarely independent unless we make them so. One way
of doing that is by using a technique called principal components, which is beyond
the scope of this book, although it is included in many statistics packages.

Using Solver for Multiple Regression
Just as Solver was used for weighted regression, Solver can also be used for
multiple regression. The coefficients are entered into one area of the spread-
sheet. The spreadsheet calculates the expected values and total error. Solver
can be used to minimize the total error to find the optimal coefficients.

There are several reasons why this is useful. First, it makes it easy to create
more complicated expressions, such as ones using logarithms, or exponentials,
or other fancy mathematical functions. Second, using Solver makes it possible
to incorporate weights, which is just as useful for multiple regression as for the
one-input variety.

The third reason is more esoteric but perhaps the most important. The methods
that Excel uses to calculate the values returned by LINEST() are numerically
unstable. This means that when intermediate values get very large, the results are
prone to errors caused by the computer not being able to keep enough significant
digits during the computation.

As an example, when the multiple regression is run on the standardized
inputs rather than the non-standardized inputs, the coefficients are different
from the results using Solver as shown in Table 11-9.

Table 11-9: Comparison of Coefficients Using Three Variables, by LINEST() and Solver

SOLVER LINEST()

Intercept 0.002501 0.002501

Collegep 0.002076 0.000000

HHPubAssist 0.000871 0.000000

HHMedInc 0.001717 0.002076

The coefficients on the standardized data do not make sense, because two of
the variables have coefficients of zero, so there is effectively only one variable
in the equation. Yet, the coefficient for the variable is different (0.002076) from
the coefficient when this is the only variable in the equation (0.002907). This is
not reasonable. Solver calculates the correct value, which is also verified by
looking at the total error for the model.
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WARN I NG The method that Excel uses to calculate the results for LINEST()
is numerically unstable. When there are many rows of data, it is better to use
Solver to find the coefficients.

Choosing Input Variables One-By-One
One powerful way of using regression is to choose the variables one at a time,
first the best variable, then the next best, and so on. This is called forward
selection and is particularly useful when there are many potential variables,
such as the many variables that describe zip codes.

Excel is not the optimal tool for doing forward selection, because the
LINEST() function requires that the X-values all be in adjacent columns. This
means that essentially every combination of variables needs to be placed into
a separate set of adjacent columns. 

Different pairs of variables can be tested manually. The idea is to build the
regression on a set of adjacent columns, and then copy in the data from the orig-
inal columns. However, instead of copying in the data, the OFFSET() function
can be used with a column offset. Changing the value of the column offset
changes the data in the column.

With this set up, it is easy to try different pairs of columns by changing the
offset values and looking at the resulting R2 value. It would be convenient to
find the optimal offsets using Solver. Unfortunately, the version of Solver pro-
vided with Excel cannot handle this type of optimization. Frontline Systems
does offer other versions that do.

Multiple Regression in SQL
As more variables are added into the regression formula, it becomes more and
more complicated. The problem is that solving the regression requires matrix
algebra, in particular, inverting a matrix. When there is one input variable, the
problem is a two-by-two matrix, which is pretty easy to solve. Two input vari-
ables require a three-by-three matrix, which is at the edge of solving explicitly,
as this section demonstrates. And for larger numbers of variables, standard
SQL is simply not the best tool.

Solving the equation for two input variables (X1 and X2) requires quite a bit
more arithmetic than for one. In this case, there are three coefficients (ß0, ß1,
and ß2), and more intermediate sums. The following combinations are needed
to calculate the coefficients:

■■ Sx1, which is the sum of the X1-values;

■■ Sx2, which is the sum of the X2-values;

■■ Sx1x1, which is the sum of the squares of the X1-values;
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■■ Sx2x2, which is the sum of the product of X1-values and X2-values;

■■ Sx2x2, which is the sum of the squares of X2 values;

■■ Sx1y, which is the sum of the products of the X1-values and Y-values;

■■ Sx2y, which is the sum of the products of X2-values and Y-values; and

■■ Sy, which is the sum of the Y-values.

And a few more similar variables are needed for R2. These then need to be
combined in very complicated ways.

The following example calculates the coefficients for penetration, using
HHMEDINCOME and PCOLL as the two input variables. The purpose of this
example is to demonstrate that such mathematical manipulations are possible
in SQL. The innermost subquery renames these to Y, X1, and X2, so the arith-
metic in the outer subqueries is generic.

SELECT beta0, beta1, beta2,

(1-(Syy-2*(beta1*Sx1y+beta2*Sx2y+beta0*Sy) + 

beta1*beta1*Sx1x1+beta2*beta2*Sx2x2+beta0*beta0*n + 

2*(beta1*beta2*Sx1x2+beta1*beta0*Sx1+beta2*beta0*Sx2))/

(Syy-Sy*Sy/n)) as rsquare

FROM (SELECT (a11*Sy+a12*Sx1y+a13*Sx2y)/det as beta0,

(a21*Sy+a22*Sx1y+a23*Sx2y)/det as beta1,

(a31*Sy+a32*Sx1y+a33*Sx2y)/det as beta2, c.*

FROM (SELECT (n*(Sx1x1*Sx2x2-Sx1x2*Sx1x2) - 

Sx1*(Sx1*Sx2x2-Sx1x2*Sx2) +

Sx2*(Sx1*Sx1x2-Sx1x1*Sx2)) as det,

(Sx1x1*Sx2x2-Sx1x2*Sx1x2) as a11,

(Sx2*Sx1x2-Sx1*Sx2x2) as a12,

(Sx1*Sx1x2-Sx2*Sx1x1) as a13,

(Sx1x2*Sx2-Sx1*Sx2x2) as a21,

(n*Sx2x2-Sx2*Sx2) as a22, (Sx2*Sx1-n*Sx1x2) as a23,

(Sx1*Sx1x2-Sx1x1*Sx2) as a31,

(Sx1*Sx2-n*Sx1x2) as a32,

(n*Sx1x1-Sx1*Sx1) as a33,

b.*

FROM (SELECT COUNT(*) as n, SUM(x1) as Sx1, SUM(x2) as Sx2,

SUM(y) as Sy, SUM(x1*x1) as Sx1x1,

SUM(x1*x2) as Sx1x2, SUM(x2*x2) as Sx2x2,

SUM(x1*y) as Sx1y, SUM(x2*y) as Sx2y,

SUM(y*y) as Syy

FROM (SELECT o.zipcode, numorders * 1.0/hh as y,

hhmedincome as x1, pcoll as x2

FROM (SELECT zc.*,

(popedubach + popedumast +

popeduprofdoct) as pcoll

FROM zipcensus zc) zc JOIN

(SELECT zipcode, COUNT(*) as numorders

FROM orders o

(continued)
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GROUP BY zipcode) o

ON zc.zipcode = o.zipcode

WHERE hh >= 1000) a

) b

) c

) d

Embedded within the query are aliases such as A11 and A12. These values repre-
sent cells in a matrix. In any case, after all the arithmetic, the results are in
Table 11-10. These results match the results in Excel using the same two variables.

Table 11-10: Coefficients for Regression of HHMEDINCOME, PCOLL, to Predict Penetra-
tion, Calculated Using SQL

COEFFICIENT/STATISTIC VARIABLE VALUE

beta0 Intercept -0.0043317186

beta1 HHMedInc 0.0000000683

beta2 Pcoll 0.0126225403

R2 R-square 0.3029921767

Understanding the particular arithmetic is not important. At this point,
though, we have clearly pushed the limits of what can be accomplished with
SQL, and adding more variables is not feasible. Doing more complicated
regressions requires the use of statistics tools that support such functionality.

Lessons Learned

This chapter introduces the ideas of linear regression (best-fit lines) from the
perspective of SQL and Excel. Linear regression is an example of a statistical
model and is similar to the models discussed in the previous chapter.

There are several ways to approach linear regressions using the combination
of SQL and Excel. Excel has at least four ways to create such models for a given
set of data. Excel charting has a very nice feature where a trend line can be
added to a chart. One of the types of trend lines is the best-fit line, which can
be included on a chart along with its equation and statistics describing the line.
Other types of trend lines — polynomial fits, exponential curves, power
curves, logarithmic curves, and moving averages — are also quite useful for
capturing and visualizing patterns in data.

A second way to estimate coefficients for a linear regression is with the array
function LINEST() and various other functions that return individual coeffi-
cients, such as SLOPE() and INTERCEPT(). LINEST() is more powerful than the

99513c11.qxd:WileyRed  8/27/07  1:35 PM  Page 560



best-fit line in charts, because it can support more than one X-variable. How-
ever, all these functions use numerically unstable methods that fail to produce
accurate results when there is a large amount of data (although the methods
work quite well for many problems).

The third way is to calculate the coefficients explicitly, using the formulas
from mathematics. And, the fourth way is to set up the linear regression prob-
lem as a spreadsheet model. The coefficients are in input calls and the target
cell has the sum of the squares of the differences between the expected values
and the actual values. The coefficients that minimize the sum define the
model. The optimization process is handled by an Excel add-in called Solver.
The advantage to this approach is that it supports regressions on summarized
data by doing weighted regressions. This is quite powerful, and not otherwise
supported in Excel.

Regression has many variations. Besides weighted regression, there is
multi ple regression, which includes more than one input variable. A good way
to choose variables is using forward selection. That is, selecting one variable at
a time to maximize the R2 value. The mathematics behind regression work
when all input variables are statistically independent. However, that is rarely
true in the real world. 

For one or two input variables, the calculations can be set up in SQL as well
as Excel. This has the advantage of overcoming the limits of the spreadsheet.
However, the arithmetic quickly becomes too complicated to express in SQL,
and most dialects do not have built-in support for multiple regression.

Although Excel is quite useful for getting started, the serious user will want
to use statistical packages for this type of work. The next and final chapter of
this book recognizes that SQL and Excel cannot solve all problems. Some prob-
lems require more powerful tools. Setting up the data for these tools — the
topic in the next chapter — is an area that takes advantage of the power of SQL.
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The combination of SQL and Excel is powerful for manipulating data, visual-
izing trends, exploring interesting features, and finding patterns. However,
SQL is still a language designed for data access, and Excel is still a spreadsheet
designed for investigating relatively small amounts of data. Although power-
ful, the combination has its limits.

The solution is to use more powerful data mining and statistical tools, pro-
vided by vendors such as SAS, SPSS, and Insightful (among others, including
open source software). Because the data typically resides in a relational data-
base, SQL can play an important role in transforming it into the format needed
for further analysis.

Preparing the data for such applications is where customer signatures fit in.
A customer signature summarizes the attributes of a customer, putting impor-
tant information in one place. The model sets discussed in the previous two
chapters are examples of customer signature tables. Signatures are useful
beyond sophisticated modeling, having their roots in customer information
files and marketing information files developed for reporting purposes.

Customer signatures are powerful because they summarize both customer
behavior and customer demographics in one place. The term “customer”
should not be taken too literally. In some businesses, for instance, prospecting
is much more important than customers. So, the “customer” may be a prospect
and “customer behavior” may be exposure to marketing campaigns.

Building Customer Signatures
for Further Analysis

C H A P T E R

12
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The word “signature” comes from the notion that customers are unique in
the specific behavior and demographic traces that each leaves behind in data-
bases. This is an intriguing notion of human individuality. Unlike human sig-
natures, though, uniquely identifying each individual is not our purpose. The
purpose is descriptive, often to enhance marketing efforts to individuals and
groups of individuals.

A customer signature is more than a summary of customer behavior. It is a
summary designed for analytic purposes that takes special care with regards
to the naming of columns, the time frame of the data going into the signature,
and similar considerations.

Even though other tools offer more advanced analytics, SQL has an advantage
for data preparation: databases exploit parallel processing.  In simple terms, this
means that database engines can keep multiple disks spinning, multiple proces-
sors active, and lots of memory filled while working on a single query.

Even for smaller amounts of data, SQL has an advantage. It is possible to do
all the data processing for a customer signature in a single query, eliminating
the need for intermediate tables.

Many of the ideas in this chapter have been discussed in earlier chapters.
Here, the ideas are brought together around the concept of a customer signa-
ture, information that summarizes customers along multiple dimensions. This
chapter starts by explaining customer signatures and time frames in more
detail. It then discusses the technical operations for building signatures, and
interesting attributes to include in them.

What Is a Customer Signature?

A customer signature is a row in a table that satisfies certain conditions mak-
ing it more useful for analysis. The table is important, but the process that cre-
ates it more so. There is not a single signature for a customer, but a family of
signatures used for different purposes.

This section introduces customer signatures, how they are used, and why
they are important. The process of building customer signatures should make
it possible to reconstruct what customers look like at any point in time. This
may be a snapshot on the same date for all customers, or a different date for
each customer, such as one year after the customer starts, when the customer
first complains, or when the customer enrolled in the loyalty program.

TI P The process for creating customer signatures should be customizable to
take a snapshot of customers any point in time or relative to events during the
customer tenure. The process for building a customer signature is as important
as the table itself.

564 Chapter 12 ■ Building Customer Signatures for Further Analysis

99513c12.qxd:WileyRed  8/24/07  10:16 AM  Page 564



Another way to think about customer signatures is that they contain longi-
tudinal information. Here, longitudinal does not mean the distance east or west
of Greenwich, England. Longitudinal is a word borrowed from medical
research where it describes keeping track of patients over time including all
the treatments and things that happen to the patients. Almost everything is of
interest to medical researchers, because they are often dealing with life and
death issues. Although information about customers is not typically quite so
detailed and personal, customer signatures serve a similar purpose in the busi-
ness world.

What Is a Customer?
The definition of customer permeates all the earlier chapters. Chapter 1
brought up the difficulties of identifying customers, and Chapter 8 discussed
difficulties in tracking them over time, which is one of the critical capabilities
needed for creating signatures. As we’ve seen, there are different answers to
the question of “what is a customer?” Four typical answers are:

■■ An anonymous transaction;

■■ An account;

■■ An individual; and,

■■ A household.

From the perspective of identifying customers in the database, accounts and
anonymous transactions are usually easy; individuals and households require
more work.

The ability to define the customer is not merely theoretical. Information is
often most useful when it can be tied back to customers. Different definitions
have different strengths and weaknesses.

When “account” is the level used to define the customer, one quickly dis-
covers that individuals and households can have multiple account relation-
ships. Multiple accounts belonging to the same customer result in operational
inefficiencies — multiple contacts to the same household, for instance. These
multiple accounts can interfere with analysis. For instance, when trying to
understand why customers stop, summaries at the account level may miss the
fact that people are really remaining customers — on another account.

On the other hand, when using individuals and households to define cus-
tomer, a lot of work goes into identifying the same customer across multiple
transactions and accounts. This results in a dependence on the methods used
for the identification.

In the case of households, this is a particularly acute problem, due to the fact
that households change over time. These changes are important because house-
holds whose composition changes (due to marriage, divorce, children moving
in, children moving out, and so on) often present marketing opportunities.
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The purchases dataset contains a customer id table that provides lookups
for the household for any account. These customer IDs tie disparate transac-
tions together over time. In many cases, customer ids are assigned by match-
ing names and addresses on the transactions. These are then grouped together
into households, assigned by a third-party householding vendor. If more com-
plete data were available, these household ids would have effective dates on
them, identifying when the household information is active and when the
information changes.

Sources of Data for the Customer Signature 
Data about customers is located in many different tables, some of which do not
even know that they help describe customers. For instance, the Product table
in the purchases dataset is intended to describe products, not customers. Yet,
when combined with transaction information, this table can help answer ques-
tions such as:

■■ Which customers only purchase products at discounted prices?

■■ Does a customer have an affinity with a particular product group?

■■ Does this affinity change over time?

These questions highlight the interplay between different types of data.
Information about customers comes from diverse subject areas. Figure 12-1

shows conceptually different types of information collected about customers
that go into a customer signature. This section discusses these types of infor-
mation. One particularly important attribute is the time frame for each item of
data. The time frame is when the data becomes known for analysis purposes.

Figure 12-1: Customer signatures are records that describe customers, containing
information from different subject areas.
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■■ Original start date or first purchase date;

■■ Current product or most recent purchase date;

■■ Total spending; and,

■■ Current contact information.

This information is a snapshot of what customers look like at the present time.
Such a snapshot is a good starting point for a customer signature, because it
has useful information and is at the right level of granularity. The most useful
columns in it are the ones that do not change over time.

For instance, the customer id and original start date do not change. The contact
information does change over time, although slowly, so the summary contains
the current contact information. Total spending, most recent product, and most
recent purchase date all change frequently. “Frequently,” of course, depends on
the business. Updates on automobile purchases might change over a period of
years; updates on telephone usage, every month or even more frequently.

In a poorly designed data warehouse, snapshot information might contain
data elements not otherwise available in transaction tables. In one such sys-
tem, the customer snapshot contained a column called dunning level, which
described customers as they became later and later in paying their bills. This
information was only kept current in the snapshot information, with no his-
torical transaction table. Although quite important for understanding cus-
tomers and a driver of important behaviors, the dunning level could not be
used for analysis, because the values could not be reconstructed in the past.

The solution was simple enough. On the analysis side, we could capture the
dunning level periodically from the current snapshot, and create a dunning
transaction table for analysis purposes.

Initial Customer Information

Initial customer information remains constant for the duration of the customer
relationship (except when households merge or split). This information includes:

■■ When the customer first becomes a customer;

■■ Initial products and spending amounts;

■■ Channel and marketing promotions that led to the initial relationship;
and,

■■ Other relevant information (underwriting, credit scores, and so on).

For many businesses, the initial customer relationship is quite important,
because it sets expectations about the ongoing relationship. Exceeding expec-
tations can result in delighted customers who survive for long periods of time.
On the other hand, unfulfilled expectations can lead to disappointed cus-
tomers who were, perhaps, never in the target market in the first place, but
were led to start by aggressive marketing tactics.
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TI P Initial customer information, both demographic and behavioral, is quite
valuable for understanding customers, because the initial interactions set
customers’ longer term expectations.

Self-Reported Information

Customers explicitly provide some valuable data. Basic contact information, such
as name, address, telephone number, and/or email address is provided when
they start. Addresses used for billing and delivery lead to geocoding and associ-
ated geographic information. Email addresses contain domain information.
Names suggest gender and ethnicity. Credit cards provide credit card types.

In addition, customers may complete application forms, provide informa-
tion for credit checks, and respond to questionnaires and surveys. These are
additional sources of self-reported information, although such data is often
available only for a minority of customers. One challenge is to extend learn-
ings from this subset to all customers. A survey might find an interesting sub-
set of customers; the next problem is to find similar customers in the overall
data. Similarity models described in Chapter 10 are one way to approach this.

Self-reported information has a time frame associated with it. Some is avail-
able at the beginning of the customer relationship, because such information is
part of the application process. Some is only available sporadically after cus-
tomers begin.

External Data (Demographic and So On)

External data is typically purchased from outside bureaus that specialize in
demographic data; another source of external data is business partners who share
the information. Such information is usually a current snapshot of customers.
Unfortunately, reconstructing what a customer used to look like is difficult. 

Changes in such information can be quite informative. When a couple mar-
ries, the woman often legally changes her name. After a period of time, the
newlyweds often unify their financial accounts into a single household
account. This offers an opportunity to the wife’s bank, because it receives
notice of the name change (either from the customer or from an external
source). However, more often than not, a name change gets recorded in a data-
base as the current name, and the previous name is simply forgotten, or at least
unavailable outside operational systems.

When a customer moves from one neighborhood to another, the neighbor-
hood demographics change. The address is usually updated, and the old
address forgotten (or at least not readily available for analysis). Without the
ability to compare neighborhood demographics, it is not possible to know if
the customer is moving up or moving down, into a good school district or into
a retirement community.
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Banks usually know when customers reach retirement age. Do the banks
cease marketing to customers who are no longer eligible to contribute to indi-
vidual retirement accounts (IRAs)? Customers are no longer eligible for these
once they reach retirement age.

The time frame for demographic information usually represents a compro-
mise, because the information is not maintained over time. Only the current
snapshot of data is available for current customers, and the last snapshot is
available for stopped customers.

About Their Neighbors

Some information does not tell us directly about customers, but instead about
the neighborhoods where they live. This information comes in two forms.
Much information is available for free from the Census Bureau and other
sources. Other “neighborhood” information consists of dynamic summaries of
customer behavior, projected onto the neighborhood level. Although neighbor-
hood does usually refer to geography, it could refer to similarity in other ways
(such as all customers who arrived via a particular marketing campaign).

Using geographic data requires geocoding addresses to find the specific
geographic areas — typically census block groups — where an individual
lives. Zip codes are a poor man’s geocoding, and they do not work as well as
the census geographies for understanding customers.

Census blocks typically change every ten years, but not in between. Some
data within the blocks may be updated between the decennial censuses; how-
ever, both the data and the geographic definitions are updated every ten years.
If you are looking at customers over long periods of time, maintaining the his-
tory of the census variables can be useful for understanding how neighbor-
hoods and customers are evolving.

Neighborhood information has a hybrid time frame. The information itself
is typically static (updated every ten years). However, the geography may be
the most recent geography for the customer, and customers may move several
times between census refreshes.

Census information is also used for developing marketing clusters, of which
the best known are probably Claritas’s Prizm codes. These are descriptions of
the people living in particular areas using catchy names such as “Young
Digerati,” “Kids & Cul-de-Sacs,” “Shotguns and Pickups,” and “Park Bench
Seniors,” that are based primarily on census data augmented with market
research data (you can look up your zip code at http://www.claritas.com/
MyBestSegments/Default.jsp.

Transaction Summaries

Transactions are the most voluminous of the data sources, at least by num-
ber of rows of data. Transactions contain a wealth of information, because
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they describe customers’ behaviors. However, the information is not readily
apparent.

The key to effectively using transactional history is summarization. There are
some basic methods of summarization, such as taking sums and averages and
counts. Then there are more advanced types of summaries, where particular
behaviors are identified and the presence, absence, or extent of these behaviors
are recorded in the signature. These types of summaries can prove very useful.

Transaction history is quite amenable to the use of time frames, assuming that
enough data is available. Shifting the time frame is simply a matter of taking
transactions before a certain date and then summarizing them appropriately.

Using Customer Signatures
Customer signatures summarize customer behavior and demographics. Such
summaries have a variety of uses.

Predictive and Profile Modeling

Customer signatures provide the inputs to models, including predictive
models and profiling models. The signature can also be useful for clustering
and segmentation. The signatures would typically be placed in a table
accessed by more advanced analysis tools, or perhaps exported as a file and
re-imported into those tools.

Ad Hoc Analysis

Customer signatures provide a location where many types of information
about customers are brought together in one place. Transactional summaries
are available with demographics and so on. Reporting systems do a good job
of slicing and dicing business information along important dimensions, such
as geography, customer type, department, product, and so on. However, it is
difficult to develop reporting systems for customer longitudinal data, because
the volume of data is so large and the data is quite complex.

As a consequence, customer signatures are often used for ad hoc analysis on
customers, typically using the most recent snapshot of customer behavior.

Repository of Customer-Centric Business Metrics

Some of the columns in a customer signature may go beyond merely gathering
data from other tables. Customer signatures are a place to put interesting met-
rics, particularly derived information that describes customer behaviors.

For instance, the history of marketing efforts might include attempted con-
tacts by email, telephone, direct mail, and other channels. One of the attributes
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in the signature might be “email responsiveness.” Customers who responded
to email offers in the past would have high email responsiveness scores. Cus-
tomers who have been contacted many times and never responded would
have low email responsiveness scores.

This idea can extend beyond the channel preference, of course. The times
when customers shop might be summarized to determine who is a “weekend”
shopper, who is a “weekday” shopper, and who is an “after-work” shopper.
The times when customers go to the web site might distinguish between
“work browsers” and “home browsers.” Customers who buy the newest prod-
ucts without a discount might be “leading edge” shoppers.  Credit card cus-
tomers might be classified as revolvers (keep a high balance and pay interest),
transactors (pay off the bill every  month), or convenience users (charge up for
a vacation or furniture or something and then pay the balance over several
months).  And so on.

These types of business metrics and customer categories might be developed
on an ad hoc basis. Once developed, placing them in a customer signature
makes them available for other purposes.

TI P Customer signatures are a good place to incorporate important measures
about customers that might otherwise go undocumented and be forgotten.

Designing Customer Signatures

Before going into the details of the data manipulations, there are some key
ideas in designing customer signatures. These ideas ensure that they work
well for analytic purposes, and that they can be generated to be as-of arbitrary
points in time.

Column Roles
The columns in a customer signature have various roles, related to how the
columns are used in modeling. From our perspective, the roles are important to
consider because they affect how the columns are created.  Of course, columns
that are not useful for a particular purpose — such as customer IDs for predic-
tive modeling — do not have to be used even though they are in the signature.

Identification Columns

Some columns uniquely identify each customer. These identification columns
are important, because they provide a link back to the actual customer infor-
mation. There may be more than one such column. For instance, the customer
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id in the data warehouse is different from the customer id in the operational
systems. Sometimes external vendors return match keys, which are different
from the keys used internally.

What is important about an identification column is that it uniquely identi-
fies each customer for the duration of the data in the customer signature. The
identification column prevents customers from being confused with each other.

Input Columns

Most columns in the customer signature are input columns. These are columns
that describe customer characteristics and are intended for use as inputs in
modeling. Input columns are all defined by a cutoff date. No information from
after the cutoff date should be included in the inputs.

This date may be a single date for the entire customer signature. In this case,
the customer signature is a snapshot of what customers look like on a particular
date. Alternatively, the cutoff date could be defined individually for each cus-
tomer. For instance, it could be one year after the customer starts, or when the
customer adds a particular product, or the first time that the customer complains.

Target Columns

When present, the target columns are the goals of the modeling effort, typi-
cally something related to interesting customer behaviors, such as response,
cross-selling, managing risk, or stopping. In the subscription data, targets
might be the customer tenure or the type of stop. In the purchases data, an
appropriate target would be the time to the next purchase, the type of pur-
chase, or whether the customer made a purchase during the most recent year.
There can be more than one target in the data, because different aspects of the
business have different needs.

Although the discussion of customer signatures is centered on modeling, tar-
get columns are actually optional. The signature might be used for reporting
purposes. Or, the target columns might be provided through another data
source not in the database. Or, the desired modeling may be undirected, meaning
that the purpose is to find groups of similar customers without any particular
goal in mind.

Foreign Key Columns

Some columns are used to look up additional information. Usually, the addi-
tional information is simply added in by joining other tables or subqueries.
The key used for the join might remain in the signature, although it is not usu-
ally as useful as the data brought in from other tables.
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Some data sources may not be available in the database. In this case, the cus-
tomer signature is not going to be complete and subsequent processing out-
side the database would add additional columns using a foreign key.

Cutoff Date

The cutoff date should be included in each customer signature record. This date
may be fixed for all customers, or it may vary. The purpose of including the cut-
off date is to inform subsequent analysis. It should not be used as an input col-
umn for modeling. The cutoff date refers to the cutoff date for the input
columns; target information may come from after the cutoff.

Profiling versus Prediction
Chapter 10 introduced the distinction between a profiling model set and a pre-
diction model set. In a profiling model set, the inputs and the targets come
from the same time frame. In a prediction model set, the inputs come from a
time frame strictly before the target. That is, the inputs are known before the
target. The same ideas hold for customer signatures.

This chapter focuses on creating prediction model sets, because this is the
more general situation. In a profiling model set, the target variables can simply
be created in the same way as the input variables. In a prediction model set, the
cutoff date is for the input variables, and the target comes from a time frame
after the cutoff date.

Time Frames
One of the key questions in designing customer signatures is: “What do we
know and when did we know it?” All the inputs in the signature come from a
time frame before the cutoff date. In addition, each column has a time frame
associated with it, because each value in a database becomes known at some
point in time and the value in the column may be replaced at a later point in
time. Columns are only available for analysis when the cutoff date for the cus-
tomer signature is during the time frame for the values in those columns.

TI P “What do we know?” and “When do we know it?” are key questions
about columns going into customer signatures.

The reason this is called a time frame and not simply “load time” is because
data can have an end time as well as an available time; at some point, a new
value may come along superseding the previous value. This can occur for
many reasons. The most common is because the data values change. A cus-
tomer’s current address is only current until the customer moves. A column in
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the customer signature for the current address would have different values
depending on the cutoff date for the signature. Other data columns may be
purchased and only available for a specific period of time.

The goal of using time frames is to be able to create the customer signature
with arbitrary cutoff dates. This goal has some consequences in terms of naming
columns, handling dates and times, and incorporating seasonality. 

Naming of Columns

Column names need to respect the fact that the cutoff date for the customer 
signature may occur at any point in time. The process for creating the signature
should take the cutoff date as an input. Column names should not be tied to
particular dates or date ranges. Instead they should be relative. Good examples
of columns are:

■■ Sales in the customer’s first year;

■■ Average number of weekend visits to a web site; and,

■■ Most recent month billing invoice.

On the other hand, bad examples of columns specify particular dates (such as
months and years) that would not be relevant in another time frame.

Eliminating Seasonality

Columns that include data from explicit dates and times cause problems in
customer signatures, because they interfere with generating the signatures for
different time frames. Instead of including explicit dates, tenures and time
spans are better:

■■ Instead of the start date, include the number of days before the cutoff
date when the customer started.

■■ Instead of the date of the first purchase and the second purchase,
include the number of days from one to the next.

■■ Instead of the date when a customer enrolled in a program, include the
tenure of the customer at that time.

■■ Instead of the date of the most recent complaint, include the tenure of
the customer on the first complaint and on the most recent complaint.

As a general rule, specific dates are less important relative to the calendar
time line than relative to the customer life cycle time line. Dates on the calen-
dar time line should be turned into numbers of days before the cutoff date for
the signature.
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This also eliminates many effects of seasonality. For instance, many cell
phone customers sign up in the holiday season. Many pre-paid customers stop
in May, which is four or five months after the phones are activated. These are
customers who never replenish their phone account.

This peak in May is not really related to the month of May. Instead, it is
related to the peak in starts during the preceding December and January and
the business rules that define churn for pre-paid customers. On the customer
time line, the same proportion stops after four or five months regardless of
when they started. A peak in starts, though, does result in a peak of stops sev-
eral months later.

Having the tenure of the customer in the customer signature rather than the
dates themselves makes signature independent of such inadvertent seasonal-
ity effects.

Adding Seasonality Back In

Of course, some seasonality is useful and informative. For instance, purchases
in August are related to back-to-school events. As customers, students may
behave differently from other customers. They may be more likely to change
brands, more responsive to certain types of promotions, and have fewer finan-
cial resources.

Some of this information could be captured by including information in
the customer signature, such as the season when a customer started. Cus-
tomers who start during the back-to-school season may be different from
customers who start at other times. In fact, in the subscription data, there is
a slight difference in survival for customers who start in August and Sep-
tember versus December, as shown in Figure 12-2. The important point here
is just that customers who start during different seasons may have different
behaviors.

Figure 12-2: Survival can differ based on the month when customers start.
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The following are some examples of seasonality variables that might be added
in to capture particular characteristics that might be important to the business:

■■ Quarter of the year when a customer started;

■■ Proportion of transactions on the weekend;

■■ Web site visits during the traditional work day;

■■ Volume of purchases during the preceding holiday season; and,

■■ Day of the week of the start and stop.

The idea is to first wash seasonality out of the data, to get a better picture of
what customers are doing independently of the calendar year. This makes it
easier to focus on customers, rather than on extraneous events. Of course, sea-
sonality can be quite important; seasonal effects should go into the customer
signature intentionally rather than accidentally. For this reason, separate vari-
ables that capture seasonality information are more useful than having it
mixed in with other data.

Multiple Time Frames

For predictive modeling purposes, it is beneficial to have multiple time frames
included in the customer signature. This prevents the models from “memoriz-
ing” one particular time frame. Figure 12-3 shows an example.

Figure 12-3: Customer signature tables can mix signatures from different time frames.
Having multiple time frames is actually a best practice for prediction model sets.

Adding multiple time frames is not difficult. There are two methods. One is
to build separate customer signatures for each time frame. These can then be
merged to create a single customer signature table.

An alternative method is to assign different cutoff dates to different cus-
tomers. This makes it possible to define the customer signature in a single step.
However, the resulting SQL can be a bit more complicated.
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When adding multiple time frames into a signature, the same customer can
appear more than once. In general, this is not a big problem, although in general,
it is better to not have too many duplicates in a table of customer signatures used
for modeling.

Operations to Build a Customer Signature

Building customer signatures is about bringing data together from disparate
data sources. Figure 12-4 shows conceptually what needs to be done. Some data
is already in the right format, and at the right granularity. This data merely
needs to be copied. Some fields are keys into other tables, where information
can be looked up. Other data is in the format of regular time series that can 
be pivoted. Irregular time series, such as transactions, need to be summarized.
This section describes these operations in the context of building customer 
signatures.

Figure 12-4: The data in customer signatures needs to be brought together using a
variety of processing methods.
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Driving Table
The first step in building a customer signature is identifying the correct group
of customers and the cutoff date for each one. A customer signature has a set of
conditions that determine whether any given customer should be in the signa-
ture. The table that defines these customers is the driving table, which may be an
actual table or a subquery.

If the customer signature is based on an event during the customer life cycle,
the customer signature applies only to customers who have that event. Other
customers, although interesting for other purposes, are not part of this signature.

The driving table maintains the information about the correct group of cus-
tomers for the signature and additional date information. Each customer has a
cutoff date, whether the signature is event-based or time-based.

In an ideal situation, all other subqueries would simply be joined into the
driving table using LEFT OUTER JOINs. The overall query would schematically
look like:

SELECT *

FROM (<driving table>) dt LEFT OUTER JOIN

(SELECT customerid, <summary information>

FROM <other table>

GROUP BY customerid) t1

ON dt.customerid = t1.customerid LEFT OUTER JOIN

<ref table> rt

ON rt.<key> = dt.<key>

That is, the driving table would be joined to summaries and reference tables to
calculate the columns in the customer signature. This ensures that the correct
set of customers remain in the customer signature.

However, the conditions that define the driving table, particularly the cutoff
date, are needed for the summaries as well. For performance reasons, the dri-
ving table might be created and well-indexed on the customer id column,
because this column gets used extensively. When all customers have the same
cutoff date, then the cutoff date can be included in the subqueries, eliminating
the need to join in the driving table.

Using an Existing Table as the Driving Table

Often, the driving table is readily available, because there is a table with the
right level of granularity. In such cases, not all the fields are necessarily appro-
priate for the table.

Consider the Subs table as an example. A first attempt only uses information
about customers when they start, such as start date, channel, and market.
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Information that occurs after the customer start date is not appropriate. The
following query provides an example of a driving table using Subs:

SELECT customer_id, rate_plan as initial_rate_plan,

monthly_fee as initial_monthly_fee,

market as initial_market, channel as initial_channel,

DATEDIFF(dd, start_date, cutoff_date) as days_ago_start,

cutoff_date

FROM subs s CROSS JOIN

(SELECT ‘2005-01-01’ as cutoff_date) const

WHERE start_date < cutoff_date

This query has several interesting features. First, there is a cutoff date, which is
joined in using a CROSS JOIN on a table containing constants. This can be a use-
ful way to incorporate constants into queries (note that the syntax of the Const
subquery varies among databases). Only customers who started before cutoff
date are included in the driving table. Start dates are also transformed into
tenures, as of the cutoff date. And, only columns whose value is known at the
beginning of the customer relationship are included in the query.

TI P The CROSS JOIN operation is a convenient way to incorporate constants
into queries, by using a subquery that defines the constants and that returns
one row.

Often, an existing table is really a snapshot of a customer at a given point in
time. Some columns may still be usable for the driving table, assuming they are
modified for different cutoff dates. For instance, the TENURE and STOP_TYPE
columns could also be included, but they have to be modified to take the CUT-
OFF_DATE into account. The following SELECT shows how this is handled:

SELECT customer_id, rate_plan as initial_rate_plan,

monthly_fee as initial_monthly_fee,

market as initial_market, channel as initial_channel,

DATEDIFF(dd, start_date, cutoff_date) as days_ago_start,

DATEDIFF(dd, start_date,

(CASE WHEN stop_date IS NOT NULL AND

stop_date < cutoff_date

THEN stop_date ELSE cutoff_date END)) as tenure,

(CASE WHEN stop_date IS NOT NULL AND stop_date < cutoff_date

THEN stop_type ELSE ‘’ END) as stop_type

FROM subs s CROSS JOIN

(SELECT ‘2005-01-01’ as cutoff_date) const

WHERE start_date < cutoff_date

The logic says that customers who stopped after the cutoff date are considered
active as of the cutoff date, and customers who stopped before the cutoff date
are considered stopped. For the customers who are stopped, the stop type
does not change.
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Some columns in a snapshot table simply cannot be used directly in the cus-
tomer signature. These columns contain information that cannot be rolled
back in time, such as total number of purchases, the date of the last complaint,
and the customer’s billing status. These have to be derived again from trans-
action tables.

Derived Table as the Driving Table

Sometimes, the appropriate table is not available. In this case, the driving table
needs to be derived. For example, the household level is a very reasonable
level of granularity for customer signatures for the purchases dataset. How-
ever, there is no household table in the database. It needs to be derived from
other tables.

The same ideas apply when using a summary for the driving table. No input
columns from after the cutoff date can be used. The table only includes house-
holds known before the cutoff date. Care must also be taken to remove current
snapshot columns.

The following query provides a basic summary of households, based on the
Customer and Orders tables:

SELECT householdid, COUNT(DISTINCT c.customerid) as numcustomers,

SUM(CASE WHEN gender = ‘M’ THEN 1 ELSE 0 END) as nummales,

SUM(CASE WHEN gender = ‘F’ THEN 1 ELSE 0 END) as numfemales,

MIN(first_orderdate) as first_orderdate,

DATEDIFF(dd, MIN(first_orderdate),

MIN(cutoff_date)) as days_since_first_order,

MIN(cutoff_date) as cutoff_date

FROM customer c JOIN

(SELECT customerid, MIN(orderdate) as first_orderdate

FROM orders o

GROUP BY customerid) o

ON c.customerid = o.customerid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoff_date) const

WHERE o.first_orderdate < const.cutoff_date

GROUP BY householdid

This query looks up the earliest order date for customers. Only customers
with an order before the cutoff date are included in the driving table. Notice
that the cutoff date is included as a constant date, using a CROSS JOIN and
Const subquery.

Looking Up Data
Looking up data uses the JOIN operation. There are actually two forms of
lookup, one using a fixed table that describes features that do not change. The
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other type summarizes customers along various dimensions and incorporates
this information back into the customer signature. Such historical summaries
along business dimensions can be very valuable.

Fixed Lookup Tables

Fixed lookup tables contain information that does not change over time.
Therefore, these tables can be included without reference to the cutoff date.
The classic example is census information and other reference tables in the
database. The data from the 2000 Census is the data from the 2000 Census.
Although this data does not change, the 2010 Census data will supersede it,
just as the 2000 Census data replaced the 1990 data.

The following information from the census data would be useful in a cus-
tomer signature for purchases:

■■ Household median income;

■■ Education variables; and,

■■ Number of households.

Using this information requires a zip code for each customer. Often, the zip
code (and other geocoded information) would be a column in a household
table and hence part of the driving table. This example uses the most recent zip
code in each household, obtained from the following query:

SELECT householdid, RIGHT(datezip, 5) as firstzip

FROM (SELECT householdid, MAX(cal.iso+zipcode) as datezip

FROM customer c JOIN orders o ON o.customerid = c.customerid JOIN

calendar cal ON o.orderdate = cal.date CROSS JOIN

(SELECT ‘2016-01-01’ as cutoff_date) const

WHERE SUBSTRING(zipcode, 1, 1) BETWEEN ‘0’ AND ‘9’ AND

SUBSTRING(zipcode, 2, 1) BETWEEN ‘0’ AND ‘9’ AND

SUBSTRING(zipcode, 3, 1) BETWEEN ‘0’ AND ‘9’ AND

SUBSTRING(zipcode, 4, 1) BETWEEN ‘0’ AND ‘9’ AND

SUBSTRING(zipcode, 5, 1) BETWEEN ‘0’ AND ‘9’ AND

LEN(zipcode) = 5 AND

orderdate < cutoff_date

GROUP BY householdid) h

Notice that “most recent zip code” really means “most recent zip code before
the cutoff date,” so the cutoff date is needed. This query converts the order date
to a string of the form “YYYYMMDD,” using the Calendar table. It then appends
the zip code to this value, and then takes the maximum value. The result is the
most recent order date before the cutoff date with its zip code. The last five char-
acters from this maximum value constitute the most recent zip code. This
method was discussed in Chapter 2.
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This query only considers zip codes that contain five digits, because some
zip codes have invalid values. Some households do not have a correspond-
ing zip code.

Note that the expression in the WHERE clause that chooses the appropriate zip
codes is not:

zipcode BETWEEN ‘00000’ AND ‘99999’

The problem is that poorly formed zip codes such as ‘1ABC9’ would fall into
this range. Each digit needs to be tested separately.

With the appropriate zip code, the lookup then takes the form:

SELECT householdid, zc.*

FROM (<hh first zip subquery>) hhzip LEFT OUTER JOIN

zipcensus zc

ON hhzip.firstzip = zc.zipcode

This query simply takes the zip code query, joins in Zipcensus, and extracts
the columns of interest.

Customer Dimension Lookup Tables

Some very powerful lookup tables are summaries of customer behavior along
various dimensions. For example, the following might be interesting for vari-
ous applications:

■■ Penetration by zip code;

■■ Average transaction amount by channel;

■■ Average transaction amount in the state; and,

■■ Stop rate by channel, market, and monthly fee.

These are examples of summaries of customer behavior that are looked up
along specific dimensions.

It is tempting to create the summaries using simple aggregations. Resist this
temptation, because this is the wrong approach. All the data in the summaries
have to be from a period before the cutoff date to meet the requirements of the
input variables. A simple aggregation over all the data includes information
from the same time frame as the target.

WARN I NG When summarizing variables for customer signatures — such as
historical churn rates by handset type or historical purchases by zip code — be
sure that the data in the summary table comes from a time frame before the
target variables’.
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As an example, let’s consider penetration by zip code, which is the number
of households in a zip code that have an order divided by the number of
households in the zip code. For the purpose of this discussion, only the num-
ber of households needs to be calculated, because the penetration is simply
this number divided by the number of households in the zip code.

The following query is the basic query for this type of information when
there is a constant cutoff date:

SELECT zipcode, COUNT(DISTINCT householdid) as numhhwithorder

FROM customer c JOIN orders o ON c.customerid = o.customerid

GROUP BY zipcode

This query simply counts the number of households in a zip code.
There are two problems with this summary, one obvious and one subtle. The

obvious problem is that it does not use the cutoff date. This means that the
resulting columns include information from the target time frame. The subtle
problem is that as the cutoff date changes, different amounts of time are used
to determine the penetration. As a result, customer signatures with more
recent cutoff dates necessarily have larger penetrations than customer signa-
tures with earlier cutoff dates. The penetration can only grow over time.

The following query solves both these problems:

SELECT zipcode, COUNT(DISTINCT householdid) as numhh

FROM customer c JOIN orders o ON c.customerid = o.customerid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoffdate) const

WHERE DATEDIFF(dd, orderdate, cutoffdate) BETWEEN 1 AND 365

GROUP BY zipcode

This query calculates the number of households in each zip code that make a
purchase in the year before the cutoff date. Using a fixed period of time before
the cutoff date makes the variable more comparable for different cutoff dates.

The preceding approach works for a fixed cutoff date. When the cutoff date
differs for each household, the driving table is needed to get the date:

SELECT zipcode, COUNT(DISTINCT dt.householdid) as numhh

FROM (<driving table>) dt LEFT OUTER JOIN

(SELECT c.householdid, o.*

FROM customer c JOIN orders o ON c.customerid = o.customerid) c

ON c.householdid = dt.householdid AND

DATEDIFF(dd, orderdate, cutoff_date) BETWEEN 1 AND 365

GROUP BY zipcode

This query is similar to the previous query. The difference is that the cutoff
date is not constant. Instead, it comes from the driving table. Using the cut-
off date ensures that future information is not accidentally incorporated into
the signature.
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Initial Transaction
A lot of information about customers is available in the first transaction. This
might include the sections of the web page on the first visit, the contents of the
market basket on the first purchase, or the subject of the first complaint. This
example brings in information from the first transaction into the Orders table.

Without Window Functions

Unfortunately, SQL does not have direct support for joining in the first trans-
action. With the purchases data, it is possible to do something quite close,
because the driving table includes the customer start date, which is also the
first order date. This can be used to join in the orders data:

SELECT dt.householdid, firsto.*

FROM (<driving table>) dt LEFT OUTER JOIN

(SELECT c.householdid, o.*

FROM customer c JOIN orders o

ON c.customerid = o.customerid) firsto

ON firsto.householdid = dt.householdid AND

firsto.orderdate = dt.first_orderdate

Although this looks like a good idea, the problem is that some customers
have multiple orders on the first day. There are several approaches to solving
the problem:

■■ Fix the orders data so the order date has a time stamp in addition to a
date stamp.

■■ Treat all orders on the first day as a single order.

■■ Choose a single, reasonable first day transaction.

The first possibility is generally a non-starter. Data analysis projects often find
situations where the source data could be better. Alas, fixing data problems is
usually outside the scope of such projects.

The second approach requires combining multiple orders on the same day.
The problem is that data such as the original channel and the original payment
type need to be combined from more than one order. There is no obvious way
to do this consistently. 

The preferred solution is to choose a single, reasonable first day transaction.
We have already encountered his problem of having multiple transactions on
the same date in Chapter 8. To review, this is a cumbersome query that
requires the following steps:

1. Find the earliest order date for each household;

2. Find the minimum order id for each household on that order date;
and then,
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3. Use the minimum order id to identify the correct order for the customer
signature.

Figure 12-5 shows the dataflow diagram for the following query:

SELECT householdid, o.*

FROM (SELECT ho.householdid, MIN(o.orderid) as minorderid

FROM (SELECT householdid, MIN(orderdate) as orderdate

FROM customer c JOIN orders o ON o.customerid = c.customerid 

GROUP BY householdid) ho JOIN

customer c

ON ho.householdid = c.householdid JOIN

orders o

ON c.customerid = o.customerid AND

o.orderdate = ho.orderdate

GROUP BY ho.householdid) firstorder JOIN

orders o

ON o.orderid = firstorder.minorderid

This query follows the structure just described. The innermost query finds the
first order date. The next subquery identifies the first order id on the first order
date, which is then used to select the columns of interest from the first order.

Figure 12-5: This dataflow diagram finds the first order for each household.
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With Window Functions

Window ranking functions greatly simplify finding the first transaction,
because they make it easy to assign a sequence number to the orders based on
the order date:

SELECT h.*

FROM (SELECT householdid, o.*,

ROW_NUMBER() OVER (PARTITION BY householdid

ORDER BY orderdate, orderid) as seqnum

FROM customer c JOIN orders o ON o.customerid = c.customerid) h

WHERE seqnum = 1

The subquery uses the ROW_NUMBER() window function to assign a sequence
number to the orders. This function assigns numbers to orders within each
household, starting with the first one (defined by the earliest ORDERDATE
and smallest ORDERID). The first order is simply the one whose sequence
number is one.

Sequence numbers can be quite convenient for analytic purposes. They make
it easier to determine what happens first and next and right before something
else. For this reason, it can be a good idea to include them when creating a data
warehouse. If they are not there, then window functions can calculate them.

TI P Sequence numbers on transactions are useful for finding the first
transaction (as well as the next and previous ones). They can be added easily
using the ROW_NUMBER() window function.

Pivoting
Pivoting is a common, special case of summarizing data. It is the process of
taking customer transactions that follow a regular pattern and placing them
into buckets along a specified dimension. Each pivot column corresponds to a
particular value or group of values, such as transactions during a month or
transactions containing a particular product. The columns themselves contain
basic summaries, such as:

■■ Counts of orders;

■■ Sum of dollar amounts;

■■ Average of dollar amounts; or,

■■ Counts of some distinguishing feature (such as counts of distinct
orders).

The examples in this section calculate the first of these.
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The purchases dataset has several obvious pivots along purchase dimensions:

■■ Payment type pivot — summarizing the transactions by payment type.

■■ Campaign pivot — summarizing the transactions by campaign.

■■ Time pivot — summarizing the transactions by time period.

■■ Product pivot — summarizing the transactions by product information.

This section walks through the process of adding all these pivots to the cus-
tomer signature.

USING EXCEL TO GENERATE SQL CODE

Creating pivot columns requires repetitive code that can be quite cumbersome
to type in. Chapter 2 contains examples of using SQL to generate code. Excel
can also be used to generate SQL statements.

For example, the payment type pivot contains several SELECT statements
similar to:

SUM(CASE WHEN paymenttype = ‘VI’ THEN 1 ELSE 0 END) as pt_vi,

Assume that the various payment type values are in one column (for instance,
the column B) and the preceding statement in cell $A$1. To get the appropriate
statement in column C, use the following formula:

=SUBSTITUTE($A$1, “VI”, $B2)

And copy this down the appropriate rows in column C. These values can then
be copied into the SQL expression. Notice that the resulting SQL expression
includes the column name.

It is a good idea to include extra spaces before the SUM() for aesthetic
reasons. Also, the final comma may need to be removed from the last expression
to prevent a syntax error in the SQL.

The ability to generate code in Excel is useful for other purposes as well. For
instance, sometimes character strings contain unrecognized characters and we
might want to look at the actual numeric values (these are typically ASCII values
on most modern computers). For this, the SELECT statement might look like:

SELECT ASCII(SUBSTRING(<str>, 1, 1)), SUBSTRING(<str>, 1, 1),

ASCII(SUBSTRING(<str>, 2, 1)), SUBSTRING(<str>, 2, 1)

. . .

Each expression extracts one character from the string and converts it to the
ASCII code. The character itself is also included after the code.

Generating all these SELECT statements is cumbersome. Excel can make this
much easier, using basically the same process explained previously. The only
difference is that column B contains the numbers 1, 2, 3, and so on, rather than
values from the database.
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SQL does have a shortcoming when it comes to pivoting columns. There is
no automatic pivot statement that creates multiple columns. Each column has
to be created independently. Although this is a hassle, it only needs to be done
once. When there are large numbers of columns, Excel can be used to auto-
matically generate the code, as discussed in the aside “Using Excel to Generate
SQL Code.”

Payment Type Pivot

The first example of a pivot is by payment type. This is the simplest, because it
is simply an attribute of an order, independent of time. There are six different
payment types, which are shown in Table 12-1.

Table 12-1: Payment Types in Orders Table

PAYMENT TYPE # ORDERS DESCRIPTION

?? 313 Unknown

AE 47,382 American Express

DB 12,739 Debit Card

MC 47,318 MasterCard

OC 8,214 Other Credit Card

VI 77,017 Visa

The two smallest groups, “OC” and “??,” can be combined into a single
group, indicating some other credit card. The following query does the pivot:

SELECT householdid,

SUM(CASE WHEN paymenttype = ‘VI’ THEN 1 ELSE 0 END) as pt_vi,

SUM(CASE WHEN paymenttype = ‘MC’ THEN 1 ELSE 0 END) as pt_mc,

SUM(CASE WHEN paymenttype = ‘AX’ THEN 1 ELSE 0 END) as pt_ax,

SUM(CASE WHEN paymenttype = ‘DB’ THEN 1 ELSE 0 END) as pt_db,

SUM(CASE WHEN paymenttype IN (‘??’, ‘OC’) THEN 1 ELSE 0 END

) as pt_oc

FROM orders o JOIN customer c ON o.customerid = c.customerid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoff_date) const

WHERE orderdate < cutoff_date

GROUP BY householdid

The pivoting aspect of the query simply uses the CASE statement to calculate
columns based on the payment type and assigning them reasonable names.
Because the results are for the customer signature, the aggregation is at the
household level, which requires joining in the Customer table. The cutoff date
is also needed to restrict orders to those before the cutoff date.
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Channel Pivot

The next step is to add in the channel pivot into the same query. This is only
slightly more complicated, because the channel is in the Campaign table, so
an additional join is needed. Table 12-2 shows the campaigns with the num-
ber of orders.

Table 12-2: Channels in Orders Table

CHANNEL COUNT

PARTNER 84,518

WEB 53,362

AD 40,652

INSERT 7,333

REFERRAL 2,550

MAIL 1,755

BULK 1,295

CATALOG 710

EMPLOYEE 642

EMAIL 128

INTERNAL 34

CONFERENCE 3

SURVEY 1

As with many categorical columns, a small number are quite common and
many are uncommon. There are pivot columns for the first three, with the
remaining going into an “OTHER” column.

The channel pivot can be added right onto the query for the payment type
pivot, as in the query:

SELECT householdid,

SUM(CASE WHEN paymenttype = ‘VI’ THEN 1 ELSE 0 END) as pt_vi,

. . .

SUM(CASE WHEN channel = ‘PARTNER’ THEN 1 ELSE 0 END) as ca_partner,

SUM(CASE WHEN channel = ‘WEB’ THEN 1 ELSE 0 END) as ca_web,

SUM(CASE WHEN channel = ‘AD’ THEN 1 ELSE 0 END) as ca_ad,

SUM(CASE WHEN channel NOT IN (‘PARTNER’, ‘WEB’, ‘AD’) THEN 1

ELSE 0 END) as ca_other

FROM orders o JOIN campaign ca ON o.campaignid = ca.campaignid JOIN

(continued)
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customer c ON o.customerid = c.customerid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoff_date) const

WHERE orderdate < cutoff_date

GROUP BY householdid

This query joins in the campaign table to get the channel code. It would be
more fitting to use LEFT OUTER JOIN rather than a regular JOIN, because this
explicitly preserves all the rows in the Orders table. However, in this case, the
JOIN never has an unmatched value, because all campaign ids in the orders
table are present in the lookup table.

Year Pivot

The next example of pivoting is by time. The cutoff date used for the driving
table is 2016-01-01. The idea is to summarize the number of orders placed in
each year. A first attempt at doing this might have column names such as
ORDERS2013, ORDERS2014, and ORDERS2015. This works when the cutoff
date is in 2016, but not for other cutoff dates.

Instead, the column names should be relative to the cutoff date. The fol-
lowing query adds the appropriate SELECT clauses onto the payment type/
channel pivot:

SELECT householdid, 

. . .,

SUM(CASE WHEN DATEDIFF(YY, orderdate, cutoff_date) = 0 THEN 1

ELSE 0 END) as yr_1,

SUM(CASE WHEN DATEDIFF(YY, orderdate, cutoff_date) = 1 THEN 1

ELSE 0 END) as yr_2,

SUM(CASE WHEN DATEDIFF(YY, orderdate, cutoff_date) = 2 THEN 1

ELSE 0 END) as yr_3,

SUM(CASE WHEN DATEDIFF(YY, orderdate, cutoff_date) = 3 THEN 1

ELSE 0 END) as yr_4

FROM orders o JOIN campaign ca ON o.campaignid = ca.campaignid JOIN

customer c ON o.customerid = c.customerid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoff_date) const

WHERE orderdate < cutoff_date

GROUP BY householdid

This pivot calculates the number of years before the cutoff date using the
DATEDIFF() function with the YY argument. Calculating the number of years
between two dates is a bit complicated because of leap years. For instance,
there is one year from Feb 28, 2001 to Feb 28, 2002. Is there one year from Feb
28, 2000 to Feb 27, 2001? There are the same number of days between both
pairs of dates. This formulation leaves the business rules for dealing with leap
years to the database.

TI P When possible, leave date calculations up to the database, for things like
calculating the number of months or years between two dates.
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Order Line Information Pivot

The goal of the product pivot is to count the number of orders having a prod-
uct in each of the eight product groups, which are summarized in Table 12-3. It
is desirable to include the order line information in the same subquery as the
order information, because order lines are logically related to orders. This also
limits the number of places where the query needs to lookup HOUSEHOLDID
and apply the date restriction.

Table 12-3: Product Group Information in Orders

PRODUCT GROUP NUMBER OF ORDER LINES NUMBER OF ORDERS

BOOK 113,210 86,564

ARTWORK 56,498 45,430

OCCASION 41,713 37,898

FREEBIE 28,073 22,261

GAME 18,469 11,972

APPAREL 12,348 10,976

CALENDAR 9,872 8,983

OTHER 5,825 5,002

#N/A 9 9

Ignoring the desire to include the product pivot in the ongoing pivot query,
the following subquery summarizes the order line information:

SELECT householdid,

SUM(CASE WHEN p.productgroupname = ‘BOOK’ THEN 1 ELSE 0 END

) as pg_book,

SUM(CASE WHEN p.productgroupname = ‘ARTWORK’ THEN 1 ELSE 0 END

) as pg_artwork,

SUM(CASE WHEN p.productgroupname = ‘OCCASION’ THEN 1 ELSE 0 END

) as pg_occasion,

SUM(CASE WHEN p.productgroupname = ‘FREEBIE’ THEN 1 ELSE 0 END

) as pg_freebie,

SUM(CASE WHEN p.productgroupname = ‘GAME’ THEN 1 ELSE 0 END

) as pg_game,

SUM(CASE WHEN p.productgroupname = ‘APPAREL’ THEN 1 ELSE 0 END

) as pg_apparel,

SUM(CASE WHEN p.productgroupname = ‘CALENDAR’ THEN 1 ELSE 0 END

) as pg_calendar,

SUM(CASE WHEN p.productgroupname = ‘OTHER’ THEN 1 ELSE 0 END

) as pg_other

(continued)
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FROM orderline ol JOIN product p ON ol.productid = p.productid JOIN

orders o ON ol.orderid = o.orderid JOIN customer c

ON c.customerid = o.customerid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoff_date) const

WHERE orderdate < cutoff_date

GROUP BY c.householdid

This query works, but not as part of the pivot query we’ve been building. Just
joining in the Orderline table causes problems, because there are multiple
order lines in each order. In other words, the SUM(CASE . . . ) statements end
up counting order lines instead of orders, which is not the intention.

There are two ways to include the product group pivot in the pivoting query.
One method is to include the Orderline and then change all the previous
SUM(CASE . . . ) expressions to COUNT(DISTINCT CASE . . . orderid). This
counts all the distinct ORDERIDs and hence orders rather than order lines.

This is a clever solution, and it works for a handful of columns. However,
changing the structure of the previous query is generally not a good idea,
because such changes make queries less clear and less maintainable. In addi-
tion, counting distinct order ids is likely to be slower than simply adding up a
bunch of ones and zeros.

A better approach is to summarize the order line data twice, once at the
orders level and then again at the household level. The following query shows
the summary at the order level:

SELECT orderid,

MAX(CASE WHEN p.productgroupname = ‘BOOK’ THEN 1 ELSE 0 END

) as pg_book,

MAX(CASE WHEN p.productgroupname = ‘ARTWORK’ THEN 1 ELSE 0 END

) as pg_artwork,

MAX(CASE WHEN p.productgroupname = ‘OCCASION’ THEN 1 ELSE 0 END

) as pg_occasion,

MAX(CASE WHEN p.productgroupname = ‘FREEBIE’ THEN 1 ELSE 0 END

) as pg_freebie,

MAX(CASE WHEN p.productgroupname = ‘GAME’ THEN 1 ELSE 0 END

) as pg_game,

MAX(CASE WHEN p.productgroupname = ‘APPAREL’ THEN 1 ELSE 0 END

) as pg_apparel,

MAX(CASE WHEN p.productgroupname = ‘CALENDAR’ THEN 1 ELSE 0 END

) as pg_calendar,

MAX(CASE WHEN p.productgroupname = ‘OTHER’ THEN 1 ELSE 0 END

) as pg_other

FROM orderline ol JOIN product p ON ol.productid = p.productid

GROUP BY orderid

This query uses MAX() to create an indicator of whether each order has a par-
ticular product group, rather than SUM(), which counts the order lines. This
query does not join in the HOUSEHOLDID, nor does it apply the restriction on
ORDERDATE. These restrictions can be applied at the next level, because a
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single order has the same household id and order date. On the other hand, the
database is doing additional processing, summarizing the order lines for
orders that are not part of the final result. So, in some circumstances, including
the restrictions is useful.

Summarizing the order lines at the order level is only half the work. This
order summary needs to be summarized again at the household level. The
result is that the final summarization of the order information has the form:

SELECT householdid,

. . . 

SUM(pg_book) as pg_book,

SUM(pg_artwork) as pg_artwork,

SUM(pg_occasion) as pg_occasion,

SUM(pg_freebie) as pg_freebie,

SUM(pg_game) as pg_game,

SUM(pg_apparel) as pg_apparel,

SUM(pg_calendar) as pg_calendar,

SUM(pg_other) as pg_other

FROM orders o JOIN campaign ca

ON o.campaignid = ca.campaignid LEFT OUTER JOIN

(<order summary query>) olsum

ON olsum.orderid = o.orderid JOIN

customer c

ON o.customerid = c.customerid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoff_date) const

WHERE orderdate < cutoff_date

GROUP BY householdid

The order line subquery is joined in using a LEFT OUTER JOIN. This ensures
that orders are not lost, even if those orders have no order lines. This is good
practice, even though all orders do have order lines in this case. 

By the way, the subquery that summarizes the order lines at the order level
could use SUM() to count order lines rather than MAX() to create an indicator
flag. The outer query would need to count orders using a slightly different
expression:

SUM(CASE WHEN pg_book > 0 THEN 1 ELSE 0 END) as pg_book

These two forms are equivalent, but the first way has slightly simpler code. On
the other hand, the second produces an intermediate result that could be used
for other purposes.

Although this query looks complicated, it is actually composed of well-
defined pieces, carefully sewn together. It is worth emphasizing again that this
structure works for a couple of reasons. First, each subquery is created subject
to the constraints of the customer signature. Also, each table and subquery is
carefully joined in with consideration of how it affects the number of rows in
the final result. Care is taken not to lose rows or to multiply rows inadvertently.
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WARN I NG When joining tables together for a customer signature, be very
careful that there are no duplicate rows in the tables being joined into the
driving table. Duplicate rows can inadvertently multiply the number of rows in
the customer signature table.

Summarizing
Pivoting data is one method of summarizing transactions, basically aggregating
information along various dimensions. There are other ways to summarize data.
Some fit directly into the pivoting query built in the previous section. Some are
a bit more complicated and provide an opportunity to add in customer-centric
business measures.

Basic Summaries

Basic summaries of the orders data include information such as:

■■ Total number of orders;

■■ Total number of units ordered;

■■ Total dollar amount of orders; and,

■■ Average dollar amount.

These summaries can be calculated in the same way as the pivoted data. The
only difference is the particular expressions used for calculating the values.

More Complex Summaries

There are interesting indicators of customer behavior lurking inside cus-
tomer transactions. For instance, one credit card company tracks how often 
a customer spends more than $100 at a restaurant more than 50 miles from
the customer’s home.

In the purchases data, the following are  potentially interesting questions:

■■ How many of the customer’s orders are over $200?

■■ What is the maximum number of different products in any one order?

■■ How many different products has the customer ordered over time?

■■ What is the longest duration between the order date and the ship date?

■■ How often has the ship date been more than one week after the 
order date?

These are posed as questions. However, they suggest customer attributes that
might be useful for the customer signature.
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The following query calculates answers to the questions:

SELECT householdid,

COUNT(DISTINCT CASE WHEN o.totalprice > 200 THEN o.orderid END

) as numgt2000,

COUNT(DISTINCT productid) as numhhprods,

MAX(op.numproducts) as maxnumordprods,

MAX(DATEDIFF(dd, o.orderdate, ol.shipdate)) as maxshipdelay,

COUNT(DISTINCT CASE WHEN DATEDIFF(dd, o.orderdate, ol.shipdate) > 7

THEN o.orderid END)

FROM customer c JOIN orders o ON c.customerid = o.customerid JOIN

orderline ol ON o.orderid = ol.orderid JOIN

(SELECT o.orderid, COUNT(DISTINCT productid) as numproducts

FROM orders o JOIN orderline ol ON o.orderid = ol.orderid

GROUP BY o.orderid) op

ON o.orderid = op.orderid

GROUP BY householdid

This version of the query has the same problem as some of the earlier queries.
It does not take the cutoff date into account. Adding the Const subquery fixes
this. In addition, the WHERE clause needs to take into account that both ORDER-
DATE and SHIPDATE should be before the cutoff date:

SELECT householdid,

COUNT(DISTINCT CASE WHEN o.totalprice > 200 THEN o.orderid END

) as numgt2000,

COUNT(DISTINCT productid) as numhhprods,

MAX(op.numproducts) as maxnumordprods,

MAX(DATEDIFF(dd, o.orderdate, ol.shipdate)) as maxshipdelay,

COUNT(DISTINCT CASE WHEN DATEDIFF(dd, o.orderdate, ol.shipdate) > 7

THEN o.orderid END)

FROM customer c JOIN orders o ON c.customerid = o.customerid JOIN

orderline ol ON o.orderid = ol.orderid JOIN

(SELECT o.orderid, COUNT(DISTINCT productid) as numproducts

FROM orders o JOIN

orderline ol

ON o.orderid = ol.orderid

GROUP BY o.orderid) op

ON o.orderid = op.orderid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoffdate) const

WHERE o.orderdate < cutoffdate AND

ol.shipdate < cutoffdate

GROUP BY householdid

Instead of a constant cutoff date, the driving table could be joined in on the
household id to get a cutoff date for each customer.

Clearly, only orders whose order date precedes the cutoff date should be
included in the customer signature. However, it is not clear if the ship date
should have this restriction. The decision depends on how the data is loaded
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into and updated in the database. To understand how to handle the ship date,
it helps to understand how it is created. The following are possibilities:

■■ Only completed orders are in the data. An order is completed when the
last item is shipped.

■■ All orders are in the data; order lines have ship dates that are updated
as new information is available.

■■ All orders are in the data, but order lines are available only after they ship.

These different scenarios affect the relationship between the ship date and the
cutoff date. If the first is true, then orders are only available after the last ship
date, so the signature should only include orders whose last ship date is before
the cutoff date. If the second scenario is true, then it is okay to ignore the ship
date. Future ship dates are “intended ship dates.” If the third is true, then very
recent orders should be smaller than orders even a week old. In addition, some
orders might have no order lines.

Understanding the relationship between dates in the database and when the
data is loaded is important. We could imagine a scenario where order lines are
only available after they ship, although the corresponding orders are already
in the database. An analysis might “discover” that the most recent orders are
smaller than expected. This fact would merely be an artifact of how the data is
loaded into the database, because not all order lines have shipped for the most
recent orders (in this scenario).

WARN I NG It is important to understand the process of loading the
database. This process leaves artifacts in the data that might be discovered
when analyzing the data. 

Extracting Features

In some data sources, the most interesting features are the descriptions of
products and channels, markets and retailers. These descriptions include more
complex data types, such as text and geographic position. The information in
these columns can be quite informative. This section discusses some ideas
about extracting information for geographic and character data types.

Geographic Location Information
Geographic location information is represented as latitudes and longitudes.
When mapped, this information is quite interesting. However, maps do not fit
well into customer signatures nor are they well-suited for statistical and data
mining algorithms.

596 Chapter 12 ■ Building Customer Signatures for Further Analysis

99513c12.qxd:WileyRed  8/24/07  10:16 AM  Page 596



Longitudes and latitudes are generated when addresses are geocoded. The
most obvious address is the customer address. However, there are addresses
for retailers, and ATM machines, and city centers, and phone lines, and Inter-
net service provider points-of-presence, and so on. Such geocoding leads to
questions such as:

■■ How far is a customer from the center of the nearest MSA (metropolitan
statistical area)?

■■ How many purchases were made more than 100 miles from home?

■■ What proportion of ATM transactions is within 10 miles of home?

■■ What is the direction from the customer to the nearest MSA center?

These questions readily turn into customer attributes.
There are two basic types of information. The most common is distance,

which was discussed in Chapter 4, along with formulas for calculating the dis-
tance between two geographic points.

The other type of information is directional. This is calculated using a basic
trigonometric formula:

direction = ATAN(vertical distance/horizontal distance))*180/PI()

Calculating distances was discussed in Chapter 4.

Date Time Columns
Customer behavior varies by time of day and day of week and season of the
year. These behaviors can distinguish between customers. Some businesses
classify their customers as “weekday lunch buyers” or “weekend shoppers” or
“Monday complainers.” These are examples of business classifications that
can be captured in the customer signature.

TI P The timing of customer behavior is a good example of a business metric
to incorporate in the customer signature.

The customer signature can capture the raw information by pivoting date
and time information. For instance, the following SELECT statement can be
added to the pivot query to add up the number of orders made on different
days of the week:

SELECT householdid,

. . .

SUM(CASE WHEN cal.dow = ‘Mon’ THEN 1 ELSE 0 END) as dw_mon,

SUM(CASE WHEN cal.dow = ‘Tue’ THEN 1 ELSE 0 END) as dw_tue,

SUM(CASE WHEN cal.dow = ‘Wed’ THEN 1 ELSE 0 END) as dw_wed,

SUM(CASE WHEN cal.dow = ‘Thu’ THEN 1 ELSE 0 END) as dw_thu,

(continued)
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SUM(CASE WHEN cal.dow = ‘Fri’ THEN 1 ELSE 0 END) as dw_fri,

SUM(CASE WHEN cal.dow = ‘Sat’ THEN 1 ELSE 0 END) as dw_sat,

SUM(CASE WHEN cal.dow = ‘Sun’ THEN 1 ELSE 0 END) as dw_sun,

. . .

FROM orders o JOIN campaign ca ON o.campaignid = ca.campaignid JOIN

calendar cal ON o.orderdate = cal.date JOIN

customer c ON o.customerid = c.customerid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoff_date) const

WHERE orderdate < cutoff_date

GROUP BY householdid

This query uses the Calendar table to find the day of the week. An alternative is
to use a database function, such as DATENAME(dw, <col>). Using the Calendar
table makes further refinements possible, such as distinguishing holidays from
non-holidays.

If ORDERDATE had a time component, the following SELECT statement
would add up the number of orders during from midnight to 3:59:59.999 a.m.:

SELECT SUM(CASE WHEN DATEPART(hh, orderdate) BETWEEN 0 AND 3

THEN 1 ELSE 0 END) as hh00_03

This is the same idea as the earlier pivot statements, but applied to times.

Patterns in Strings
Character strings contain descriptions that often have interesting information
embedded in them. SQL has only rudimentary string manipulation functions,
but these are often sufficient for extracting interesting features. Although the LIKE
operator can be useful, it is often quite inefficient and can be replaced with more
efficient functions. This section contains some examples of feature extraction.

TI P Descriptions and names often contain very interesting information.
However, this needs to be extracted feature by feature to be most useful for the
customer signature.

Email Addresses

An email address has the form “<user name>@<domain name>”, where the
domain name has an extension, such as “.com,” “.uk,” or “.gov.” The domain
name and domain name extension can be interesting features about users.

The following code extracts these features from an email address:

SELECT LEFT(emailaddress, CHARINDEX(‘@‘, emailaddress)-1) as username,

SUBSTRING(emailaddress, CHARINDEX(‘@‘, emailaddress)+1, 1000

) as domain,

RIGHT(emailaddress, CHARINDEX(‘.’, REVERSE(emailaddress))

) as extension
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The user name takes all characters up to the “@,” and the domain is all charac-
ters after it. The domain extension is everything after the last period. This
expression uses a trick to find the position of the last period by finding the
position of the first period in the reversed string.

Addresses

Addresses are complicated strings that are difficult to understand. Geocoding
them provides one set of information. However, the address line itself might
provide information about customers:

■■ Is the address is for an apartment?

■■ Is the address is for a PO Box?

The following code identifies whether there is an apartment number in an
address or a post office box, assuming that there is a column called ADDRESS:

SELECT (CASE WHEN CHARINDEX(‘#‘, address) > 0 OR

CHARINDEX(‘apt.’, LOWER(address)) > 0 OR

CHARINDEX(‘ apt ‘, LOWER(address)) > 0 OR

CHARINDEX(‘ unit ‘, LOWER(address)) > 0 THEN 1

ELSE 0 END) as hasapt,

(CASE WHEN LEFT(REPLACE(UPPER(address), ‘.’, ‘’), 6) = ‘PO BOX’

To find an apartment indicator, the query looks for “ apt.” or “apt ” (rather
than “apt”) to avoid matching street names such as “Sanibel-Captiva Road,”
“Captains Court,” and “Baptist Camp Road.” For post office boxes, the
address should start with “PO BOX” or “P.O. Box.”

Product Descriptions

Product descriptions often contain information such as:

■■ Color;

■■ Flavor; and,

■■ Special attributes (such as organic, low calories, and so on).

Interesting attributes can be turned into flags, by determining whether the
description contains a particular string. For instance:

(CASE WHEN CHARINDEX(‘diet’, desc) > 0 THEN 1 ELSE 0 END) as is_diet,

(CASE WHEN CHARINDEX(‘red’, desc) > 0 THEN 1 ELSE 0 END) as is_red,

(CASE WHEN CHARINDEX(‘organic’, desc) > 0 THEN 1 ELSE 0 END) as is_org

These cases look for particular substrings in the description.
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A product description might have a specific format. For instance, the first
word may be the product group name. It can be extracted using:

SUBSTRING(desc, CHARINDEX(‘ ‘, desc), 1000) as productgroup

Or, the last word might be something interesting such as the price:

RIGHT(desc, CHARINDEX(‘ ‘, REVERSE(desc)), 1000) as price

Discovering what is interesting is a manual process that often involves reading
through the descriptions and making judgments as to what is important for
distinguishing among customers.

Credit Card Numbers

Credit card numbers are useful for analysis in two ways. The first is by identify-
ing the type of credit card. The second is by identifying whether the same card
is used over time. The first few digits of a credit card indicate the type of card, as
discussed in Chapter 2, which has both the table mapping credit card numbers
to credit card types and a SQL query for transforming the information.

Comparing credit card numbers on different payment transactions is as easy
as comparing two columns. However, storing credit card numbers in analytic
databases poses a security risk, so it is not a good idea to store them explicitly.

An alternative is to convert the credit card number to something that is not
recognizable as a credit card number. One way is to have a master table that
contains credit card numbers, with no duplicates. The row number in this table
is stored instead of the credit card number, and very few people have access to
the master table.

Another approach uses hashing. There are many different hashing algorithms.
One very simple algorithm that works well is something like the following:

1. Treat the credit card number as a number.

2. Multiply the number by a large prime number.

3. Add another prime number.

4. Divide by yet another and take the remainder.

This works because two different numbers very, very, very rarely get mapped to
the same number. In addition, it is very difficult to extract the original credit card
number unless you know the specific primes used in the formula.

For instance, the following is an example of a formula to encode  credit card
numbers:

(ccnum*367373 + 101) % 2147483647

All the constants used in this calculation are prime numbers.
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Summarizing Customer Behaviors

The customer signature has been presented as a place to put lots of data ele-
ments and basic summaries. It is also a place to put more complex summaries
of customer behaviors that rise to being customer-centric business metrics.

This section discusses three examples. The first is calculating the slope, the
beta value, for series of transactions. The second is identifying weekend shop-
pers, and the third is applying metrics to identify customers whose usage is
decreasing.

Calculating Slope for Time Series
Pivoting numeric values creates time series, such as the dollar amount of pur-
chases in a series of months. Using the ideas from Chapter 11, we can calculate
the slope for these numbers.

Most households in the purchases data have one order, which does not pro-
vide a good example for finding a trend. Instead, the example is a related sum-
mary at the zip code level: Which zip codes have seen an increase in customers in
the years before the cutoff date? Notice that this question is still about what hap-
pens before the cutoff date, so the resulting measures can be included in the
customer signature.

This section answers the question three different ways. The first is to use the
pivoted values to calculate the slope. This is possible, but the SQL is messy.
The second way is to summarize each year of data for the zip codes. The third
method generalizes the second for any series of values.

Calculating Slope from Pivoted Time Series

Pivoted data has a separate column for each period of time. The following
query calculates the number of households who place an order in each year for
each zip code.

SELECT zipcode, COUNT(*) as cnt,

FLOOR(DATEDIFF(yy, ‘2009-01-01’, MIN(cutoffdate))) as numyears,

COUNT(DISTINCT (CASE WHEN DATEDIFF(yy, orderdate, cutoffdate) = 1

THEN householdid END)) as year1,

COUNT(DISTINCT (CASE WHEN DATEDIFF(yy, orderdate, cutoffdate) = 2

THEN householdid END)) as year2,

COUNT(DISTINCT (CASE WHEN DATEDIFF(yy, orderdate, cutoffdate) = 3

THEN householdid END)) as year3,

COUNT(DISTINCT (CASE WHEN DATEDIFF(yy, orderdate, cutoffdate) = 4

THEN householdid END)) as year4,

COUNT(DISTINCT (CASE WHEN DATEDIFF(yy, orderdate, cutoffdate) = 5

THEN householdid END)) as year5,

COUNT(DISTINCT (CASE WHEN DATEDIFF(yy, orderdate, cutoffdate) = 6

(continued)
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THEN householdid END)) as year6,

COUNT(DISTINCT (CASE WHEN DATEDIFF(yy, orderdate, cutoffdate) = 7

THEN householdid END)) as year7

FROM orders o JOIN customer c ON o.customerid = c.customerid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoffdate) const

GROUP BY zipcode

This query is carefully dependent on the cutoff date, so the results can be used
in the customer signature. The number of years of data is contained in the col-
umn NUMYEARS. The remaining columns contain the summaries by year.

Chapter 11 provided the formula for the slope:

slope = (n*Sxy – Sx*Sy) / (n*Sxx – Sx*Sx)

In the case of pivoted data, there are no explicit X-values. However, the 
X-values can be assumed to be a sequence of numbers starting with one for
the oldest value. The resulting slope can be interpreted as the average num-
ber of additional households that make a purchase in each succeeding year.

The following query calculates the intermediate values and then the slope:

SELECT (n*Sxy - Sx*Sy)/(n*Sxx - Sx*Sx), a.*

FROM (SELECT zipcode, cnt,

numyears*1.0 as n,

numyears*(numyears+1)/2 as Sx,

numyears*(numyears+1)*(2*numyears+1)/6 as Sxx,

(CASE WHEN numyears < 2 THEN NULL

WHEN numyears = 3 THEN year3 + year2 + year1

WHEN numyears = 4 THEN year4 + year3 + year2 + year1

WHEN numyears = 5 THEN year5 + year4 + year3 + year2 +

year1

WHEN numyears = 6 THEN year6 + year5 + year4 + year3 +

year2 + year1

ELSE year7 + year6 + year5 + year4 + year3 + year2 +

year1 END) as Sy,

(CASE WHEN numyears < 2 THEN NULL

WHEN numyears = 3 THEN 1*year3 + 2*year2 + 3*year1

WHEN numyears = 4 THEN 1*year4 + 2*year3 + 3*year2 +

4*year1

WHEN numyears = 5 THEN 1*year5 + 2*year4 + 3*year3 +

4*year2 + 5*year1

WHEN numyears = 6 THEN 1*year6 + 2*year5 + 3*year4 +

4*year3 + 5*year2 + 6*year1

ELSE 1*year7 + 2*year6 + 3*year5 + 4*year4 + 5*year3 +

6*year2 + 7*year1 END) as Sxy

FROM (<zip summary query>) z) a

This follows the logic from Chapter 11. The slope represents the growth in
terms of the number of additional customers who make purchases each year
in a zip code.
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Eliminating the intermediate sums makes the query even more cumber-
some and prone to error:

SELECT (CASE WHEN numyears < 2 THEN NULL

WHEN numyears = 3

THEN numyears*(1*year3 + 2*year2 + 3*year1)-

(numyears*(numyears+1)/2)*(year3 + year2 + year1)

WHEN numyears = 4

THEN numyears*(1*year4 + 2*year3 + 3*year2 + 4*year1)-

(numyears*(numyears+1)/2)*(year4 + year3 + year2 + year1)

WHEN numyears = 5

THEN numyears*(1*year5 + 2*year4 + 3*year3 + 4*year2 + 

5*year1) - (numyears*(numyears+1)/2)*(year5 + year4 +

year3 + year2 + year1)

WHEN numyears = 6

THEN numyears*(1*year6 + 2*year5 + 3*year4 + 4*year3 +

5*year2 + 6*year1) -

(numyears*(numyears+1)/2)*(year6 + year5 + year4 +

year3 + year2 + year1)

ELSE numyears*(1*year7 + 2*year6 + 3*year5 + 4*year4 +

5*year3 + 6*year2 + 7*year1) -

(numyears*(numyears+1)/2)*(year7 + year6 + year5 +

year4 + year3 + year2 + year1)

END) / (1.0*numyears * numyears*(numyears+1)*(2*numyears+1)/6

- ((numyears*(numyears+1)/2))*(numyears*(numyears+1)/2)

) as slope, z.*

FROM (<zip summary query>) z

Under these circumstances, keeping the intermediate sums is preferable, even
though they are not useful for modeling. One simplification is to remove the
complicated CASE statement by assuming that all the pivot columns have data,
but this assumption may not be true.

Calculating Slope for a Regular Time Series

An alternative approach that does not use the pivot columns is to change the
summary used for the slope calculation, by creating a table with a separate
row for each zip code and year:

SELECT zipcode, DATEDIFF(yy, orderdate, cutoffdate) as yearsago,

DATEDIFF(yy, ‘2009-01-01’, MIN(cutoffdate)) as numyears,

(DATEDIFF(yy, ‘2009-01-01’, MAX(cutoffdate)) -

DATEDIFF(yy, orderdate, cutoffdate)) as x,

COUNT(DISTINCT householdid) as y

FROM orders o JOIN customer c ON o.customerid = c.customerid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoffdate) const

WHERE orderdate < cutoffdate

GROUP BY zipcode, DATEDIFF(yy, orderdate, cutoffdate)
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When there are no sales, the data is simply missing from this summary. The
slope calculated this way may be a bit different from the slope calculated on
the pivoted data (for zip codes that have years with no customers).

The following query calculates the intermediate values and slope:

SELECT ((CASE WHEN n = 1 THEN 0

ELSE (n*Sxy - Sx*Sy)/(n*Sxx - Sx*Sx) END) as slope, b.*

FROM (SELECT zipcode, MAX(numyears) as numyears, COUNT(*)*1.0 as n,

SUM(x) as Sx,

SUM(x*x) as Sxx,

SUM(x*y) as Sxy,

SUM(y) as Sy

FROM (<zipcode-year subquery>) zy

GROUP BY zipcode

) b

ORDER BY n DESC

This query is much simpler than the previous query. Instead of using the piv-
oted time series, it calculates the X-value implicitly from the years before the
cutoff date. The CASE statement in the SELECT assigns a value for slope when
there are purchases in only one year; otherwise, the query would result in a
divide-by-zero error. Note that the results from this query are slightly different
from the pivoted version, because the pivoted version treats years with no data
as having zero sales, whereas this excludes such years from the calculation.

Calculating Slope for an Irregular Time Series

The previous calculation can be extended to irregular time series as well as
regular time series. An irregular time series is one where the spacing between
the X-values is not constant. Purchases for customers are a typical example,
and determining the trend can be quite useful.

The query for this is essentially the same as the query the previous example,
except the X-values would represent some other value in the data.

Weekend Shoppers
There may be certain behaviors that are of particular interest, such as weekend
shoppers. Consider what a shopper who only makes purchases on weekends
looks like. Such a “perfect” weekend shopper has the following characteristics:

■■ All of their shopping by number of orders is on Saturday or Sunday.

■■ All of their shopping by dollar value is on Saturday or Sunday.

■■ All of their shopping by number of units is on Saturday or Sunday.

For the perfect weekender, these are all equivalent, because all shopping on
the weekends implies that all units, orders, and dollars are spent on the
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weekends. They also suggest defining a metric that defines how close a cus-
tomer is to being a “perfect” weekender.

Table 12-4 shows some examples of customers with multiple orders: one is a
perfect weekender, one a partial weekender, and one a never weekender.

Table 12-4: Examples of Transactions for Weekend and Non-Weekend Shoppers

ORDER DAY OF
HOUSEHOLD ID ORDER ID DATE WEEK DOLLARS UNITS

21159179 1102013 2013-08-17 Sat $40.00 3

21159179 1107588 2013-09-16 Mon $67.00 5

21159179 1143702 2014-08-03 Sun $90.00 6

36207142 1089881 2013-06-13 Thu $10.00 1

36207142 1092505 2013-11-27 Wed $8.00 1

36207142 1084048 2013-12-23 Mon $49.00 3

36207142 1186443 2014-12-05 Fri $5.00 2

36207142 1206093 2014-12-31 Wed $7.00 1

36528618 1013609 2011-01-29 Sat $182.00 2

36528618 1057400 2012-11-25 Sun $195.00 1

36528618 1059424 2012-11-25 Sun $195.00 1

36528618 1074857 2013-12-14 Sat $570.00 2

The following ratios help distinguish among these groups:

■■ Proportion of all orders that are on weekends;

■■ Proportion of all dollars spent on weekends; and,

■■ Proportion of all units on weekends.

These all vary from zero (no evidence of weekend shopping behavior) to one
(always a weekend shopper). Table 12-5 shows the summaries with this
information.

Table 12-5: Some Shoppers and Their Weekend Shopping Behavior

# ORDERS DOLLARS # UNITS
HOUSEHOLD ALL WEEKEND ALL WEEKEND ALL WEEKEND

21159179 3 66.7% $197 66.0% 14 64.3%

36207142 5 0.0% $79 0.0% 8 0.0%

36528618 4 100.0% $1,142 100.0% 6 100.0%
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Recalling some ideas from probability, these can be combined into a single
likelihood measure. The following SQL query does this calculation:

SELECT h.*,

(CASE WHEN weekend_orders = 1 OR weekend_units = 1 OR 

weekend_dollars = 1 THEN 1

ELSE (weekend_orders/(1-weekend_orders))*

(weekend_units/(1-weekend_units))*

(weekend_dollars/(1-weekend_dollars)) END) as weekendp

FROM (SELECT householdid,

SUM(CASE WHEN cal.dow IN (‘Sat’, ‘Sun’) THEN 1.0

ELSE 0 END)/COUNT(*) as weekend_orders,

SUM(CASE WHEN cal.dow IN (‘Sat’, ‘Sun’) THEN numunits*1.0

ELSE 0 END)/SUM(numunits) as weekend_units,

SUM(CASE WHEN cal.dow IN (‘Sat’, ‘Sun’) THEN totalprice

ELSE 0 END)/SUM(totalprice) as weekend_dollars

FROM orders o JOIN calendar cal ON o.orderdate = cal.date JOIN

customer c ON o.customerid = c.customerid CROSS JOIN

(SELECT ‘2016-01-01’ as cutoff_date) const

WHERE orderdate < cutoff_date AND

numunits > 0 AND

totalprice > 0

GROUP BY householdid) h

This query calculates the “probabilities” of being a weekend shopper along the
three dimensions of orders, units, and price. The likelihood of someone being a
weekend shopper is one minus the product of one minus each of these propor-
tions, a method of combining probabilities discussed in Chapter 10 in the con-
text of naïve Bayesian models. Although these are not independent, the
combination still gives an overall measure of being a weekend shopper.

This method for calculating the weekend shoppers has a problem when cus-
tomers have very few purchases. The aside “Incorporating Prior Information”
discusses a method for handling this.

Declining Usage Behavior
Declining usage is often a precursor to customers stopping. However, there are
many ways to specify declining usage. One way is to use the beta value (slope)
of a usage measure — such as dollars spent per month or web visits per week.

INCORPORATING PRIOR INFORMATION

The definition of weekend shopper works well when there is a lot of data for each
customer. However, it does not work well when there are only a few transactions.
For instance, should the score of someone who has made one purchase that is on
the weekend be the same as someone who has made one hundred purchases, all
on the weekend?
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INCORPORATING PRIOR INFORMATION (CONTINUED)

Intuitively, the answer is “no,” because there is much more evidence
accumulated for the second customer. How can the weekend shopper score
reflect this intuition?

There is a way to handle this situation. The idea is to assume that everyone
has a score of being a weekend shopper that is between zero and one. Orders
on the weekend take this score into account. Such an assumption is called a
prior, and this is a central notion in Bayesian statistics. 

For this discussion, let’s consider using only the proportion of transactions
as the indicator for a weekend shopper (rather than the combined likelihood
value). What is an appropriate value for the prior? The appropriate prior is the
overall proportion of weekend orders in the data, which is 21.6%. That means
that given no other information, we are making the assumption that someone
has a weekend shopper score of 21.6%, even before they make any purchases.

The next question is how to combine information from orders with the
prior. The way to approach this is incrementally. What is the estimate for
being a weekend shopper for someone who has exactly one purchase on the
weekend? Remember, the method in the text gives this person a perfect 100%
score, which seems a bit too high.

The idea is to combine the prior estimate with the new evidence, using a
weighted average:

new estimate = ((prior*K) + 1)/(K+1)

The value K represents how much weight we put on the prior. If the value is
zero, the result is the same as in the text. A reasonable value is one, which
results in the score of 60.8% for the customer with one weekend purchase.

What happens for the next weekend purchase? The reasoning is the same,
except the value of K is incremented by one, because there is an additional
observation. Because the prior now includes one data point, it gets weighted
more heavily.

The following table shows the scores for customers who make only weekend
purchases and no weekend purchases:

ONLY WEEKEND SHOPPER NON-WEEKEND SHOPPER
# ORDERS K SCORE # ORDERS K SCORE

0 1 21.6% 0 1 21.6%

1 2 60.8% 1 2 10.8%

2 3 73.9% 2 3 7.2%

3 4 80.4% 3 4 5.4%

4 5 84.3% 4 5 4.3%

5 6 86.9% 5 6 3.6%

Continued on next page
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INCORPORATING PRIOR INFORMATION (CONTINUED)

So, a customer who has made five weekend purchases has a score of 86.9%. 
A customer who has made five weekday purchases has a score of 3.6%. These
seem reasonable.

The previous formulas explain how the prior is used in the calculation.
However, there is a simpler formula based on the number of observations and
the average observed value:

Est = (K*prior + number * average)/(K + number)

Using this formula, we can calculate what happens to a customer who has 100
purchases all on the weekend. In this case, the number is 100 and the average
is 1. Using the same values as before, the score is 99.2%.

This method of incorporating priors requires both finding an appropriate
prior estimate to use when there is no evidence, and a way of combining new
evidence with the prior. The use of priors does not require complicated
formulas. It does, however, produce more intuitive scores than directly using
the proportion. 

However, the beta value can be misleading, because it fits a long-term trend
to the data. Often, customer behaviors are relatively steady (varying within a
range) and then declining. Other measures of declining behavior include:

■■ Ratio of recent activity to historical activity, such as most recent month
of usage divided by usage twelve months ago;

■■ Number of recent months where usage is less than the month before; and,

■■ Ratio of the most recent month to the average over the previous year.

These are all reasonable measures of declining usage.
These measures are all possible to implement in SQL. We’ll investigate such

measures by looking at the corresponding quantities for zip codes by year:

■■ Ratio of most recent number of customers to the year before;

■■ Ratio of the most recent number of customers to the average of preced-
ing years (the index value); and,

■■ Number of recent years where the number of customers is declining.

The following query calculates these quantities from the pivoted zip code
columns:

SELECT z.*,

(CASE WHEN year2 > 0 THEN year1 / year2 END) as year1_2_growth,

(CASE WHEN (COALESCE(year1, 0) + COALESCE(year2, 0) +

COALESCE(year3, 0) + COALESCE(year4, 0) +

COALESCE(year5, 0) + COALESCE(year6, 0) +

COALESCE(year7, 0)) = 0 THEN 1
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ELSE year1 / ((COALESCE(year1, 0) + COALESCE(year2, 0) +

COALESCE(year3, 0) + COALESCE(year4, 0) +

COALESCE(year5, 0) + COALESCE(year6, 0) +

COALESCE(year7,0))/7.0) END) as year1_index,

COALESCE(CASE WHEN numyears < 2 OR year1 >= year2 THEN 0 END,

CASE WHEN numyears < 3 OR year2 >= year3 THEN 1 END,

CASE WHEN numyears < 4 OR year3 >= year4 THEN 2 END,

CASE WHEN numyears < 5 OR year4 >= year5 THEN 3 END,

CASE WHEN numyears < 6 OR year5 >= year6 THEN 4 END,

CASE WHEN numyears < 7 OR year6 >= year7 THEN 5 END,

6) as years_of_declining_sales,

z.*

FROM (<zip code summary query>) z

The calculation for growth is fairly obvious; it uses a CASE statement to prevent
division by zero. If there were no customers the previous year, the growth is
undefined.

The index calculation does a direct calculation of the average over the pre-
vious seven years. This is the explicit approach. A simpler approach would be
to calculate the sum or average in the subquery. However, the preceding query
uses the zip code summary subquery exactly as originally written.

The number of years of declining sales uses the COALESCE() function
extensively. This function returns the first non-null value. So, the logic pro-
ceeds as follows:

1. If the YEAR1 >= YEAR2 then the first value is zero and COALESCE()
returns this value. Otherwise, the value is NULL and processing continues.

2. If YEAR2 >= YEAR3 then the second value is one. This means that the
previous condition was met, so there is one year of declining values.
Otherwise, the value is NULL and processing continues.

3. And so on.

An alternative to the COALESCE() function is a more complicated CASE state-
ment. These values can then be included in the customer signature as indica-
tors of declining usage.

TI P The COALESCE() function can be very useful for calculating indexes, counts,
and averages in sets of columns where some of the values may be NULL.

Lessons Learned

When analytic needs go beyond the capabilities of SQL and Excel, customer
signatures can be used to summarize customer behavior and demographic
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information for use in other tools. SQL has an advantage for building customer
signatures, because it has powerful data manipulation capabilities.

The customer signature should be based on a cutoff date, only incorporating
input columns from before the date. For predictive modeling, the targets come
from a time frame after the cutoff date. A customer signature consists of a set
of columns coming from many different tables. Most columns are input
columns. The customer signature might also include target columns, identifi-
cation columns, and the cutoff date.

Creating customer signatures requires gathering information from many
different sources. Some columns might be copied directly. Others might come
from fixed lookup tables. Yet others might come from dynamic lookup tables
that summarize customer behavior along customer dimensions. And others
come from pivoting and summarizing the most voluminous part of the data,
customer transactions. These operations can be combined to create very pow-
erful features for data mining purposes.

Combining information from multiple columns makes it possible to add very
powerful features. For instance, trends over time can be added by incorporat-
ing the slope of the best fit line, an idea discussed in the previous chapter.

The customer signature provides a structure for understanding customers and
using many of the techniques described in earlier chapters. Much of the effort in
data analysis is in bringing the data together and understanding the contents.
The ability of SQL to express very complex data manipulations, and the ability to
optimize the resulting queries on large hardware, makes it a natural choice for
creating customer signatures.

As earlier chapters have shown, the combination of SQL and Excel is a pow-
erful analysis tool itself for understanding customers. When the combination
is not powerful enough, they provide the foundation for bringing the right
data into even more sophisticated tools.
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611

Relational databases support SQL in the same way that English is the language
of the Great Britain, the United States, India, and Jamaica. Although there is
much in common among the databases, each dialect has its own vocabulary
and accents.

Throughout the book, the SQL examples have used Microsoft T-SQL as the
dialect of choice. There are a number of things in SQL that varies from data-
base to database. The purpose of the appendix is to show equivalent SQL con-
structs in different databases. The five database engines are:

■■ IBM UDB, version 7 and above;

■■ Microsoft, version 2005;

■■ mysql, version 5 and above;

■■ Oracle version 9 and above; and

■■ SAS proc sql.

The databases from IBM, Microsoft, and Oracle are commercial products,
although single-user versions can often be downloaded for no cost. mysql is a
free database engine. SAS proc sql is the SQL engine within the SAS language
(the most popular commercial statistical software). When using SAS, proc sql
can be used in two different modes. In one, it communicates directly to a data-
base, and supports the language of the database. In the other, it runs within
SAS and uses SAS’s particular constructs.

Equivalent Constructs 
Among Databases

A P P E N D I X
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This appendix is provided as is, without any guarantees that the software
has not changed for whatever reason. The following documentation web sites
are available for each of the databases:

■■ http://download-east.oracle.com/docs/cd/B19306_01/server.102/

b14200/toc.htm

■■ http://msdn2.microsoft.com/en-us/library/ms189826.aspx

■■ http://publib.boulder.ibm.com/infocenter/db2luw/v9

■■ http://dev.mysql.com/doc/refman/5.1/en/index.html

■■ http://support.sas.com/onlinedoc/913/docMainpage.jsp

In some cases, additional navigation is required from the first documentation
page, and for some sites, registration is required. Unfortunately, the ANSI
standard for SQL is only available by purchasing it from the ISO organization.

This appendix is organized by the following topics:

■■ String Functions;

■■ Date/Time Functions;

■■ Mathematical Functions; and,

■■ Other Functions and Features.

Within each topic, specific functions are in subsections. Within each subsec-
tion, the structure for each database is shown.

String Functions

This section includes functions that operate on string values.

Searching for Position of One String within Another
What is the function that searches for one string inside another string? The
arguments are:

■■ <search string> — the string to be searched

■■ <pattern> — the string to look for

■■ <occurrence> — which occurrence

■■ <offset> — where to start searching

IBM

LOCATE(<pattern>, <search string>, <offset>)
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The argument <offset> is optional and defaults to 1. The function returns the
position in the search string where the pattern is found and 0 if the pattern is
not found.

An alternative method:

POSSTR(<search string>, <pattern>)

The function returns the position in the search string where the pattern is
found and 0 if the pattern is not found.

Microsoft

CHARINDEX(<pattern>, <search string>, <offset>)

The argument <offset> is optional and defaults to 1. The function returns the
position in the search string where the pattern is found and 0 if the pattern is
not found.

mysql

INSTR(<search string>, <pattern>)

The function returns the position in the search string where the pattern is
found and 0 if the pattern is not found.

An alternative method:

LOCATE(<pattern>, <search string>, <offset>)

The argument <offset> is optional and defaults to 1. The function returns the
position in the search string where the pattern is found and 0 if the pattern is
not found.

Oracle

INSTR(<search string>, <pattern>, <occurrence>)

The argument <occurrence> is optional and defaults to 1. The function returns
the position in the search string where the pattern is found and 0 if the pattern
is not found.

SAS proc sql

FIND(<search string>, <pattern >)

The function returns the position in <search string> where the pattern is
found, and 0 if the pattern is not found.
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String Concatenation
What is the function and operator that appends strings together?

IBM

CONCAT(<string 1>, <string 2>)

Note that this function only takes two arguments, but the function can be
nested. In addition, the operator “||” also concatenates strings.

Microsoft

<string 1> + <string 2>

The concatenation operator is an overloaded “+” operator. When mixing char-
acter and numeric types, be sure to cast the numeric types to strings.

mysql

CONCAT(<string 1>, <string 2>, . . .)

Note: this function can take two or more arguments.

Oracle

CONCAT(<string 1>, <string 2>)

Note that this function only takes two arguments, but the function can be
nested. In addition, the operator “||” also concatenates strings.

SAS proc sql

CAT(<string 1>, <string 2>, . . .)

Note: this function can take two or more arguments.

String Length Function
What is the function and operator that returns the length of a string?

IBM

LENGTH(<string>)
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Microsoft

LEN(<string>)

mysql

LENGTH(<string>)

Oracle

LENGTH(<string>)

SAS proc sql

LENGTH(<string>)

Note that this function ignores trailing blanks.

Substring Function
What is the function and operator that returns a substring?

IBM

SUBSTRING(<string>, <offset>, <len>)

The argument <len> is optional; when missing, the function returns the rest of
the string. The argument <offset> must be non-negative.

Microsoft

SUBSTRING (<string>, <offset>, <len>)

All arguments are required and the last two must be non-negative.

mysql

substring(<string>, <offset>, <len>)

The argument <len> is optional; when missing, the function returns the rest of
the string. If <offset> is negative, the function counts from the end of the
string rather than the beginning.
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Oracle

SUBSTR(<string>, <offset>, <len>)

The argument <len> is optional; when missing, the function returns the rest of
the string. If <offset> is negative, the function counts from the end of the
string rather than the beginning.

SAS proc sql

SUBSTRN(<string>, <offset>, <len>)

The argument <len> is optional; when missing, the function returns the rest 
of the string. Note: SUBSTRN() is preferable to SUBSTR() because it does not
produce errors or warnings when <offset>+<len> extends beyond the length
of <string>.

Replace One Substring with Another
This function is the same across all databases, but differs in SAS.

IBM

REPLACE(<string>, <from>, <to>)

Microsoft

REPLACE(<string>, <from>, <to>)

mysql

REPLACE(<string>, <from>, <to>)

Oracle

REPLACE(<string>, <from>, <to>)

SAS proc sql

RXCHANGE(RXPARSE(‘<from> to <to>’), 999, <string>))
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Remove Leading and Trailing Blanks
How can spaces at the beginning and end of a string be removed?

IBM

LTRIM(RTRIM(<string>))

Microsoft

LTRIM(RTRIM(<string>))

mysql

TRIM(<string>)

Oracle

TRIM(<string>)

Note: LTRIM() and RTRIM() also work.

SAS proc sql

BTRIM(<string>)

RIGHT Function
What is the function and operator that returns a substring of length <len> from
the end of a string?

IBM

RIGHT(<string>, <len>)

Microsoft

RIGHT(<string>, <len>)
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mysql

RIGHT(<string>, <len>)

Oracle

Function does not exist. Use:

SUBSTR(<string>, LENGTH(<string>) + 1 - <len>, <len>)

SAS proc sql

Function does not exist. Use:

SUBSTR(<string>, LENGTH(<string> + 1 - <len>, <len>)

LEFT Function
What is the function and operator that returns a substring from the beginning
of a string with length <len>?

IBM

LEFT(<string>, <len>)

Microsoft

LEFT(<string>, <len>)

mysql

LEFT(<string>, <len>)

Oracle

Function does not exist. Use:

SUBSTR(<string>, 1, <len>)
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SAS proc sql

Function does not exist. Use:

SUBSTRN(<string>, 1, <len>)

ASCII Function
What functions returns the ASCII value of a character?

IBM

ASCII(<char>)

Microsoft

ASCII(<char>)

mysql

ASCII(<char>)

Oracle

ASCII(<char>)

SAS proc sql

RANK(<char>)

Date Time Functions

This section has functions that deal with dates and times.

Date Constant
How is a constant represented in the code?
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IBM

DATE(‘YYYY-MM-DD’)

Microsoft

CAST(‘YYYY-MM-DD’ as SMALLDATETIME)

Microsoft also seems to recognize strings of the form “MM/DD/YYYY” and
“MMMMM DD, YYYY”. 

mysql

CAST(‘YYYY-MM-DD’ as DATE)

mysql also recognizes strings of the form “YYYY-MM-DD” as dates. 

Oracle

DATE ‘YYYY-MM-DD’

Oracle also seems to recognize strings of the form DD-MMM-YYYY as dates in
an appropriate context. 

SAS proc sql

‘ddMmmyyyy’d

Current Date and Time
What is the current date and time?

IBM

CURRENT DATE

Note: This is not a function. 

Microsoft

GETDATE()
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mysql

CURDATE()

Oracle

SYSDATE()

SAS proc sql

TODAY()

Convert to YYYYMMDD String
How can a date be converted to the format YYYYMMDD?

IBM

REPLACE(LEFT(CHAR(<date>, ISO), 10), ‘-‘, ‘’)))

Microsoft

CONVERT(<date>, VARCHAR, 8, 112)

mysql

DATE_FORMAT(<date>, ‘%Y%m%d’)

Oracle

TO_CHAR(<date>, ‘YYYYMMDD’)

SAS proc sql

PUT(<date>, YYMMDD10.)

This returns a string of the form YYYY-MM-DD. This format is usually suffi-
cient, and removing the hyphens in SAS is cumbersome.

Appendix ■ Equivalent Constructs Among Databases 621

99513bapp01.qxd:WileyRed  8/24/07  10:37 AM  Page 621



Year, Month, and Day of Month
What functions extract the year, month, and day from a date as numbers? 

IBM

YEAR(date)

MONTH(date)

DAY(date)

Microsoft

YEAR(date)

MONTH(date)

DAY(date)

The following also works:

DATEPART(yy, <date>)

DATEPART(m, <date>)

DATEPART(d <date>)

mysql

EXTRACT(YEAR FROM <date>)

EXTRACT(MONTH FROM <date>)

EXTRACT(DAY FROM <date>)

The following also works:

YEAR(date)

MONTH(date)

DAY(date)

Oracle

EXTRACT(YEAR FROM <date>)

EXTRACT(MONTH FROM <date>)

EXTRACT(DAY FROM <date>)

The following also works:

TO_CHAR(<date>, ‘YYYY’)+0

TO_CHAR(<date>, ‘MM’)+0

TO_CHAR(<date>, ‘DD’)+0
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SAS proc sql

YEAR(date)

MONTH(date)

DAY(date)

Day of Week (Integer and String)
What functions extract the day of the week as a day number (starting with 
1 for Sunday) and as a name?

IBM

DAYOFWEEK(<date>)

DAYNAME(<date>)

Microsoft

DATEPART(dw, <date>)

DATENAME(dw, <date>)

mysql

DAYOFWEEK(<date>)

DAYNAME(<date>)

Oracle

1 + MOD(<date> - DATE ‘1970-01-01’+4, 7)

TO_CHAR(<date>, ‘DY’)

SAS proc sql

WEEKDAY(<date>)

PUT(<date>, weekdate3.)

Adding (or Subtracting) Days from a Date
How are a given number of days added or subtracted from a date?
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IBM

<date> + <days> DAYS

Microsoft

DATEADD(d, <days>, <date>)

mysql

ADDDATE(<date>, <days>)

Oracle

<date> + <days>

SAS proc sql

<date> + <days>

Adding (or Subtracting) Months from a Date
How are a given number of months added or subtracted from a date?

IBM

Not supported, use the approximation:

<date> + <months> * 30.4

Microsoft

DATEADD(m, <months>, <date>)

mysql

<date> + INTERVAL <months> MONTH
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Oracle

ADD_MONTHS(<date>, <months>)

SAS proc sql

INTNX(‘MONTH‘, <date>, <months>)

Difference between Two Dates in Days
How is the difference between two dates in days calculated?

IBM

DAYS(<datelater>) – DAYS(<dateearlier>)

Microsoft

DATEDIFF(d, <dateearlier>, <datelater>)

mysql

DATEDIFF(<datelater>, <dateearlier>)

Oracle

<datelater> - <dateearlier>

SAS proc sql

<datelater> - <dateearlier>

Difference between Two Dates in Months
How is the difference between two dates in months calculated?
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IBM

Not directly supported in database, use:

(DAYS(<datelater>) – DAYS(<dateearlier>))/30.4

Microsoft

DATEDIFF(m, <dateearlier>, <datelater>)

mysql

Not directly supported in database, use:

DATEDIFF(<datelater>, <dateearlier>)/30.4

Oracle

MONTHS_BETWEEN(<datelater>, <dateearlier>)

SAS proc sql

INTCK(‘MONTH‘, <dateearlier>, <datelater>)

Note that this counts the number of month boundaries between two values,
rather than the number of full months.

Extracting Date from Date Time
How is a date extracted from a date time value, setting the time to zero?

IBM

DATE(<date>)

Microsoft

DATEADD(‘1900-01-01’, DATEDIFF(dd, ‘1900-01-01’, <date>))
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mysql

DATE(<date>)

Oracle

TRUNC(<date>)

SAS proc sql

DATEPART(<date>)

Mathematical Functions

The functions operate on numeric values.

Remainder/Modulo
What function returns the remainder when one number, <num>, is divided by
another, <base>?

IBM

MOD(<num>, <base>)

Microsoft

<num> % <base>

mysql

MOD(<num>, <base>)

<num> MOD <base>

<num> % <base>

Oracle

MOD(<num>, <base>)
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SAS proc sql

MOD(<num>, <base>)

Power
How do you raise one number, <base>, to another number, <exp>?

IBM

POWER(<base>, <exp>)

Microsoft

POWER(<base>, <exp>)

mysql

POWER(<base>, <exp>)

Oracle

POWER(<base>, <exp>)

SAS proc SQL

<base>**<exp>

Floor
What function removes the fractional part of a number?

IBM

FLOOR(<number>)

Microsoft

FLOOR(<number>)
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mysql

FLOOR(<number>)

Oracle

FLOOR(<number>)

SAS proc sql

FLOOR(<number>)

“Random” Numbers
How can we get random numbers between 0 and 1? This is useful, for instance,
for returning a randomized set of rows. For random number generators that
accept a seed as an argument, the sequence is always the same for a given seed.

IBM

RAND()

Microsoft

RAND()

RAND(<seed>)

mysql

RAND()

RAND(<seed>)

Oracle

No built-in function; use a pseudo-random number generator such as:

(ROWNUM * prime1 + prime2 MOD prime3)/prime3

Example: (ROWNUM * 83 + 19 MOD 101)/(101.0)
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SAS proc sql

RAND(‘UNIFORM’)

Note: SAS has a wide variety of random number generators that pull numbers
from many different distributions.

Left Padding an Integer with Zeros
How can an integer value be converted to a string of a fixed length and
padded with zeros on the left?

IBM

RIGHT(CONCAT(REPEAT(‘0’, <len>), CAST(<num> as CHAR)), <len>)

Microsoft

RIGHT(REPLICATE(‘0’, <len>) + CAST(<num> as VARCHAR), <len>)

mysql

RIGHT(CONCAT(REPEAT(‘0’, <len>), CAST(<num> as CHAR)), <len>)

Oracle

TO_CHAR(<num>, RPAD(‘0’, ‘0’, <len>))

SAS proc sql

PUTN(<num>, Z<len>.)

Conversion from Number to String
How is a number converted to a string?

IBM

CAST(<arg> as CHAR)
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Microsoft

CAST(<arg> as VARCHAR)

mysql

CAST(<arg> as CHAR)

Note that VARCHAR does not work.

Oracle

TO_CHAR(<arg>)

SAS proc sql

PUT(<arg>, BEST.)

The default puts the number into 12 characters. For a wider format, use
BEST<width>. (such as BEST20.) for the format.

Other Functions and Features

These are miscellaneous functions and features that do not fall into any of the
previous categories.

Least and Greatest
How do you get the smallest and largest values from a list?

IBM

(CASE WHEN <arg1> < <arg2> THEN <arg1> ELSE <arg2> END)

(CASE WHEN <arg1> > <arg2> THEN <arg1> ELSE <arg2> END)

If you have to worry about NULL values:

(CASE WHEN <arg2> IS NULL OR <arg1> < <arg2> THEN <arg1>

ELSE <arg2> END)

(CASE WHEN <arg2> IS NULL or <arg1> > <arg2> THEN <arg1>

ELSE <arg2> END)
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Microsoft

(CASE WHEN <arg1> < <arg2> THEN <arg1> ELSE <arg2> END)

(CASE WHEN <arg1> > <arg2> THEN <arg1> ELSE <arg2> END)

If you have to worry about NULL values:

(CASE WHEN <arg2> IS NULL OR <arg1> < <arg2> THEN <arg1>

ELSE <arg2> END)

(CASE WHEN <arg2> IS NULL or <arg1> > <arg2> THEN <arg1>

ELSE <arg2> END)

mysql

LEAST(<arg1>, <arg2>)

GREATEST(<arg1>, <arg2>)

Oracle

LEAST(<arg1>, <arg2>)

GREATEST(<arg1>, <arg2>)

SAS proc sql

(CASE WHEN <arg1> < <arg2> THEN <arg1> ELSE <arg2> END)

(CASE WHEN <arg1> > <arg2> THEN <arg1> ELSE <arg2> END)

If you have to worry about NULL values:

(CASE WHEN <arg2> IS NULL OR <arg1> < <arg2> THEN <arg1>

ELSE <arg2> END)

(CASE WHEN <arg2> IS NULL or <arg1> > <arg2> THEN <arg1>

ELSE <arg2> END)

Return Result with One Row
How can a query return a value with only one row? This is useful for testing
syntax and for incorporating subqueries for constants.

IBM

SELECT <whatever>

FROM SYSIBM.SYSDUMMY1
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Microsoft

SELECT <whatever> 

mysql

SELECT <whatever> 

Oracle

SELECT <whatever>

FROM dual

SAS proc sql

Does not seem to support this; can be implemented by creating a data set with
one row.

Return a Handful of Rows
How can a query return just a handful of rows? This is useful to see a few
results without returning all of them.

IBM

SELECT . . .

FROM . . .

FETCH FIRST <num> ROWS ONLY

Microsoft

SELECT TOP <num> . . .

FROM . . .

mysql

SELECT . . .

FROM . . .

LIMIT <num>

Appendix ■ Equivalent Constructs Among Databases 633

99513bapp01.qxd:WileyRed  8/24/07  10:37 AM  Page 633



Oracle

SELECT . . .

FROM . . .

WHERE ROWNUM < <num>

SAS proc sql

proc sql outobs=2;

SELECT . . .;

Get List of Columns in a Table
How can a query return a list of columns in a table?

IBM

SELECT colname

FROM syscat.columns

WHERE tabname = <tablename> AND

tabschema = <tableschema>

Microsoft

SELECT column_name

FROM information_schema.columns

WHERE table_name = <tablename> AND

table_schema = <tableschema>

mysql

SELECT column_name

FROM information_schema.columns

WHERE table_name = <tablename> AND

table_schema = <tableschema>

Oracle

SELECT column_name

FROM all_tab_columns

WHERE table_name = <tablename> AND

owner = <owner>
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SAS proc sql

SELECT name

FROM dictionary.columns

WHERE upper(memname) = <tablename> AND

upper(libname) = <tableschema>

ORDER BY in Subqueries
Is the ORDER BY clause supported in subqueries?

IBM

Apparently Supported 

Microsoft

Partially supported — supported only when TOP is used in the select.

mysql

Supported

Oracle

Not Supported

SAS proc sql

Not Supported

Window Functions
Does the database support window functions?

IBM

Not Supported

Microsoft

Supported 
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mysql

Not Supported

Oracle

Supported; called analytic functions.

SAS proc sql

Not Supported

Average of Integers
Is the average of a set of integers, using the AVG() function, an integer or a
floating-point number?

IBM

Integer

Microsoft

Integer

mysql

Floating point

Oracle

Integer

SAS proc sql

Floating point
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Index

A
accurate method of calculating

distance, 139–140
AGGREGATE operator, 16
APPEND operator, 15
array functions (Excel), 144
associations, 428

multi-way, 451–452
one-way, 431–433

evaluation information, 
434–436

generating, 433–434
product groups, 436–441

sequential, 454–455
two-way

calculating, 441–442
chi-square and, 442–448

zero-way, 429, 430–431
average value chart, lookup model,

485–487
averages

comparing numeric variables,
301–306

moving average, best fit line,
525–528

standard deviation, 100–101

B
before/after comparisons, 337
best fit line, 512

averages, 518
direct calculation of coefficients,

536–544
error, 517–518
exptected value, 515–517
formula for line, 515
goodness of fit, 532–536
inverse model, 518–519
LINEST( ) function, 528–532
moving average, 525–528
OLS (ordinary least squares), 514
R2, 532–536
residuals, 517–518
scatter plots, 521–522
tenure, 512–513
trend, 392–393

slope, 393–395
trend curves

exponential, 522–524
logarithmic, 522–524
polynomial, 524–525
power, 522–524

weighted, 546–548
charts and, 548–549
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Solver and, 550–552
SQL and, 549–550

billing mistakes, 333
binary classification, 480–481
bubble charts, non-numeric axes,

421–422

C
Calendar table, 191–192
cardinality, 7–8
Cartesian product of tables, 23
CASE statement, 30–31
censor flag, 246
censoring, 251–253
census demographics

income, similarity/dissimilarity, 
chi-square and, 152–156

median income, 150–151
proportion of wealthy and 

poor, 152
Central Limit Theorem, 100
Ceres, least squares regression 

and, 514
charts, animation

order date to ship date, 231–234
order date to ship date by year,

234–238
chi-square

calculation, 124–125
confidence intervals, 123
demographics, 152–156
distribution, 125–127

degrees of freedom, 125–127
expected values, 123–124

deviation, 123
SQL and, 127–128
two-way associations

applying chi-square, 442–445
comparing rules to lift, 445–447
negative rules, 447–448

Codd, E.F., 17
cohort-based approach to calculating

tenure, 338–341
column alias, 19

column charts, 45–46
creating, 47–49
formatting

color, 51
fonts, 50–51
grid lines, 51
horizontal scale, 51
legend, 50
resizing, 49–50

inserting data, 46–47
number of orders and revenue, 54–55
side-by-side columns, 52–54
stacked and normalized columns, 54
stacked columns, 54

columns. See also Excel
histograms, 60–64

for numeric values, 67–72
of counts, 64–66

summarizing
columns, 88–89
one columns, 84–87

values, 59–60
in two columns, 79–84

comparisons, numeric variables,
averages and, 301–306

competing risks, 321–322
examples of

involuntary churn, 322–323
migration, 323–324
voluntary churn, 323

hazard probability, 324–326
survival, 326–327

conditional formatting (Excel),
479–480

confidence
bounds, 304–306
statistics and, 112–113

constant hazards, 263
correlated subqueries, 37–38
counties, highest realtive order

penetration, 175–177
counting

combinations, 105
confidence and, 112–113
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Null Hypothesis and, 112–113
probability and, 114–116

counts
comparing by date, 193–197
customers, 362–364
customers by tenure segment,

227–231
customers every day, 224–226
customers of different types, 226–227
customers on given day, 224
orders and sizes

distinct products, 198–201
dollars, 201–203
number of units, 198

county wealth, 170–172
wealthiest zipcode relative to county,

173–175
cross-joins, 23–24
CROSSJOIN operator, 16
customer signatures, 564–565

ad hoc analysis, 570
building

driving table, 578–580
initial transaction, 584–586
looking up data, 580–583
pivoting, 586–594
summarizing, 594–596

customers, 565–566
data sources, 566–570
designing

column roles, 571–573
profiling versus prediction, 573
time frames, 573–577

extracting features
date time columns, 597–598
geographic location information,

596–597
patterns in strings, 598–600

predictive modeling, 570
profile modeling, 570

customers
behaviors, summarizing, 601–609
couting, 362–364
customer information

addresses, 360–361
gender, 351–354
names, 354–358, 354–360
number of, 349–350

one-time, products, 408–410
products, best customers, 410–413
purchases

average time between, 367–368
increasing over time, 381–395
intervals, 369–370
span of time, 364–367

D
data, structure, 2–12
data exploration, 44–45
data mining, 1–2

directed, 458
data, 459–463
directed models, 459
model evaluation, 465
modeling tasks, 463–465

data models, 3
logical data models, 3
physical data models, 3

dataflows, 12–14
edges, 13
nodes, 13

AGGREGATE operator, 16
APPEND operator, 15
CROSSJOIN operator, 16
FILTER operator, 15
JOIN operator, 16
LOOKUP operator, 16
OUTPUT operator, 15
READ operator, 15
SELECT operator, 15
SORT operator, 17
UNION operator, 16

date time functions, 619–627
dates and times, 186–187

Calendar table, 191–192
comparing counts by date, 193–197
comparisons by week, 215–216
components, extracting, 187
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converting to standard formats,
189–190

counts of orders and sizes, 197–203
DAY( ) function, 187
days of week

billing by, 203–204
changes in by year, 204–205
comparison for two dates, 205–206

duration in days, 206–208
duration in months, 209
duration in weeks, 208–209
durations, 190–191
extrapolation by days in month,

220–221
HOUR( ) function, 187
intervals, 190–191
MINUTE( ) function, 187
MONTH( ) function, 187
month-to-date comparison, 218–220
number of Mondays, 210–213
SECOND( ) function, 187
storing, 188
time zones, 191
without times, 192–193
YEAR( ) function, 187
year-over-year comparisons

comparisons by day, 213–216
comparisons by month, 216–224

DAY( ) function, 187
day-by-day comparisons, 213–216
demographics

county wealth, 170–172
distribution of values of wealth,

172–173
direct estimation of event effect,

341–344
directed data mining

data
model set, 459–461
prediction model sets, 461–463
profiling model sets, 461–463
score set, 461

directed models, 459
model evaluation, 465

modeling tasks
multiple categories, 465
numeric values, 465
similarity models, 463
yes-or-no models, 463–464

distance
accurate method of calculating,

139–140
Euclidian method of calculating,

137–139
distribution of probabilities, 429–430
distribution of values of wealth,

172–173
duplicate products in order, 

403–407

E
earliest/latest values, comparing,

381–386
empirical hazards method, 297
entity-relationship diagrams, 2, 7–8
equijoins, 26–27
Euclidian method of calculating

distance, 137–139
evidence models, probability, 

495–497
likelihood, 497–498
odds, 497

Excel
area charts, 57
array functions, 144
column charts, 45–46 (See also

columns)
creating, 47–49
formatting, 49–52
inserting data, 46–47

conditional formatting, 479–480
line charts, 56
link charts, 106–108
MapPoint, 179
maps, 177

reasons to create, 178–179
X-Y charts (scatter plots), 57–58
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F
FILTER operator, 15
first year values/last year values,

comparing, 390–392
first/last values, comparing, 386–390
foreign keys, 8, 24
functions

date time, 619–627
DAY( ), 187
HOUR( ), 187
mathematical, 627–321
MINUTE( ), 187
miscellaneous, 631–636
MONTH( ), 187
ranking functions, 372–373
SECOND( ), 187
string, 612–619
window functions, 385–386
YEAR( ), 187

G
geocoding, 133
geographic hierarchies

census hierarchies, 168–169
counties, 167–168
DMAs (designated marketing 

areas), 168
zip codes, wealthiest, 162–165

GIS (geographic information 
system), 145

H
hazard calculation

censoring, 251–253
constant hazards, 263
data investigation, stop flags,

245–249
empirical hazards method, 297
hazard and survival example,

262–267
hazard probability, 249–250
probability, competing risks, 326
probability for all tenures,

estimating, 314–316

probability for one tenure,
estimating, 314

ratios, 307–308
interpreting, 306–307
reasons for, 308–309

retention
calculation, 260–262
survival comparison, 262

survival, 253
calculating for all tenures, 

254–256
calculating in SQL, 

256–260
point estimate for survival, 254

hazards, proportional hazards
regression, 300

histograms, 60–64
for numeric values, 67–72
number of units, 407–408
of counts, 64–66

cumulative, 66–67
homogeneity assumption, 239
HOUR( ) function, 187

I
IN statement, 31–32

as a join, 36–37
INTERVAL data type, 190
item sets, product combinations

examples, 419
households, 424–427
multi-way, 422–424
product groups, 420–422
two-way, 415–417, 415–418

J
JOIN operator, 16
joins (tables), 22–23

cross-joins, 23–24
equijoins, 26–27
lookups, 24–26
nonequijoins, 27–28
outer, 28–29
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L
labeling, points on scatter plots, 165
latitude/longitude, 134–135

degrees, 136–137
minutes, 136–137
scatter plots, 145–146
seconds, 136–137

left truncation
effect of, 311–312
fixing, 313–314
recognizing, 309–311
time windowing, 316–318

right censoring, 318–321
life expectancy, 242–243
linear regression

best-fit line, 512
scatter plots, 521–522

input variables, multiple, 552–560
tenure, 512–513
weighted, 544–552

LINEST( ) function, 528–532
link charts (Excel), 106–108
locations, distance between

accurate method, 139–140
Euclidian method, 137–139

logical data models, 3
look-alike models, 466–469

nearest neighbor model, 469–473
z-scores, 469–473

lookup model
evaluating, 477
most popular product, group,

calculating, 475–477
order size, 481–482

average value chart, 485–487
nonstationarity, 484–485
one dimension, adding, 482–484

probability of response
accuracy, 490–493
dimensions, 488–489
overall probability as a model,

487–488
profiling, prediction and, 478–480

LOOKUP operator, 16

lookups, 24–26
loyality, 333–335

M
many-to-many relationships, 8
MapPoint, 179
market basket analysis

histogram, number of units, 407–408
price, changes in, 413–415
products

best customers, 410–413
duplicates, 403–407
one-time customers, 408–410
scatter plots, 402–403

mathematical functions, 627–321
maximum values, 72
metadata, 4
minimum values, 72
MINUTE( ) function, 187
mode, 73

calculating
SQL extensions and, 74
standard SQL and, 73–74
string operations and, 75–76

modeling
look-alike models, 466–469

nearest neighbor model, 473–474
z-scores, 469–473

lookup models
evaluating, 477
most popular product, 475–477

MONTH( ) function, 187
month-to-date comparison, 218–220
multi-way associations, 451–452

N
Naive Bayesian models

calculating, 498–499
generalization, 502–504
lookup models, 507–508
model of one variable, 500–502
probability, 495–497

likelihood, 497–498
odds, 497

scoring, 504–507
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Index ■ N–R 643

naming, variables, subqueries, 33–34
nearest neighbor model, 473–474
non-numeric axes, charts, 421–422
nonequijoins, 27–28
NOT IN operator, 38–39
Null Hypothesis, 93–94

counting and, 112–113
NULL values, 5
nullability, 5
number of units, histogram, 407–408
numeric variables, comparing,

averages and, 301–306

O
OLS (ordinary least squares), 514

Ceres and, 514
one-at-a-time relationships, 8
one-time customers, products,

408–410
one-to-one relationships, 8
one-way associations, 431–433

generating, 433–434
evaluation information, 434–436
product groups, 436–441

order penetration of county, highest,
175–177

outer joins, 28–29
OUTPUT operator, 15

P
p-values, chi-square and, 125–127
partitioning, vertical partitioning, 3
physical data models, 3
prediction, profiling lookup model,

478–480
price raises, 335, 413–415
probability, distribution of

probabilities, 429–430
products

attributes, rules and, 452–453
customers, best, 410–413
duplicates, 403–407
number of units, histogram, 407–408
scatter plots, 402–403

profiling lookup model, prediction
and, 478–480

proportional hazards 
regression, 300

purchases dataset, 11–12

Q
queries, 2, 18

columns, 87
SELECT clause, 19
subqueries, 32–33

correlated, 37–38
IN operator, 36–39
NOT IN operator, 38–39
summaries and, 34–36
UNION ALL operator, 39–40
variable naming, 33–34

summary query, 20–22

R
R2, 532–536
raising prices, 335
ranking functions, 372–373
ratios

lower bounds, 122
proportions

confidence interval, 120–121
difference of, 120–121
standard error, 118–120

READ operator, 15
relational algebra, 17
relationships, 8
RFM analysis

customer migration, 378–380
dimensions, 370–371
frequency, 374
limits, 380–381
methodology, marketing

experiments, 377
monetary, 374–375
recency, 371–373
RFM cell, calculation, 375–377

right censoring, left truncation, time
windowing, 318–321
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S
scatter plots

best-fit line, 521–522
latitude/longitude, 145–146
non-numeric axes, 421–422
points, labeling, 165
products, 402–403
state boundaries, 180–182

SECOND( ) function, 187
SELECT clause, 19
SELECT operator, 15
sequential associations, 454–455
SORT operator, 17
SQL (Structured Query 

Language), 2
customer survival, 256–260
ranking functions, 372–373
window functions, 385–386

state boundaries
pictures of, 182–183
scatter plots, 180–182

statistics
averages, 101–104

approach, 99–100
standard deviation, 100–101

basic concepts, 92
confidence, 94–95
normal distribution, 95–99
Null Hypothesis, 93–94
probability, 94–95

counting, 104–118
ratios

lower bounds, 122
proportions
confidence interval, 120–121
difference of, 121–122
standard error, 118–120

stratification, 298
string functions, 612–619
strings, values

case sensitivity, 76–77
characters, 77–79
histogram of length, 76
spaces, 76–77

subqueries, 32–33
correlated, 37–38
IN operator, 36–39
NOT IN operator, 38–39
summaries and, 34–36
UNION ALL operator, 39–40
variable naming, 33–34

subscription dataset, 10
SUBSTRING( ) function, 19
summaries, subqueries and, 34–36
survival analysis, 240–242. See also

hazard calculation
average customer lifetime, 281–282
comparing survival over time,

272–278
competing risks and, 326–327
conditional survival, 272
confidence in hazards, 282–284
customer survival by year of 

start, 275
customer value calculations 

and, 284
estimated future revenue, 

286–288
estimated future revenue for

customers, 292–295
estimated revenue, 285–286
estimated revenue for customers,

289–292
examples of hazards, 243–245
forecasts, 335–337
hazards, changing over time,

273–275
life expectancy, 242–243
markets, 267–268

stratifying by, 268–270
summarizing, 267–268

median customer tenure, 279–280
medical research, 243
past survival, 275–278
point estimate, 278–279
stratification, 298
survival ratio, 270–272
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T
table alias, 19
tables, 3

Calendar, 191–192
columns

date-times, 6
dates, 6
numeric values, 6
primary key, 6
types, 6–7

joins, 22–23
cross-joins, 23–24
equijoins, 26–27
lookups, 24–26
nonequijoins, 27–28
outer, 28–29

NULL values, 5
tenure, best fit line, 512–513
time. See also dates and times
time to next event

calculation, 395–396
next purchase date, 396–397

time-to-event, 397–398
time-to-event, stratifying, 398–399

time windowing, 316–318
left truncation, right censoring,

318–321
time zones, 191
trend lines, moving average, 214–215
truncation, left

effect of, 311–312
fixing, 313–314
recognizing, 309–311

tuples, 17
two-way associations

calculating, 441–442
chi-square and

applying, 442–445
comparing rules to lift, 445–447
negative rules, 447–448

heterogeneous associations
product mixing, 450
state plus product, 448–450

U
UNION ALL statement, 30, 39–40
UNION operator, 16

V
values

earliest/latest comparison,
calculating, 381–386

first/last, comparing, 386–390
variables, naming, subqueries, 33–34
vertical partitioning, 3

W
wealth. See also income

county, 170–172
distribution of values, 172–173
wealthiest zipcode realtive to county,

173–175
web, maps, 180
window functions, 385–386

Y
YEAR( ) function, 187

Z
ZCTAs (zip code tabulation 

areas), 133
zero-way associations, 429, 

430–431
zip code tables, 8–9
zip codes

classifying, 159–162
comparing, 159–162
finding all within a given distance,

141–143
finding nearest (Excel), 

143–144
most orders in state, 165–167
not in census file, 156–157
wealthiest relative to county, 

173–175
with/without orders, 157–159

Zipcode table, 134
latitude/longitude, 134–135

99513bindex.qxd:WileyRed  8/27/07  2:36 PM  Page 645




